
Math 2321 (Multivariable Calculus)

Lecture #35 of 37 ∼ April 15, 2021

Applications of Multivariable Calculus, Part 1

Planetary Motion, Orbits, and Gravity

Some Miscellaneous Applications



Logistical Things

I’ve applied all of the remaining WeBWorK extensions to set
12 for everyone.

The final exam is 2 hours, with some additional turnaround
time added like with the midterms.

The final exam will be held from 10:30am-12:30pm on
Thursday, April 29th, unless you have made alternate
arrangements due to an exam conflict.

The best way to study for our final is to practice with the old
finals. Next Wednesday I will do some review problems. I will
also run a 2-hour review session during the final exam week,
date and time TBD by Piazza vote.

If your score on the final is better than any of your midterm
scores (as a percentage), then your lowest midterm exam
score is dropped.



What Have We Learned?

Here’s a summary of the material we covered this semester:

1. Vectors and 3D Geometry: graphs and level sets, vectors, dot
and cross products, lines and planes, vector-valued functions,
curves and motion in 3-space.

2. Partial Derivatives: limits and partial derivatives, directional
derivatives, gradients, tangent lines and planes, the chain rule,
linearization, minima and maxima, classifying critical points,
optimization on a region, Lagrange multipliers.

3. Multiple Integration: double and triple integrals in
rectangular, polar, cylindrical, and spherical coordinates, area,
volume, average value, mass, center of mass.

4. Vector Calculus: line and surface integrals, vector fields, work,
circulation, flux, conservative fields and potential functions,
the fundamental theorem of line integrals, divergence and curl,
Green’s theorem, Stokes’s theorem, the divergence theorem.



Motion, Orbits, and Gravity, I

We will start out by discussing planetary motion using some of our
properties of vectors and vector fields.

The main tool we will use for our analysis is Newton’s law of
gravitation.

Newton’s law of gravitation says that the gravitational
attraction imparted by an object on a particle is directly
proportional to each of their mass and inversely proportional
to the square of the distance between them.

If we have a list of objects along with their masses and
locations, we can use Newton’s law of gravitation to write
down the vector field modeling the force due to gravity at a
given point (x , y , z).

The simplest situation is with an object and a particle.



Motion, Orbits, and Gravity, II

Explicitly, suppose the particle has mass m at r = 〈x , y , z〉, and the
object has mass M and is located at the origin.

The direction of the gravitational field is from r to the origin

(0, 0, 0). The unit vector in this direction is − r

||r||
.

The magnitude of the field F is equal to a constant times m

times M times
1

||r||2
. The constant here is called G , the

universal gravitational constant, and its value has been
measured to be 6.674 m3/( kg· s2).

Thus, we see F =
GmM

||r||2
·
(
− r

||r||

)
= −GmM

||r||3
r.

As a function of x , y , z , this is

F(x , y , z) = − GmM

(x2 + y2 + z2)3/2
〈x , y , z〉.



Motion, Orbits, and Gravity, III

Now suppose that the path r describes the motion of a planet
(mass m) through space, and the only force acting on the planet is
the gravity of the sun (mass M) at the origin. We claim that the
planet’s orbit lies in a plane passing through the sun.

First, note that the gravitational force is F(r) = −GmM

||r||3
r.

By Newton’s second law (F = ma), the particle’s acceleration

satisfies a(r) = − GM

||r||3
r, which is a scalar multiple of −r.



Motion, Orbits, and Gravity, IV

We can now show that the planet’s orbit lies in a plane by showing
that n = r × v is constant.

If this is true, then the position and velocity both lie in the
plane whose normal vector is n, and so the particle’s motion
will stay in the plane.

To show n = r × v is constant, we calculate its derivative:
d

dt
[r × v] = v × v + r × a.

The first cross product is zero, since the cross product of any
vector with itself is zero, and the second cross product is also
zero, since a is a scalar multiple of r as noted on the last slide.

Thus,
d

dt
[r × v] is zero, and so n = r × v is a constant vector.

