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Stokes’s Theorem and the Divergence Theorem

Stokes’s Theorem

The Divergence Theorem

This material represents §4.6 from the course notes. This is the
last new material for the semester!



Tangential Form of Green’s Theorem

We first discuss the generalization of the tangential form of Green’s
theorem. Here is a reminder of that version of Green’s theorem:

Theorem (Green’s Theorem, Tangential Form)

If C is a simple closed rectifiable curve in the plane oriented
counterclockwise around the boundary of the region R, then the
circulation around C is given by

˛
C
F · T ds =

¨
R

(curlF) · k dA

where T is the unit tangent to the curve and k = 〈0, 0, 1〉.



Stokes’s Theorem, I

And now here is our 3-dimensional generalization of the tangential
form of Green’s theorem:

Theorem (Stokes’s Theorem)

If C is a simple closed rectifiable curve in 3-space that is oriented
counterclockwise around the boundary of the surface S, then the
circulation around C is given by

˛
C
F · T ds =

¨
S

(curlF) · n dσ

where T is the unit tangent to the curve and n is the unit normal
to the surface.

The tangential form of Green’s theorem is the special case of
Stokes’s theorem where the curve and “surface” are in the
xy -plane (then the normal vector is simply the vector k).



Stokes’s Theorem, II

But, unlike in Green’s theorem where a given curve encloses a
unique possible region, there are many possible surfaces that a
given curve C can bound. Here are some surfaces whose
boundaries are the the circle x2 + y2 = 1, z = 0 in the xy -plane:



Stokes’s Theorem, III

A few remarks about Stokes’s theorem:

The curve C must run counterclockwise around S : in other
words, when walking along C , the surface should be on its
left-hand side.

The unit normal vector to S is oriented via the right-hand
rule: using your right hand, curl your fingers along C : your
thumb points in the proper direction for n.

If you want the curve to run clockwise around a surface, that
is equivalent to traversing the curve in the opposite direction,
and so the integral will be scaled by −1.

The hypotheses about the curve (“simple, closed, rectifiable,
oriented counterclockwise”) are the same as in Green’s
Theorem, and they ensure the curve is nice enough for the
theorem to hold.



Stokes’s Theorem, IV

A few more remarks about Stokes’s theorem:

Intuitively, if we think of a vector field as modeling the flow of
a fluid, the quantity (curlF) · n at (x , y , z) measures how
much the fluid is circulating around the point (x , y , z) along
the surface.

Stokes’s Theorem then says: we can measure how much the
fluid circulates around the whole surface by measuring how
much it circles around its boundary.

The proof of Stokes’s Theorem (which we omit) can
essentially be reduced to the proof of Green’s Theorem: if we
parametrize the surface and break it into patches, then
Stokes’s Theorem follows by applying the tangential form of
Green’s Theorem on each patch and then summing over the
patches.



Stokes’s Theorem, V

Stokes’s theorem gives an equality

Circulation around C =

˛
C
F · T ds =

¨
S

(curlF) · n dσ.

Typically, we use Stokes’s Theorem when the line integral over
the boundary is difficult, but there is a nicer surface available.

However, sometimes we can use the theorem in the other
direction, if we happen to be computing a surface integral
that involves the curl of a vector field.



Stokes’s Theorem, VI

Example: Find the circulation of the vector field
F(x , y , z) =

〈
y2z3, 2xyz3, 3xy2z2

〉
around the ellipse given by the

intersection of the upper half of the ellipsoid x2 + 2y2 + 2z2 = 12
with the cone x2 + 2y2 = z2.

We could find a
parametrization for the
ellipse (it has x2 + 2y2 = 4
and z = 2) and then set up
the circulation integral.

However, this is quite
messy, since it will involve
large powers of sines and
cosines.



Stokes’s Theorem, VI

Example: Find the circulation of the vector field
F(x , y , z) =

〈
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〉
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with the cone x2 + 2y2 = z2.
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Stokes’s Theorem, V

Example: Find the circulation of the vector field
F(x , y , z) =

〈
y2z3, 2xyz3, 3xy2z2

〉
around the ellipse given by the

intersection of the upper half of the ellipsoid x2 + 2y2 + 2z2 = 12
with the cone x2 + 2y2 = z2.

Another way is to try to use Stokes’s Theorem.

