
Math 2321 (Multivariable Calculus)

Lecture #33 of 37 ∼ April 8, 2021

Midterm #3 Review #2



Midterm 3 Exam Topics

The topics for the exam are as follows:

Line integrals

Surface integrals

Vector fields

Work, circulation, and flux integrals in the plane and in
3-space

Conservative vector fields, potential functions, the
fundamental theorem of line integrals

Divergence and curl of vector fields

Green’s theorem

Normal and tangential forms of Green’s theorem

This represents §4.1− 4.5 from the notes and WeBWorKs 9-11.



Exam Information

The exam format is the same as the other midterms.

You will write your responses (either on a printout of the
exam or on blank paper) and then scan/photograph your
responses and upload them into Canvas.
There are approximately 6 pages of material: one page is
multiple choice and the rest is free response.
I have set up a Piazza poll for you to select your desired exam
window. Please make your selection by Saturday, April 10th. I
will post your selection in Canvas so you can confirm it on
Sunday the 11th.
The “official” exam time limit is 65+25 = 90 minutes, plus
30 minutes of turnaround time (not to be used for working).

Collaboration of any kind is not allowed. You may not discuss
anything about the exam with anyone other than me (the
instructor) until 5pm Eastern on Friday, April 16th. This includes
Piazza posts.



TRACE Evaluations

The TRACE evaluations for this course will open tomorrow.

Please do fill out the evaluations. They are quite important
(especially for teaching faculty like me) – they are used
internally by the department and the university to make
decisions about faculty retention, promotion, and course
assignments.

Therefore, if you feel I did a good job teaching this course
(and you enjoy things like the review sheets and review
sessions, the course notes, etc.), I would ask that you please
make the evaluations reflect that.

Thank you!

And now, on with the lecture....



Review Problems, I

(#1b) Compute
´
C x dx + y dy , where C is the circle x2 + y2 = 9.

We can parametrize the circle as r(t) = 〈3 cos t, 3 sin t〉 for
0 ≤ t ≤ 2π.

Then dx = −3 sin t dt and dy = 3 cos t dt.

Therefore, the integral isˆ 2π

0
(3 cos t)(−3 sin t)dt + (3 sin t)(3 cos t) dt =

ˆ 2π

0
0 dt = 0 .
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Review Problems, II

(#6a) Find the divergence and curl of F =
〈
x3 + xy , y3 + xy , 0

〉
.

Then determine whether F is conservative and (if so) find a
potential function U.

Note divF = ∇ · F = Px + Qy + Rz and
curlF = ∇× F = 〈Ry − Qz , Pz − Rx , Qx − Py 〉.

So ∇ · F = 3x2 + y + 3y2 + x and ∇× F = 〈0, 0, y − x〉 .

Since ∇× F 6= 0, the vector field is not conservative .



Review Problems, II

(#6a) Find the divergence and curl of F =
〈
x3 + xy , y3 + xy , 0

〉
.

Then determine whether F is conservative and (if so) find a
potential function U.

Note divF = ∇ · F = Px + Qy + Rz and
curlF = ∇× F = 〈Ry − Qz , Pz − Rx , Qx − Py 〉.

So ∇ · F = 3x2 + y + 3y2 + x and ∇× F = 〈0, 0, y − x〉 .

Since ∇× F 6= 0, the vector field is not conservative .



Review Problems, III

(#4a) Set up (do not evaluate) an iterated double integral giving
the area of the portion of the plane z = 3x + 4y + 11 above the
region with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2.

We can parametrize this portion of the plane by
r(s, t) = 〈s, t, 3s + 4t + 11〉 for 0 ≤ s ≤ 1, 0 ≤ t ≤ 2.

The function is 1 for surface area.

Then ∂r
∂s ×

∂r
∂t = 〈−3,−4, 1〉 so

dσ =
∣∣∣∣ ∂r
∂s ×

∂r
∂t

∣∣∣∣ ds dt =
√

26 ds dt.