Therefore, the planet’s orbit lies in a plane, as claimed.



Motion, Orbits, and Gravity, V

By extending this sort of calculation, one may derive Kepler’s
famous laws of planetary motion:

1. The orbit of a planet is a conic section with the sun at one

focus. Specifically, the conic’s eccentricity is e =
r0v2

0
GM − 1.

2. The radius vector r from the sun to the planet sweeps out
equal areas in equal times.

3. The square of the orbital period T is proportional to the cube
of the length of the semimajor axis a. Specifically, T 2

a3
= 4π2

GM .

To show Kepler’s laws, the best approach is to work in polar
coordinates. This approach is feasible because, as we have just
shown, the orbit of a planet lies in a plane passing through the
sun. To show you what this looks like, I will work out the second
law. For notational convenience I will use dots to denote
time-derivatives.



Motion, Orbits, and Gravity, VI

Place the sun at the origin and define r = ||r|| to be the radial
parameter, with angle parameter θ.

Then define the unit vector ur = 〈cos θ, sin θ, 0〉, which is the
unit vector in the direction of increasing r , and the orthogonal
unit vector uθ = 〈− sin θ, cos θ, 0〉, which is the unit vector in
the direction of increasing θ.

We see
dur
dθ

= uθ and
duθ
dθ

= −ur , so the chain rule gives

u̇r =
dur
dθ

dθ

dt
= θ̇uθ and u̇θ =

duθ
dθ

dθ

dt
= −θ̇ur .

Then because r = rur , by the product rule we get

v = ṙ =
dr

dt
ur + r

dur
dt

= ṙur + r θ̇uθ.



Motion, Orbits, and Gravity, VII

We can then derive Kepler’s second law by calculating the vector
n = r × v from earlier.

Explicitly, we have n = (rur )× (ṙur + r θ̇uθ) =

r ṙ(ur × ur ) + r2θ̇(ur × uθ) =
〈

0, 0, r2θ̇
〉

.

Now we can compute the area swept out by the radius vector
between time t = t1 and time t = t2. By integrating in polar
and then doing a substitution in the resulting line integral, this

is
´ θ2(t)
θ1(t)

´ r(t)
0 1 · r dr dθ =

´ θ2(t)
θ1(t)

1

2
r2 dθ =

´ t2
t1

1

2
r(t)2θ̇(t) dt.

However, the integrand in the last integral is exactly the
z-component of the constant vector n, so the integral is
simply (t2 − t1) times a constant. This means the area
depends only on the amount of time t2 − t1, which (when
phrased more elegantly) is Kepler’s second law.



Motion, Orbits, and Gravity, VIII

The other laws are a bit more difficult and require careful
manipulation of the differential equation r′′(t) = −GmM

||r||3 r.

I won’t go through all the details of these.

But the first law boils down to computing the polar equation
for r in terms of θ, and verifying it has the form

r =
(1 + e)r0

1 + e cos θ
where r0 is the radius at perihelion (i.e., the

minimal radius), which we take to occur at t = 0 and θ = 0.

The third law boils down to comparing two formulas for the
area of an ellipse (one of them is the integral formula from the
second law, and the other is π times the semimajor axis times
the semiminor axis, which we showed as an application of
Green’s theorem).



The Gravity of The Situation, I

We can do a little bit more with Newton’s law of gravitation

F(r) = −GmM

||r||3
r = − GmM

(x2 + y2 + z2)3/2
〈x , y , z〉.

Specifically, we often want to calculate the work done by a
gravitational field on an object.

Calculating the work integral as a line integral directly is
messy because of the square root factor in the denominator.

But we might hope that F is conservative. In fact, it is! (It is
not so fun to compute curlF, but it is zero.)

