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Green’s Theorem

Green’s Theorem

Tangential Form of Green’s Theorem for Circulation

Normal Form of Green’s Theorem for Flux

Applications of Green’s Theorem

This material represents §4.5 from the course notes.

This is the last new material for Midterm 3; Wednesday and
Thursday will be review.



Divergence and Curl Reminders

Recall divergence and curl, which I introduced last time:

Definition

If F = 〈P,Q,R〉 then the divergence of F is defined to be the
scalar function div F = ∇ · F = Px + Qy + Rz .

Definition

If F = 〈P,Q,R〉 then the curl of F is defined to be the vector field

curl F = ∇× F =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
P Q R

∣∣∣∣∣∣=〈
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

〉
=〈Ry − Qz , Pz − Rx , Qx − Py 〉.

We can also define divergence and curl for vector fields in the
plane: we simply pretend they have a z-coordinate that is zero.



Green’s Theorem, I

Green’s Theorem is a 2-dimensional version of the Fundamental
Theorem of Calculus that relates a line integral of a function
around a closed curve C to the double integral of a related
function over the region R that is enclosed by the curve C .

Theorem (Green’s Theorem)

If C is a simple closed rectifiable curve oriented counterclockwise,
and R is the region it encloses, then for any differentiable functions

P(x , y) and Q(x , y),

∫
C

P dx + Q dy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dy dx.

Here is an example of a typical
curve C and the region R it
encloses:



Green’s Theorem, II

The hypotheses about the curve (“simple closed rectifiable,
oriented counterclockwise”) are to ensure the curve is nice enough
for the theorem to hold.

“Simple” means that the curve does not cross itself.

“Closed” means that its starting point is the same as its
ending point (e.g., a circle).

“Rectifiable” means it is piecewise-differentiable (i.e.,
differentiable except at a finite number of points).

“Oriented counterclockwise” means that C runs around the
boundary of R in the counterclockwise direction.



Green’s Theorem, III

Proof (for rectangular regions):

For a rectangular region a ≤ x ≤ b, c ≤ y ≤ d , we have∫
C =

∫
C1

+
∫
C2

+
∫
C3

+
∫
C4

, where C1, C2, C3, and C4 are the
four sides of the rectangle (with the proper orientation), and
the function to be integrated on each curve is P dx + Q dy .

Setting up parametrizations for the line integrals shows that∫
C1

[P dx + Q dy ] +
∫
C3

[P dx + Q dy ] =
∫ b
a [P(x , c)− P(x , d)] dx ,∫

C2
[P dx + Q dy ] +

∫
C4

[P dx + Q dy ] =
∫ d
c [Q(b, y)− Q(a, y)] dy .

We can also break the double integral into two parts:∫∫
R −

∂P
∂y dy dx =

∫ b
a

∫ d
c −

∂P
∂y dy dx =

∫ b
a [P(x , c)− P(x , d)] dx ,∫∫

R
∂Q
∂x dx dy =

∫ c
d

∫ b
a
∂Q
∂x dx dy =

∫ d
c [Q(b, y)− Q(a, y)] dy .

By comparing the expressions, we see that∫
C

P dx + Q dy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dy dx , as desired.



Green’s Theorem, III

To get Green’s theorem for non-rectangular regions, we can break
the region into a bunch of small rectangles, and then observe that
Green’s theorem is consistent with “gluing”:

If we have touching regions R1 and R2 with boundaries C1

and C2, then the union R1 ∪ R2 has boundary C1 ∪ C2,
because the portions of C1 and C2 that align will have
opposite directions and thus will cancel:

The line integral and the double integral are both continuous, so
we may take limits of rectangular regions to get arbitrary ones.



Green’s Theorem, IV

Green’s Theorem can be used to convert line integrals on closed
curves into double integrals.

The double integrals are often much easier to evaluate if the
curve is complicated but the region it encloses is simpler to
describe.

For example, if the boundary curve is a rectangle, then
evaluating the line integral requires setting up four separate
calculations, one for each side. But the double integral will be
a single (easy!) calculation.



Green’s Theorem, V

Example: If C is the counterclockwise boundary of the rectangle
with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2, evaluate

∮
C 3xy dx + x dy .

To compute the line integral as written, we need to
parametrize each piece of the boundary. There are four pieces:

1. The segment from (0, 0) to (1, 0).
2. The segment from (1, 0) to (1, 2).
3. The segment from (1, 2) to (0, 2).
4. The segment from (0, 2) to (0, 0).

Note that we need to preserve these orientations of the
boundary segments, because the segments must be traversed
in the counterclockwise direction around the boundary.