Therefore, the surface area integral is

ˆ 1

0

ˆ 2

0
1 ·
√

26 ds dt .
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Review Problems, IV

(#9c) Find the counterclockwise circulation and the outward
normal flux of F = 〈2x + 3y , 4x + 5y〉 around the unit circle.

Since C is a closed curve, we can use Green’s theorem to
calculate the circulation and the flux:
Circulation =

¸
C P dx + Q dy =

˜
R(Qx − Py ) dA and

Flux =
¸
C −Q dx + P dy =

˜
R(Px + Qy ) dA.

Here, the region in polar is 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

Also, Qx − Py = 1 and Px + Qy = 7.

The circulation is

ˆ 2π

0

ˆ 1

0
1 · r dr dθ = π .

The flux is

ˆ 2π

0

ˆ 1

0
7 · r dr dθ = 7π .



Review Problems, IV

(#9c) Find the counterclockwise circulation and the outward
normal flux of F = 〈2x + 3y , 4x + 5y〉 around the unit circle.

Since C is a closed curve, we can use Green’s theorem to
calculate the circulation and the flux:
Circulation =

¸
C P dx + Q dy =

˜
R(Qx − Py ) dA and

Flux =
¸
C −Q dx + P dy =

˜
R(Px + Qy ) dA.

Here, the region in polar is 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

Also, Qx − Py = 1 and Px + Qy = 7.

The circulation is

ˆ 2π

0

ˆ 1

0
1 · r dr dθ = π .

The flux is

ˆ 2π

0

ˆ 1

0
7 · r dr dθ = 7π .



Review Problems, V

(#12) Let F(x , y) =
〈
1− y , cos(y2) + 2x

〉
and let C be the curve

starting at (0, 0), traveling along a straight line to (0, 3), then
along a straight line to (4, 3), and then along a straight line to
(4, 0). Find the line integral

´
C F · dr.

This path is not closed because it is missing the segment from
(4, 0) to (0, 0) parametrized by r(t) = 〈4− 4t, 0〉, 0 ≤ t ≤ 1.

The line integral on that segment is´
C (1− y) dx + (cos(y2) + 2x) dy =´ 1
0 1 · (−4 dt) + (9− 8t) · (0 dt) = −2.

If we add that segment back in, we can use Green’s theorem
to evaluate the integral along the full path as˜

R(Qx − Py ) dA =
´ 4
0

´ 3
0 (3) dy dx = 36.

Therefore, the integral on the three requested pieces is equal
to the difference 36− (−2) = 38 .
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Review Problems, VI

(#1a) Compute
´
C x2 ds, where C is the line segment from (0, 1)

to (3, 2).

We can parametrize the line segment as r(t) = 〈3t, 1 + t〉 for
0 ≤ t ≤ 1.

Then ||v|| = ||〈3, 1〉|| =
√

10, so the differential is
ds = ||v(t)|| dt =

√
10 dt.

The function is x2 = (3t)2 = 9t2.

The line integral is then

ˆ 1

0
(3t)2

√
10 dt = 3

√
10 .
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Review Problems, VI

(#2b) Find an equation for the tangent plane to the surface
parametrized by r(s, t) =

〈
s2, 2st, 3t3

〉
at the point

(x , y , z) = (1, 2,−3).

If (x , y , z) = (1, 2,−3) then 3t3 = −3 requires t = −1 and
then 2st = 2 requires also s = −1. Then s2 = 1 as also
required.

Then n = (dr/ds)× (dr/dt) = 〈2s, 2t, 0〉 ×
〈
0, 2s, 9t2

〉
, so

s = −1 and t = −1 give the normal vector
n = 〈−2,−2, 0〉 × 〈0,−2, 9〉 = 〈−18, 18, 4〉.
Then the equation for the tangent plane is

−18(x − 1) + 18(y − 2) + 4(z + 3) = 0 .
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Review Problems, VII

(#3d) Let S be the unit sphere. Parametrize S and then set up
(do not evaluate) the integral

˜
S z

2 dσ.