Since the curve runs counterclockwise around the ellipsoid, we
will use that as the surface.

We know that
Circulation around C =

¸
C F · T ds =

˜
S (curlF) · n dσ.

We have curlF =〈
6xyz2 − 6xyz2, 3y2z2 − 3y2z2, 2yz3 − 2yz3

〉
= 〈0, 0, 0〉.

So the curl of F is zero. Hence (curlF) · n will also be zero, so
we see that the circulation is 0, without even having to set up
the surface integral.
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Stokes’s Theorem, VI

In this last example, we applied Stokes’s theorem to calculate the
circulation of a vector field whose curl was zero.

However, we could have also solved this problem by noting
that the vector field was conservative, and thus we could have
computed a potential function.

Then the circulation integral would automatically be zero,
because the start and end points of the curve are the same.

In fact, Stokes’s theorem is actually the result that underlies
this entire method to begin with!

By this simple application of Stokes’s theorem, we can
actually deduce this fact (which, if you recall, I didn’t fully
prove when we discussed conservative fields) that a vector
field with zero curl is always conservative.



Stokes’s Theorem, VII

Example: Find the circulation of F(x , y , z) =
〈
2xyz , x2z , 2x2y

〉
around the counterclockwise boundary of the portion of the surface
z = xy with 0 ≤ x ≤ 1 and 0 ≤ y ≤ x .

We could parametrize the boundary of this surface, but it will
have three components and is rather complicated.

Instead, we can use Stokes’s theorem to convert the
circulation integral into a surface integral on the given surface.

We have

Circulation around C =

˛
C
F · T ds =

¨
R

(curlF) · n dA

so we just need to set up the surface integral.



Stokes’s Theorem, VIII

Example: Find the circulation of F(x , y , z) =
〈
2xyz , x2z , 2x2y

〉
around the counterclockwise boundary of the portion of the surface
z = xy with 0 ≤ x ≤ 1 and 0 ≤ y ≤ x .

We can parametrize the surface as x = s, y = t, z = st for
0 ≤ t ≤ s, 0 ≤ s ≤ 1.

Then r(s, t) = 〈s, t, st〉 and so
(dr/ds)× (dr/dt) = 〈1, 0, t〉 × 〈0, 1, s〉 = 〈−t,−s, 1〉.
The orientation here is correct since the z-component is
positive. Also, curlF = 〈Ry − Qz ,Pz − Rx ,Qx − Py 〉 =
〈x2,−2xy , 0〉 = 〈s2,−2st, 0〉.
Thus, by Stokes’s theorem, the circulation is¨

R
(curlF) · n dσ =

ˆ 1

0

ˆ s

0
〈−t,−s, 1〉 · 〈s2,−2st, 0〉dt ds

=

ˆ 1

0

ˆ s

0
s2t dt ds =

ˆ 1

0

1

2
s4 ds =

1

10
.



Stokes’s Theorem, VIII
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R
(curlF) · n dσ =

ˆ 1

0

ˆ s

0
〈−t,−s, 1〉 · 〈s2,−2st, 0〉dt ds

=

ˆ 1

0

ˆ s

0
s2t dt ds =

ˆ 1

0

1

2
s4 ds =

1

10
.



Stokes’s Theorem, IX

Example: Find the flux of the curl
˜

S curl(F) · n dσ, where
F = yz i− xz j + ex+yk, S is the portion of x2 + y2 + z2 = 25
below the plane z = 3, and n is the outward unit normal.

We use Stokes’s Theorem.

Here, S is the part of
x2 + y2 + z2 = 25 below
z = 3. The boundary curve
is the intersection of the
plane and the sphere.

The curve has x2 + y2 = 16
and z = 3, which is a circle
with parametrization
r(t) = 〈4 cos(t), 4 sin(t), 3〉
for 0 ≤ t ≤ 2π.



Stokes’s Theorem, IX
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Here, S is the part of
x2 + y2 + z2 = 25 below
z = 3. The boundary curve
is the intersection of the
plane and the sphere.

The curve has x2 + y2 = 16
and z = 3, which is a circle
with parametrization
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Stokes’s Theorem, X

Example: Find the flux of the curl
˜

S curl(F) · n dσ, where
F = yz i− xz j + ex+yk, S is the portion of x2 + y2 + z2 = 25
below the plane z = 3, and n is the outward unit normal.

