
Math 2321 (Multivariable Calculus)

Lecture #32 of 37 ∼ April 7, 2021

Midterm #3 Review #1



Midterm 3 Exam Topics

The topics for the exam are as follows:

Line integrals

Surface integrals

Vector fields

Work, circulation, and flux integrals in the plane and in
3-space

Conservative vector fields, potential functions, the
fundamental theorem of line integrals

Divergence and curl of vector fields

Green’s theorem

Normal and tangential forms of Green’s theorem

This represents §4.1− 4.5 from the notes and WeBWorKs 9-11.



Exam Information

The exam format is the same as the other midterms.

You will write your responses (either on a printout of the
exam or on blank paper) and then scan/photograph your
responses and upload them into Canvas.
There are approximately 6 pages of material: one page is
multiple choice and the rest is free response.
I have set up a Piazza poll for you to select your desired exam
window. Please make your selection by Saturday, April 10th. I
will post your selection in Canvas so you can confirm it on
Sunday the 11th.
The “official” exam time limit is 65+25 = 90 minutes, plus
30 minutes of turnaround time (not to be used for working).

Collaboration of any kind is not allowed. You may not discuss
anything about the exam with anyone other than me (the
instructor) until 5pm Eastern on Friday, April 16th. This includes
Piazza posts.



Review Problems, I

(#1e) Compute the work done by F(x , y , z) =
〈
yz , xz , x3

〉
N on a

particle that travels from (0, 0, 0) to (1, 1, 1) along the curve
parametrized by r(t) =

〈
t2, t4, t3

〉
m.

The work is
´
C F · dr =

´
C P dx + Q dy + R dz .

With x = t2, y = t4, z = t3 we get
dx = 2t dt, dy = 4t3 dt, dz = 3t2 dt, and also
P = yz = t7, Q = xz = t5, R = x3 = t6.

Thus, the work integral isˆ 1

0
t7 · 2t dt + t5 · 4t3 dt + t6 · 3t2 dt =

ˆ 1

0
9t8 dt = 1. The

correct units here are joules, so the answer is 1 J .
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Review Problems, II

(#2a) Find an equation for the tangent plane to the surface
parametrized by r(s, t) =

〈
s + t, s2 + t2, s3 + t3

〉
where s = 1 and

t = 2.

The normal vector to the tangent plane is
n = (dr/ds)× (dr/dt) =

〈
1, 2s, 3s2

〉
×
〈
1, 2t, 3t2

〉
.

With s = 1 and t = 2 this is
n = 〈1, 2, 3〉 × 〈1, 4, 12〉 = 〈12,−9, 2〉.
The tangency point is r(1, 2) = 〈3, 5, 9〉.
Thus, the tangent plane’s equation is

12(x − 3)− 9(y − 5) + 2(z − 9) = 0 .
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Review Problems, III

(#5b) Compute the flux of F =
〈
−xz , −yz , x2 + y2

〉
across the

portion of the cone z =
√

x2 + y2 inside the cylinder x2 + y2 = 6,
with upward orientation.

In cylindrical the cone is z = r , so using parameters r , θ we
get the parametrization r(r , θ) = 〈r cos θ, r sin θ, r〉 for
0 ≤ r ≤

√
6, 0 ≤ θ ≤ 2π.

Then ∂r
∂r ×

∂r
∂θ = 〈−r cos θ,−r sin θ, r〉, which has upward

orientation since the z-coordinate is positive.

Then F =
〈
−r2 cos θ,−r2 sin θ, r2

〉
and so

F · n =
〈
−r2 cos θ,−r2 sin θ, r2

〉
· 〈−r cos θ,−r sin θ, r〉 = 2r3.

Thus, the flux is

ˆ 2π

0

ˆ √6
0

2r3 dr dθ =

ˆ 2π

0
18 dθ = 36π .
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Review Problems, IV

(#9a) Find the counterclockwise circulation and the outward
normal flux of F =

〈
xy2, y3

〉
around the boundary of the rectangle

with vertices (0, 0), (2, 0), (2, 3), (0, 3).

Since C is a closed curve, we can use Green’s theorem to
calculate the circulation and the flux:
Circulation =

¸
C P dx + Q dy =

˜
R(Qx − Py ) dA and

Flux =
¸
C −Q dx + P dy =

˜
R(Px + Qy ) dA.

Here, the region is 0 ≤ x ≤ 2, 0 ≤ y ≤ 3.

Also, Qx − Py = −2xy and Px + Qy = 4y2.