Green’s Theorem, V

Example: If C is the counterclockwise boundary of the rectangle
with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2, evaluate

∮
C 3xy dx + x dy .

To compute the line integral as written, we need to
parametrize each piece of the boundary. There are four pieces:

1. The segment from (0, 0) to (1, 0).
2. The segment from (1, 0) to (1, 2).
3. The segment from (1, 2) to (0, 2).
4. The segment from (0, 2) to (0, 0).

Note that we need to preserve these orientations of the
boundary segments, because the segments must be traversed
in the counterclockwise direction around the boundary.



Green’s Theorem, VI: Don’t You Love Line Integrals?

Example: If C is the counterclockwise boundary of the rectangle
with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2, evaluate

∮
C 3xy dx + x dy .

1. The segment from (0, 0) to (1, 0), parametrized by x = t,
y = 0 for 0 ≤ t ≤ 1. Then dx = dt and dy = 0 dt, so the
integral here is

∫ 1
0 0 dt = 0.

2. The segment from (1, 0) to (1, 2), parametrized by x = 1,
y = 2t for 0 ≤ t ≤ 1. Then dx = 0 dt and dy = 2 dt, so the
integral here is

∫ 1
0 2 dt = 2.

3. The segment from (1, 2) to (0, 2), parametrized by x = 1− t,
y = 2 for 0 ≤ t ≤ 1. Then dx = −dt and dy = 0 dt, so the
integral here is

∫ 1
0 −6(1− t) dt = −3.

4. The segment from (0, 2) to (0, 0), parametrized by x = 0,
y = 2− 2t for 0 ≤ t ≤ 1. Then dx = 0 and dy = −2 dt, so
the integral here is

∫ 1
0 0 dt = 0.

The line integral is the sum of these four, which is −1.



Green’s Theorem, VII

Example: If C is the counterclockwise boundary of the rectangle
with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2, evaluate

∮
C 3xy dx + x dy .

Let’s now do this integral using Green’s theorem.

By Green’s theorem,∫
C

P dx + Q dy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dy dx .

Here, our region is the rectangle 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2,
and also P = 3xy and Q = x .

So since Qx − Py = 1− 3x , the integral is∫ 1

0

∫ 2

0
(1−3x) dy dx =

∫ 1

0
(2−6x) dx = (2x−3x2)

∣∣∣1
x=0

= −1.

Note how much easier the calculation was using Green’s
theorem!



Green’s Theorem, VII

Example: If C is the counterclockwise boundary of the rectangle
with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2, evaluate

∮
C 3xy dx + x dy .

Let’s now do this integral using Green’s theorem.

By Green’s theorem,∫
C

P dx + Q dy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dy dx .

Here, our region is the rectangle 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2,
and also P = 3xy and Q = x .

So since Qx − Py = 1− 3x , the integral is∫ 1

0

∫ 2

0
(1−3x) dy dx =

∫ 1

0
(2−6x) dx = (2x−3x2)

∣∣∣1
x=0

= −1.

Note how much easier the calculation was using Green’s
theorem!



Green’s Theorem, VIII

Example: Evaluate the integral
∮
C 3x2 dx + 2xy dy , where C is the

counterclockwise boundary of the triangle having vertices (0, 0),
(1, 0), and (1, 2).

We can use Green’s theorem to do this as a double integral,
rather than having to set up three separate line integrals.

Green’s Theorem says
∫
C P dx + Q dy =

∫∫
R(Qx − Py ) dy dx ,

so setting P = 3x2 and Q = 2xy produces
∫∫

R 2y dy dx ,
where R is the interior of the triangle. A quick sketch shows
that R is given by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2x .

Thus, the double integral is∫ 1

0

∫ 2x

0
2y dy dx =

∫ 1

0
y2
∣∣∣2x
y=0

dx =

∫ 1

0
(2x)2 dx =

4

3
.



Green’s Theorem, VIII

Example: Evaluate the integral
∮
C 3x2 dx + 2xy dy , where C is the

counterclockwise boundary of the triangle having vertices (0, 0),
(1, 0), and (1, 2).

We can use Green’s theorem to do this as a double integral,
rather than having to set up three separate line integrals.

Green’s Theorem says
∫
C P dx + Q dy =

∫∫
R(Qx − Py ) dy dx ,

so setting P = 3x2 and Q = 2xy produces
∫∫

R 2y dy dx ,
where R is the interior of the triangle. A quick sketch shows
that R is given by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2x .