However, S lies below C ,
not above it. Since we are
using the outward normal,
the curve runs clockwise
around the surface.

To use Stokes’s Theorem,
we need to reverse the
orientation of C , which we
can do by swapping
integration limits: we start
at t = 2π and end at t = 0.



Stokes’s Theorem, X

Example: Find the flux of the curl
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Stokes’s Theorem, XI

Example: Find the flux of the curl
˜

S curl(F) · n dσ, where
F = yz i− xz j + ex+yk, S is the portion of x2 + y2 + z2 = 25
below the plane z = 3, and n is the outward unit normal.

From Stokes’s Theorem, the flux of the curl is given by the
line integral

´
C F · dr =

´
C P dx + Q dy + R dz .

Our curve is r(t) = 〈4 cos(t), 4 sin(t), 3〉 for 0 ≤ t ≤ 2π.

We have P = 12 sin(t), Q = −12 cos(t), R = e4 cos(t)+4 sin(t),
and dx = −4 sin(t) dt, dy = 4 cos(t) dt, dz = 0 dt.

Thus, the desired line integral isˆ
C
F · dr =

ˆ 0

2π
[(12 sin(t)) · (−4 sin(t) dt) + (−12 cos(t)) ·

(4 cos(t) dt)) + e4 cos(t)+4 sin(t) · 0 dt] =

ˆ 0

2π
−48 dt = 96π.
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Normal Form of Green’s Theorem

We now discuss the generalization of the normal form of Green’s
theorem. Here is a reminder of that version of Green’s theorem:

Theorem (Green’s Theorem, Normal Form)

If C is a simple closed rectifiable curve oriented counterclockwise,
and R is the region it encloses, and F is a continuously
differentiable vector field, then the flux across C is given by

˛
C
F ·N ds =

¨
R

(divF) dA

where N is the outward unit normal of the curve.



Gauss’s Divergence Theorem, I

And now here is our 3-dimensional generalization of the normal
form of Green’s theorem:

Theorem (Gauss’s Divergence Theorem)

If S is a closed, bounded, piecewise-smooth surface that fully
encloses a solid region D, and F is a continuously differentiable
vector field, then the flux across S is given by

¨
S
F · n dσ =

˚
D

(divF) dV

where n is the outward unit normal to the surface.



Gauss’s Divergence Theorem, II

In the divergence theorem, the surface S is what we call a “closed”
surface, meaning that it encloses a solid region, and does not have
a boundary curve: this is unlike in Stokes’s theorem, where the
surface does not enclose a region.

To get an idea of the setup, if S is the unit sphere
x2 + y2 + z2 = 1, then D would be the unit ball
x2 + y2 + z2 ≤ 1.

If S consists of the 6 faces of the unit cube, then D would be
the interior of the cube.

Inversely, if D is the cylindrical solid x2 + y2 ≤ 1 with
0 ≤ z ≤ 3, then S would consist of the top and bottom faces
of the cylinder along with the lateral portion of the surface.

Typically, we want to use the Divergence Theorem to convert a
surface integral into a triple integral, since the triple integral is
usually easier to evaluate.



Gauss’s Divergence Theorem, III

Some remarks about the divergence theorem:

Intuitively, if we think of a vector field as modeling the flow of
a fluid, the divergence measures whether there is a “source”
or a “sink” at a given point (i.e., whether fluid is flowing
inward toward that point, or outward from that point).

The Divergence Theorem then says that we can measure how
much fluid is flowing in or out of a solid region by measuring
how much fluid is flowing across its boundary.

The proof of the Divergence Theorem (which we omit) is
essentially the same as the proof of Green’s Theorem: we
reduce to the case of showing the result for rectangular boxes,
parametrize the boxes explicitly, and then glue boxes together
to approximate general regions.



Gauss’s Divergence Theorem, IV

Example: Find the outward normal flux of the vector field
F(x , y , z) =

〈
x3 − 3y , 2yz + 1, x2y3

〉
through the cube bounded

by the planes x = 0, x = 1, y = 0, y = 1, z = 0, and z = 1.

We use the divergence theorem, rather than setting up six
separate surface integrals: the flux is

˝
V (div F) dV .

The solid region V is defined by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
0 ≤ z ≤ 1, and div F = 3x2 + 2z .