The circulation is

ˆ 2

0

ˆ 3

0
(−2xy) dy dx = −18 .

The flux is

ˆ 2

0

ˆ 3

0
4y2 dy dx = 72 .
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Review Problems, V

(#4c) Set up (do not evaluate) an iterated double integral giving
the area of the portion of the cone z = 3

√
x2 + y2 that lies

between the cylinders x2 + y2 = 4 and x2 + y2 = 9.

In cylindrical coordinates, the equation is z = 3r , so we use
parameters r , θ. The parametrization of this portion is
r(r , θ) = 〈r cos θ, r sin θ, 3r〉 for 0 ≤ θ ≤ 2π, 2 ≤ r ≤ 3.

The function is 1 for surface area.

For the differential, we compute
∂r
∂r ×

∂r
∂θ = 〈−3r cos θ, −3r sin θ, r〉 so

dσ =
∣∣∣∣ ∂r
∂r ×

∂r
∂θ

∣∣∣∣ dr dθ = r
√

10 dr dθ.

Thus, the surface area integral isˆ 2π

0

ˆ 3

2
1 · r
√

10 dr dθ = 5π
√

10.
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Review Problems, VI

(#6b) Find the divergence and curl of
F = 〈yz + 2x , xz + 2z , xy + 2y〉. Then determine whether F is
conservative and (if so) find a potential function U.

Note divF = ∇ · F = Px + Qy + Rz and
curlF = ∇× F = 〈Ry − Qz , Pz − Rx , Qx − Py 〉.

So ∇ · F = 2 and ∇× F = 〈0, 0, 0〉 .

Since ∇× F = 0 and there are no holes in the domain, this
means the vector field is conservative .

The potential has Ux = yz + 2x , Uy = xz + 2z ,

Uz = xy + 2y , so we can take U = xyz + x2 + 2yz .
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Review Problems, VII

(#8) Let C be the curve that runs once counterclockwise around
the boundary of the square with vertices (0, 0), (1, 0), (1, 1), and
(0, 1). Find

¸
C (x2 + y) dx + (2xy2 − xy) dy .

We could set up the four line integrals and evaluate them all.
However, this is much more work than necessary, because we
can use Green’s theorem instead.

By Green’s theorem, the integral¸
C P dx + Q dy =

˜
R(Qx − Py ) dy dx , where R is the region

enclosed by C , which here is the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Since Qx − Py = (2y2 − y)− (1), our integral equalsˆ 1

0

ˆ 1

0
(2y2 − y − 1) dy dx = −5/6 .
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Review Problems, VIII

(#1f) Compute the (outward normal) flux of
F(x , y) = 〈y + x , y − x〉 across, and the circulation of F along, the
path C along the upper half of x2 + y2 = 1 from (1, 0) to (−1, 0).

We can parametrize this curve as r(t) = 〈cos t, sin t〉 for
0 ≤ t ≤ π. Then x = cos t, y = sin t.

Thus dx = − sin t dt, dy = cos t dt, and also
P = y + x = sin t + cos t, Q = y − x = sin t − cos t.

Circulation is
´
C P dx + Q dy =

´ π
0 (sin t + cos t)(− sin t dt) +

(sin t − cos t)(cos t dt) =
´ π
0 −1 dt = −π .

Flux is
´
C −Q dx + P dy =

´ π
0 (cos t − sin t)(− sin t dt) +

(sin t + cos t)(cos t dt) =
´ π
0 1 dt = π .
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Review Problems, IX

(#9d) Find the counterclockwise circulation and the outward
normal flux of F =

〈
x3 − y3, x3 + y3

〉
around the boundary of the

quarter-disc x2 + y2 ≤ 16 in the first quadrant.

Since C is a closed curve, we can use Green’s theorem to
calculate the circulation and the flux:
Circulation =

¸
C P dx + Q dy =

˜
R(Qx − Py ) dA and

Flux =
¸
C −Q dx + P dy =

˜
R(Px + Qy ) dA.

Here, the region in polar is 0 ≤ r ≤ 4, 0 ≤ θ ≤ π/2.

Also, Qx − Py = 3x2 + 3y2 = 3r2 and
Px + Qy = 3x2 + 3y2 = 3r2.

The circulation is

ˆ π/2

0

ˆ 4

0
r2 · r dr dθ = 32π .

The flux is

ˆ π/2

0

ˆ 4

0
r2 · r dr dθ = 32π .
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Review Problems, X

(#5f) Compute the outward normal flux of F =
〈
y3, x3, 1

〉
across

the portion of the paraboloid z = 1− x2 − y2 lying above the
xy -plane, with upward orientation.