If we search for a potential function, we can eventually see
that U = GmM(x2 + y2 + z2)−1/2 has the property that
F = 〈Ux ,Uy ,Uz〉: the chain rule terms 2x , 2y , 2z exactly give
the needed factors of x , y , z in the three components.
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The Gravity of The Situation, II

So, we see that the gravitational field

F(r) = −GmM

||r||3
r = − GmM

(x2 + y2 + z2)3/2
〈x , y , z〉

is conservative and has a potential function
U = GmM(x2 + y2 + z2)−1/2 = GmM/||r||.

We can therefore easily compute the work done by the vector
field on a particle that travels from point a to point b.

Specifically, by the fundamental theorem of line integrals, the

work done by F is equal to U(b)− U(a) =
GmM

||b||
− GmM

||a||
.

Notice that the work only depends on the distances of the
points from the origin.



The Gravity of The Situation, III

We can even apply this to estimate the gravitational potential
energy on the surface of the Earth.

The change in the potential energy function is
U(b)− U(a) = GmM

||b|| −
GmM
||a|| .

If the start and end points are both approximately a distance
R from the origin, then we can estimate the change in the
potential energy using a linearization (or, if you prefer, a
directional derivative).



The Gravity of The Situation, IV

Specifically, the linearization of U(x) = GmM
x at x = R is

L(x) = GmM
R − GmM

R2 (x − R).

Therefore, the approximate value of U(R + ∆h)− U(R) is

−GmM

R2
∆h, which equals mg∆h where m is the mass of the

particle, h is the change in height, and g =
GM

R2
is a constant.

If we evaluate this constant g using the known values
G = 6.674 m3/( kg· s2), the mass of the Earth
M = 5.972 · 1024 kg, and the radius of the Earth
R = 6.371 · 106 m, we obtain (drumroll)

the local gravitational constant g = 9.817 m/ s2.

This should not be a surprise, because by Newton’s second
law, the magnitude of the acceleration due to the
gravitational field will be ||F(r)||/m = −GM/||r||2.
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Some Miscellaneous Applications, I

[Conservative Fields] Recall that we defined conservative vector
fields as those where the work is independent of the path, and we
showed that this is equivalent to saying that the circulation around
any closed curve C is zero.

If
´
C F · dr = 0, then by Stokes’s theorem, for any surface S

whose boundary is C , we have
˜

S(∇× F) · n dσ = 0.

Thus, the integral of (∇× F) · n is zero on any surface S .

But if this quantity is zero on every surface, then in fact the
curl ∇× F must be zero: otherwise, if it took a nonzero value
v at a point P, we could pick a small patch of a plane passing
through P with normal vector v, and then (∇× F) · n = ||v||2
would be positive, meaning that its integral could not be zero.

Conversely, again by Stokes’s theorem, if ∇× F = 0, then´
C F · dr =

˜
S(∇× F) · n dσ = 0, and so F is conservative.



Some Miscellaneous Applications, II

[Economics] The Wilson lot size formula computes the optimal
amount of a product to keep on hand based on its various costs.

If the purchase price for an item is P with annual demand D,
the cost of ordering one shipment is K , and the holding cost
for an item is h.

Then the total expected cost is T = PD + KD/Q + hQ/2
where Q is the number of items.

We can minimize T with respect to Q by computing ∂T/∂Q
and setting it equal to zero: this yields
∂T/∂Q = −KD/Q2 + h/2, so Q =

√
2KD/h.

If we want to understand how this function will change with a
change in the parameters (e.g., if the annual demand D goes
up, or the ordering cost K goes down), we can then simply
calculate the appropriate partial derivatives, or more generally
a directional derivative, of Q =

√
2KD/h.



Some Miscellaneous Applications, III

[Optics] Snell’s law characterizes how waves will refract when
passing from one medium to another: if θ1 is the angle of

incidence and θ2 is the angle of refraction, then
sin θ1
sin θ2

=
v2
v1

, where

vi and vr are the wave speeds in the two different media.

We can deduce Snell’s law
using Fermat’s principle:
the wave follows the path
that takes the least total
amount of time.

For points A and B, the
total time taken is
x csc θ1/v1 + y csc θ2/v2,
with constraint x + y = a.