So by the divergence theorem, the flux isˆ 1

0

ˆ 1

0

ˆ 1

0
(3x2 + 2z) dz dy dx

=

ˆ 1

0

ˆ 1

0
(3x2 + 1) dy dx =

ˆ 1

0
(3x2 + 1) dx = 2.



Gauss’s Divergence Theorem, IV
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Gauss’s Divergence Theorem, V

Example: Evaluate the flux integral
˜

S F · n dσ where

F = 〈x3z , y3z , x(x2 + y2)3/2〉 and S is the boundary of the solid
cylinder with 4 ≤ x2 + y2 ≤ 9 and 0 ≤ z ≤ 2.

We will use the Divergence Theorem. Here, we have
div(F) = 3x2z + 3y2z .

Thus the flux is given by
˝

D(3x2z + 3y2z)dz dy dx , where D
is the given solid 4 ≤ x2 + y2 ≤ 9 and 0 ≤ z ≤ 2.

To evaluate this integral we switch to cylindrical coordinates:
the region is 0 ≤ θ ≤ 2π, 2 ≤ r ≤ 3, 0 ≤ z ≤ 2, the function
is 3r2z , and the differential is r dz dr dθ.

So the flux is

ˆ 2π

0

ˆ 3

2

ˆ 2

0
3r2z · r dz dr dθ =

ˆ 2π

0

ˆ 3

2
6r3 dr dθ =

ˆ 2π

0
195/2 dθ = 195π.



Gauss’s Divergence Theorem, V
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Gauss’s Divergence Theorem, VI

Example: Compute the flux
‚

S F · n dσ, where
F = (x3 + yz)i + (y3 + xz)j + (z3 + xy)k, S is the unit sphere
x2 + y2 + z2 = 1, and n is the outward normal.

We will use the Divergence Theorem. Here, we have
div(F) = 3x2 + 3y2 + 3z2.

The region enclosed by S is the unit ball x2 + y2 + z2 ≤ 1.

Thus the flux is given by
˝

D

(
3x2 + 3y2 + 3z2

)
dz dy dx ,

where D is the solid x2 + y2 + z2 ≤ 1.

To evaluate this integral we switch to spherical coordinates:
the region is 0 ≤ ρ ≤ 1, 0 ≤ φ ≤ π, and 0 ≤ θ ≤ 2π, the
function is 3ρ2, and the differential is ρ2 sin(φ) dρ dφ dθ.

So the flux is

ˆ 2π

0

ˆ π

0

ˆ 1

0
3ρ2 · ρ2 sin(φ) dρ dφ dθ

=

ˆ 2π

0

ˆ π

0

3

5
sin(φ) dφ dθ =

ˆ 2π

0

6

5
dθ =

12π

5
.



Gauss’s Divergence Theorem, VI
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0

3

5
sin(φ) dφ dθ =
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0

6

5
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12π

5
.



Unified Theory of Integration

As a closing remark, notice that the fundamental theorem of line
integrals, Green’s theorem, Stokes’s theorem, and the divergence
theorem collectively unify all of our notions of integration.

Each of these theorems is a different generalizations of the
Fundamental Theorem of Calculus, and they all relate the
integral of a function on the boundary of a region to the
integral of a derivative on the interior of the region.

Symbolically, their statements all read as

ˆ
∂R
ω =

ˆ
R

dω,

where dω represents an appropriate differential of a function
ω (e.g., f ′, ∇f , ∇ · F, or ∇× F) and ∂R represents the
boundary of the region R.

The statement above is known as the generalized Stokes
theorem, and in fact applies to integration in
higher-dimensional spaces as well.



What Now?

Tomorrow’s lecture, and Monday’s lecture will be devoted to
discussing some applications of vector calculus.

The applications will not appear on the final, but they’re a
nice way to tie up a lot of the material from the semester
(and of course, you will probably see at least some of them in
other classes).

Next Wednesday, the last day of class, I will do some more
focused review of exam-style problems.

I will also schedule a review session during the final exam
week (ahead of our exam, of course) where I will go over a
number of additional problems from old final exams. The
review will be recorded for those who cannot attend live.



Summary

We discussed Stokes’s theorem and how it is used.

We described the divergence theorem and how it is used.

Next lecture: Applications of vector calculus, part 1