In cylindrical coordinates S is z = 1− r2, so using parameters
r , θ yields r(r , θ) =

〈
r cos θ, r sin θ, 1− r2

〉
for 0 ≤ θ ≤ 2π,

0 ≤ r ≤ 1.

Then ∂r
∂r ×

∂r
∂θ =

〈
2r2 cos θ, 2r2 sin θ, r

〉
which has upward

orientation since the z-coordinate is positive.

Since F =
〈
r3 sin3 θ, r3 cos3 θ, 1

〉
, we see

F · n =
〈
2r2 cos θ, 2r2 sin θ, r

〉
·
〈
r3 sin3 θ, r3 cos3 θ, 1

〉
=

2r5 sin θ cos θ + r .

Thus, the flux is

ˆ 2π

0

ˆ 1

0
(2r5 sin θ cos θ + r) dr dθ =

ˆ 2π

0

(
1

3
sin θ cos θ +

1

3

)
dθ = π .
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Review Problems, XI

(#3b) Let S be the portion of the cylinder x2 + y2 = 4 between
z = 0 and z = 4. Parametrize S and then set up (do not evaluate)
the integral

˜
S(zx2 + zy2) dσ.

In cylindrical coordinates the surface is r = 2, so we use z and
θ as the parameters. The parametrization of this portion is
r(z , θ) = 〈2 cos θ, 2 sin θ, z〉 for 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 4.

The function is zx2 + zy2 = 4z .

For the differential, we compute
∂r
∂z ×

∂r
∂θ = 〈−2 cos θ, 2 sin θ, 0〉, and therefore

dσ =
∣∣∣∣ ∂r
∂z ×

∂r
∂θ

∣∣∣∣ dz dθ = 2 dz dθ.

So, the surface integral is

ˆ 2π

0

ˆ 4

0
4z · 2 dz dθ .
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Review Problems, XII

(#9b) Find the counterclockwise circulation and the outward
normal flux of F = 〈6xy , 0〉 around the boundary of the triangle
with vertices (0, 0), (1, 0), and (0, 2)

Since C is a closed curve, we can use Green’s theorem to
calculate the circulation and the flux:
Circulation =

¸
C P dx + Q dy =

˜
R(Qx − Py ) dA and

Flux =
¸
C −Q dx + P dy =

˜
R(Px + Qy ) dA.

Here, the region is 0 ≤ x ≤ 1, 0 ≤ y ≤ 2− 2x .

Also, Qx − Py = −6x and Px + Qy = 6y .

The circulation is

ˆ 1

0

ˆ 2−2x

0
−6x dy dx = −2 .

The flux is

ˆ 1

0

ˆ 2−2x

0
6y dy dx = 4 .
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normal flux of F = 〈6xy , 0〉 around the boundary of the triangle
with vertices (0, 0), (1, 0), and (0, 2)

Since C is a closed curve, we can use Green’s theorem to
calculate the circulation and the flux:
Circulation =

¸
C P dx + Q dy =

˜
R(Qx − Py ) dA and

Flux =
¸
C −Q dx + P dy =

˜
R(Px + Qy ) dA.

Here, the region is 0 ≤ x ≤ 1, 0 ≤ y ≤ 2− 2x .

Also, Qx − Py = −6x and Px + Qy = 6y .

The circulation is

ˆ 1

0

ˆ 2−2x

0
−6x dy dx = −2 .

The flux is

ˆ 1

0

ˆ 2−2x

0
6y dy dx = 4 .



Review Problems, XIII

(#6c) Find the divergence and curl of F =
〈
x2yz , x2z2, 2x2yz

〉
.

Then determine whether F is conservative and (if so) find a
potential function U.

Note divF = ∇ · F = Px + Qy + Rz and
curlF = ∇× F = 〈Ry − Qz , Pz − Rx , Qx − Py 〉.

So ∇ · F = 2xyz + 2x2y , and

∇× F =
〈
0, x2y − 4xyz , 2xz2 − x2z

〉
.

Since ∇× F 6= 0, field is not conservative .
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Note divF = ∇ · F = Px + Qy + Rz and
curlF = ∇× F = 〈Ry − Qz , Pz − Rx , Qx − Py 〉.
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〉
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Since ∇× F 6= 0, field is not conservative .



Summary

We did some review problems for midterm 2.

Next lecture: Review for Midterm 3 (part 2)