Some Miscellaneous Applications, IV

The total time taken is
x csc θ1/v1 + y csc θ2/v2,
with constraint x + y = a.

Now we can use Lagrange
multipliers with f (x , y) =
x csc θ1/v1 + y csc θ2/v2
and g(x , y) = x + y = a.

The condition ∇f = λ∇g is 〈csc θ1/v1, csc θ2/v2〉 = λ〈1, 1〉.

Thus,
csc θ1/v1
csc θ2/v2

= 1 which is the same as
sin θ1
sin θ2

=
v2
v1

.



Some Miscellaneous Applications, V

[Fluid Dynamics] Archimedes’ principle says that if a body is
immersed in a fluid, the net effect of the fluid pressure on the
surface of the body (the buoyant force) is vertical and equals the
weight of fluid displaced by the body.

We can deduce Archimedes’ principle using the divergence
theorem.

Fluid pressure on the solid D acts on the solid’s surface S
perpendicularly to the surface inward.

Assume that the fluid fills the region with z ≤ 0, with gravity
acting in the z-direction.

By Pascal’s law, the pressure of the fluid equals the total mass
of fluid directly above a given point.

Thus, the pressure of the fluid at (x , y , z) is 〈0, 0,−ρz〉,
where ρ is the density of the fluid. (If you like, we could even
compute the mass with a line integral.)



Some Miscellaneous Applications, VI

The pressure of the fluid at (x , y , z) is 〈0, 0, ρz〉, where ρ is the
density of the fluid.

Since the pressure is zero in the x and y -directions, the
horizontal pressure on any body is always zero.

The force component in the vertical direction is given by the
surface integral −

˜
S〈0, 0,−ρz〉 · n dσ, where P is the vector

field giving the fluid pressure at a given point. (The minus
sign is because pressure pushes inward, not outward).

By the divergence theorem, this surface integral equals
−
˝

D div(0, 0,−ρz) dV =
˝

D ρ dV , which is exactly the
volume of the solid times the density ρ of the fluid.

Thus, the total force is directed upward, and its magnitude
equals the volume of the displaced fluid: this is Archimedes’
principle.



Some Miscellaneous Applications, VII

[Streamlines] If F(x , y) represents the flow of a fluid in the plane,
we can trace the path of a particle moving through the fluid by
following the vector field F(x , y) at every point.

These paths are called
streamlines.

They represent solutions to
the system of differential
equations 〈x ′(t), y ′(t)〉 =
F(x(t), y(t)).

Such systems are common
in applications like ecology
(e.g., predator-prey
systems) and engineering
(mixing of substances).



Some Miscellaneous Applications, VIII

Here is a slightly different way of plotting streamlines:

For some vector fields,
there will be streamlines
that form closed curves
(i.e., loops).

Other vector fields will not
have any closed
streamlines.

Using Green’s theorem, we
can give a criterion for
when a vector field will not
have closed streamlines.



Some Miscellaneous Applications, IX

Bendixon’s criterion says that a vector field F = 〈P,Q〉 will not
have any closed streamlines if Px + Qy is never zero.

To see this, suppose we did have a closed streamline C , and
consider the flux of the vector field F across C .

Since the vector field F always points in the tangential
direction along C , the component in the normal direction is
zero. Therefore, the flux integral

¸
C F ·N ds is zero.

But by the normal form of Green’s theorem, the flux is also
equal to

˜
R div(F) dA =

˜
R(Px + Qy ) dA.

But if Px + Qy is never zero, then (since it is continuous) it is
either always positive or always negative – and then the
double integral would have the same property.

This is impossible, so we can’t have a closed streamline C .



Summary

We did some more examples of problems involving Stokes’s
theorem and the divergence theorem.

We discussed some applications of multivariable calculus to
analyzing planetary motion, orbits, and gravity.

We discussed some other miscellaneous applications of
multivariable calculus to economics, optics, and fluid dynamics.

Next lecture: More applications of vector calculus