Using spherical coordinates, we can parametrize the unit
sphere ρ = 1 by r(θ, ϕ) = 〈cos θ sinϕ, sin θ sinϕ, cosϕ〉 for
0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π.

The function is then z2 = cos2 ϕ.

Then ∂r
∂θ ×

∂r
∂ϕ =

〈
− cos θ sin2 ϕ,− sin θ sin2 ϕ,− sinϕ cosϕ

〉
and so dσ =

∣∣∣∣∣∣ ∂r∂θ × ∂r
∂ϕ

∣∣∣∣∣∣ dϕ dθ = sinϕ dϕ dθ.

Thus, the surface integral is

ˆ 2π

0

ˆ π

0
cos2 ϕ sinϕ dϕ dθ .
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Review Problems, VIII

(#5d) Compute the outward normal flux of F = 〈y , −x , z〉 across
the portion of the surface z = x2 + y2 below z = 2, with upward
orientation.

In cylindrical S is z = r2 so with parameters r , θ we get
r(r , θ) =

〈
r cos θ, r sin θ, r2

〉
for 0 ≤ θ ≤ 2π, 0 ≤ r ≤

√
2.

Then ∂r
∂r ×

∂r
∂θ =

〈
−2r2 cos θ,−2r2 sin θ, r

〉
, which has upward

orientation since z is positive.

Since F =
〈
r sin θ,−r cos θ, r2

〉
, we see

F · n =
〈
−2r2 cos θ,−2r2 sin θ, r

〉
·
〈
r sin θ,−r cos θ, r2

〉
= r3.

Thus, the flux is

ˆ 2π

0

ˆ √
2

0
r3 dr dθ =

ˆ 2π

0
1 dθ = 2π .
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Review Problems, VII

(#5e) Compute the outward normal flux of F = 〈x , y , z〉 across
the upper half of the unit sphere, with outward orientation.

In spherical coordinates the surface S is ρ = 1, so we get a
parametrization r(θ, ϕ) = 〈cos θ sinϕ, sin θ sinϕ, cosϕ〉 for
0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π/2.

Then ∂r
∂ϕ ×

∂r
∂θ =

〈
cos θ sin2 ϕ, sin θ sin2 ϕ, sinϕ cosϕ

〉
, which

has outward orientation since the signs are positive.

Since F = 〈cos θ sinϕ, sin θ sinϕ, cosϕ〉, we see F · n =〈
cos θ sin2 ϕ, sin θ sin2 ϕ, sinϕ cosϕ

〉
·〈cos θ sinϕ, sin θ sinϕ, cosϕ〉

= cos2 θ sin3 ϕ+ sin2 θ sin3 ϕ+ sinϕ cos2 ϕ = sinϕ.

Thus, the flux is

ˆ 2π
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ˆ π/2

0
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ˆ 2π

0
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Review Problems, VIII

(#4d) Set up (do not evaluate) an iterated double integral giving
the area of the portion of the sphere x2 + y2 + z2 = 9 that lies
below the cone z =

√
3 ·
√

x2 + y2.

In spherical, the cone is ϕ = π/6, so we can parametrize S by
r(θ, ϕ) = 〈3 cos θ sinϕ, 3 sin θ sinϕ, 3 cosϕ〉 for 0 ≤ θ ≤ 2π,
π/6 ≤ ϕ ≤ π.

The function is 1 for surface area. Then
∂r
∂θ ×

∂r
∂ϕ =

〈
−9 cos θ sin2 ϕ,−9 sin θ sin2 ϕ,−9 sinϕ cosϕ

〉
and so dσ =

∣∣∣∣∣∣ ∂r∂θ × ∂r
∂ϕ

∣∣∣∣∣∣ dϕ dθ = 9 sinϕ dϕ dθ.

Thus, the surface area is

ˆ 2π

0

ˆ π

π/6
1 · 9 sinϕ dϕ dθ .
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Review Problems, IX

(#7) Evaluate
´
C yz dx + xz dy + xy dz , where C is the curve

r(t) = 〈tet , arctan(t), ln(1 + t)〉 for 0 ≤ t ≤ 1.

This integral represents the work done by F = 〈yz , xz , xy〉
along the curve C from r(0) = 〈0, 0, 0〉 to
r(1) = 〈e, π/4, ln(2)〉.
We could set up the line integral but it is messy.

Instead, we can skip all of that calculation by noting F is
conservative with potential U = xyz .

So by the fundamental theorem of line integrals, the work is

simply U(e, π/4, ln(2))− U(0, 0, 0) = e · (π/4) · ln(2) .
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Review Problems, X

(#6d) Find the divergence and curl of
F =

〈
2xyz + ez , x2z + 3, xez + x2y + 2

〉
. Then determine

whether F is conservative and (if so) find a potential function U.

Note divF = ∇ · F = Px + Qy + Rz and
curlF = ∇× F = 〈Ry − Qz , Pz − Rx , Qx − Py 〉.

So ∇ · F = 2yz + xez , ∇× F = 〈0, 0, 0〉 .

Since ∇× F = 0, field is conservative .

The potential has Ux = 2xyz + ez , Uy = x2z + 3, and
Uz = xez + x2y + 2.

So we can take U = x2yz + xez + 3y + 2z .
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Review Problems, XI

(#11) A particle moves through the force field

F(x , y) =
〈

9y − ex
2

+ 11, 4x + sin
√
y
〉

N where x and y are

measured in meters. Decide if F is conservative, then calculate the
work done by F if the particle starts at (0, 0), moves along a
straight line to (0, 4), goes counterclockwise along the circle
x2 + y2 = 16 to (−4, 0), then goes in a straight line back to (0, 0).

We compute curl(F) = 〈0, 0,−5〉. This is nonzero so F is
not conservative .

For the work we can use Green’s theorem since the path is the
counterclockwise boundary of the polar region 0 ≤ r ≤ 4 and
π/2 ≤ θ ≤ π. By Green, the work is¨

R
(Qx − Py ) dA =

ˆ π

π/2

ˆ 4

0
−5 · r dr dθ = −20π J .
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Review Problems, XII

(#10a) Let C = C1 ∪ C2 ∪ C3, where C1 is the line segment from
(−2, 0) to (0, 0), C2 is the line segment from (0, 0) to (

√
2,
√

2),
and C3 is the shorter arc of the circle x2 + y2 = 4 from (

√
2,
√

2)
to (−2, 0). Find the outward flux of
F =

〈
2x3y2 + y3, x2 − 2x2y3

〉
around C .

Note that C is the counterclockwise boundary of the polar
region 0 ≤ r ≤ 2 and π/4 ≤ θ ≤ π.

Since C is a closed curve, we can use Green’s theorem to get
the flux: Flux =

¸
C −Q dx + P dy =

˜
R(Px + Qy ) dA.

We calculate Px + Qy = 6x2y2 − 6x2y2 = 0.

The flux is therefore¨
R

(Px + Qy ) dA =

ˆ π

π/4

ˆ 2

0
0 · r dr dθ = 0 .
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Review Problems, XIII

(#10b) Let C = C1 ∪ C2 ∪ C3, where C1 is the line segment from
(−2, 0) to (0, 0), C2 is the line segment from (0, 0) to (

√
2,
√

2),
and C3 is the shorter arc of the circle x2 + y2 = 4 from (

√
2,
√

2)
to (−2, 0). Find the counterclockwise circulation of
F =

〈
x2 − y3, x3 + y4

〉
around C .

Note that C is the counterclockwise boundary of the polar
region 0 ≤ r ≤ 2 and π/4 ≤ θ ≤ π.

Since C is a closed curve, we can use Green’s theorem to get
the circulation:
Circulation =

¸
C P dx + Q dy =

˜
R(Qx − Py ) dA.

We calculate Qx − Py = 3x2 + 3y2 = 3r2.

The circulation is therefore¨
R

(Qx − Py ) dA =

ˆ π

π/4

ˆ 2

0
3r2 · r dr dθ = 9π .
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Review Problems, XIV

(#10c) Let C = C1 ∪ C2 ∪ C3, where C1 is the line segment from
(−2, 0) to (0, 0), C2 is the line segment from (0, 0) to (

√
2,
√

2),
and C3 is the shorter arc of the circle x2 + y2 = 4 from (

√
2,
√

2)
to (−2, 0). Find the work done by F = 〈−2y , 2x〉 on a particle
that travels once around C .

Note that C is the counterclockwise boundary of the polar
region 0 ≤ r ≤ 2 and π/4 ≤ θ ≤ π.

We can use the tangential form of Green’s theorem for the
work integral, since it is the same as the circulation integral:
Work =

¸
C P dx + Q dy =

˜
R(Qx − Py ) dA.

We calculate Qx − Py = 4.

The work is therefore

ˆ π

π/4

ˆ 2

0
4 · r dr dθ = 6π .
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Review Problems, XV

(#5c) Compute the outward normal flux of F =
〈
xz , yz , z4

〉
across the portion of the cylinder x2 + y2 = 4 between z = 0 and
z = 3, with outward orientation.

In cylindrical S is r = 2 so with parameters θ, z we get
r(θ, z) = 〈2 cos θ, 2 sin θ, z〉 for 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 3.

Then ∂r
∂θ ×

∂r
∂z = 〈2 cos θ, 2 sin θ, 0〉, which has outward

orientation since x , y are positive.

Since F =
〈
2z cos θ, 2z sin θ, z4

〉
, we see

F · n = 〈2 cos θ, 2 sin θ, 0〉 ·
〈
2z cos θ, 2z sin θ, z4

〉
= 4z .

Thus, the flux is

ˆ 2π

0

ˆ 3

0
4z dz dθ =

ˆ 2π

0
18 dθ = 36π .
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Review Problems, XVI

(#3a) Let S be the portion of the plane z = 2x + 2y above the
rectangle with 1 ≤ x ≤ 2, 2 ≤ y ≤ 4. Parametrize S and then set
up (do not evaluate) the integral

˜
S(x2 + y2) dσ.

Using rectangular coordinates we can parametrize S by
r(s, t) = 〈s, t, 2s + 2t〉 for 1 ≤ s ≤ 2, 2 ≤ t ≤ 4.

Then the function is x2 + y2 = s2 + t2.

For the differential, ∂r
∂s ×

∂r
∂t = 〈−2,−2, 1〉 so

dσ =
∣∣∣∣ ∂r
∂s ×

∂r
∂t

∣∣∣∣ ds dt = 3 ds dt.

Thus, the surface integral is

ˆ 4

2

ˆ 2

1
(s2 + t2) · 3 ds dt .
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(#3a) Let S be the portion of the plane z = 2x + 2y above the
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Review Problems, XVII

(#1g) Compute the (outward normal) flux of F(x , y) =
〈
xy , y2

〉
across, and the circulation of F along, the curve r(t) =

〈
t2, t3

〉
for

0 ≤ t ≤ 1.

With x = t2, y = t3 we get dx = 2t dt, dy = 3t2 dt,
P = xy = t5, Q = y2 = t6.

Circulation is
´
C P dx + Q dy =

´ 1
0 t5(2t dt) + t6(3t2 dt) =´ 1

0 (2t6 + 3t8) dt = 13/21 .

Flux is
´
C −Q dx + P dy =

´ 1
0 −t

6(2t dt) + t5(3t2 dt) =´ 1
0 t7 dt = 1/8 .
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Review Problems, XVIII

(#3c) Let S be the portion of the cone z = 4
√

x2 + y2 below
z = 8. Parametrize S and then set up (do not evaluate) the
integral

˜
S

√
x2 + y2 dσ.

In cylindrical coordinates the surface is z = 4r , so we use
parameters r , θ. The parametrization of this portion is
r(r , θ) = 〈r cos θ, r sin θ, 4r〉 for 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2.

The function is x2 + y2 = r2.

For the differential, we compute
∂r
∂r ×

∂r
∂θ = 〈−4r cos θ, −4r sin θ, r〉 so

dσ =
∣∣∣∣ ∂r
∂r ×

∂r
∂θ

∣∣∣∣ dr dθ = r
√

17 dr dθ.

Thus, the surface integral is

ˆ 2π

0

ˆ 2

0
r · r
√

17 dr dθ .
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Review Problems, XIX

(#5a) Compute the outward normal flux of F =
〈
x2, 2x2, 3x2

〉
across the portion of the plane x + y + z = 4 with 0 ≤ x ≤ 1 and
0 ≤ y ≤ 2 having upward orientation.

We can parametrize this part of the plane as
r(s, t) = 〈s, t, 4− s − t〉 for 0 ≤ s ≤ 1, 0 ≤ t ≤ 2.

Then ∂r
∂s ×

∂r
∂t = 〈1, 1, 1〉. This has upward orientation since

the z-coordinate is positive.

Since F =
〈
s2, 2s2, 3s2

〉
, we see F · n = 6s2.

Thus, the flux is

ˆ 2

0

ˆ 1

0
6s2 ds dt = 4 .
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Review Problems, XX

(#1c) Compute the integral of
√

x2 + y2 on the portion of the
helix r(t) = 〈cos 3t, sin 3t, 4t〉 for 0 ≤ t ≤ π.

We are given the parametrization already.

Here, we have v(t) = 〈−3 sin 3t, 3 cos 3t, 4〉 and so
ds = ||v(t)|| = ||〈−3 sin 3t, 3 cos 3t, 4〉|| = 5.

The function is
√
x2 + y2 = 1.

Thus, the line integral is
´ π
0 1 · 5 dt = 5π .



Review Problems, XX
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√
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´ π
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Review Problems, XXI

(#4b) Set up (do not evaluate) an iterated double integral giving
the area of the portion of the surface parametrized by
r(s, t) =

〈
s2, st, t2

〉
with 0 ≤ s ≤ 1 and 0 ≤ t ≤ 2.

The function is 1 for surface area.

Here ∂r
∂s ×

∂r
∂t = 〈2s, t, 0〉 × 〈0, s, 2t〉 =

〈
2t2,−4st, 2s2

〉
so

dσ =
∣∣∣∣ ∂r
∂s ×

∂r
∂t

∣∣∣∣ ds dt = 2
√
s4 + 4s2t2 + t4 ds dt.

Thus, the surface area integral isˆ 1

0

ˆ 2

0
1 · 2

√
s4 + 4s2t2 + t4 ds dt .

Sadly, this does not really simplify in any nice way.
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Review Problems, XXII

(#1d) Compute the average value of y on the upper half of the
circle x2 + y2 = 4.

The average value is
[´

C y ds
]
/
[´

C 1 ds
]
.

We can parametrize the curve as r(t) = 〈2 cos t, 2 sin t〉 for
0 ≤ t ≤ π, so v(t) = 〈−2 sin t, 2 cos t〉.
Then ds = ||v(t)|| dt = 2 dt.

The numerator integral is
´ π
0 2 sin t · 2 dt = 8, while the

denominator integral is
´ π
0 2 dt = 2π.

Hence the average value is 8/(2π) = 4/π .
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Summary

We did some more review problems for midterm 2.

Next lecture: Stokes’s Theorem, the Divergence Theorem.

Note that there are no classes on Monday April 12th, so our next
lecture is after the midterm, on Wednesday April 14th.