Thus, the double integral is∫ 1

0

∫ 2x

0
2y dy dx =

∫ 1

0
y2
∣∣∣2x
y=0

dx =

∫ 1

0
(2x)2 dx =

4

3
.



Green’s Theorem, IX

Example: Evaluate the integral
∮
C 3x2 dx + 2xy dy , where C is the

counterclockwise boundary of the triangle having vertices (0, 0),
(1, 0), and (1, 2).

In case you want to see the line integrals:

1. The segment from (0, 0) to (1, 0), parametrized by x = t,
y = 0 for 0 ≤ t ≤ 1. Then dx = dt and dy = 0, so the
integral here is

∫ 1
0 3t2 dt = 1.

2. The segment from (1, 0) to (1, 2), parametrized by
x = 1, y = t for 0 ≤ t ≤ 2. Then dx = 0 and dy = dt,
so the integral here is

∫ 2
0 2t dt = 4.

3. The segment from (1, 2) to (0, 0), parametrized by
x = 1− t, y = 2− 2t for 0 ≤ t ≤ 1. Then dx = −dt and
dy = −2dt, so the integral here is∫ 1
0

[
3(1− t)2(−dt) + 2(1− t)(2− 2t)(−2dt)

]
= −11/3.

So the line integral is the sum 1 + 4− 11/3 = 4/3.



Green’s Theorem, IX

Example: Evaluate the integral
∮
C 3x2 dx + 2xy dy , where C is the

counterclockwise boundary of the triangle having vertices (0, 0),
(1, 0), and (1, 2).

In case you want to see the line integrals:

1. The segment from (0, 0) to (1, 0), parametrized by x = t,
y = 0 for 0 ≤ t ≤ 1. Then dx = dt and dy = 0, so the
integral here is

∫ 1
0 3t2 dt = 1.

2. The segment from (1, 0) to (1, 2), parametrized by
x = 1, y = t for 0 ≤ t ≤ 2. Then dx = 0 and dy = dt,
so the integral here is

∫ 2
0 2t dt = 4.

3. The segment from (1, 2) to (0, 0), parametrized by
x = 1− t, y = 2− 2t for 0 ≤ t ≤ 1. Then dx = −dt and
dy = −2dt, so the integral here is∫ 1
0

[
3(1− t)2(−dt) + 2(1− t)(2− 2t)(−2dt)

]
= −11/3.

So the line integral is the sum 1 + 4− 11/3 = 4/3.



Green’s Theorem, X

Example: Evaluate the integral
∮
C −y3 dx + x3 dy , where

C = C1 ∪ C2 ∪ C3 and C1 is a line segment from (0, 0) to (
√

3, 1),
C2 is the shorter circular arc along x2 + y2 = 4 from (

√
3, 1) to

(−2, 0), and C3 is a line segment from (−2, 0) to (0, 0).

We use Green’s theorem here.

Sketching the region shows that it is the interior of a circular
sector with 0 ≤ r ≤ 2 and π/6 ≤ θ ≤ π, so we will set up the
double integral in polar coordinates.

Since P = −y3 and Q = x3, we have Qx − Py = 3x2 + 3y2.

Thus, our integral is∫∫
R

(3x2+3y2) dA =

∫ π

π/6

∫ 2

0
3r2·r dr dθ =

∫ π

π/6
12 dθ = 10π.



Green’s Theorem, X

Example: Evaluate the integral
∮
C −y3 dx + x3 dy , where

C = C1 ∪ C2 ∪ C3 and C1 is a line segment from (0, 0) to (
√

3, 1),
C2 is the shorter circular arc along x2 + y2 = 4 from (

√
3, 1) to

(−2, 0), and C3 is a line segment from (−2, 0) to (0, 0).

We use Green’s theorem here.

Sketching the region shows that it is the interior of a circular
sector with 0 ≤ r ≤ 2 and π/6 ≤ θ ≤ π, so we will set up the
double integral in polar coordinates.

Since P = −y3 and Q = x3, we have Qx − Py = 3x2 + 3y2.

Thus, our integral is∫∫
R

(3x2+3y2) dA =

∫ π

π/6

∫ 2

0
3r2·r dr dθ =

∫ π

π/6
12 dθ = 10π.



Tangential and Normal Forms of Green’s Theorem, I

We can use Green’s Theorem to simplify the calculation of
circulation and flux integrals on closed curves.

Specifically, we can use the theorem to give expressions for
circulation and flux either as line integrals or as double
integrals over a region.

Depending on the shape of the region and its boundary, and
the nature of the field F, either the line integral or the double
integral can be easier.



Tangential and Normal Forms of Green’s Theorem, I

First, for circulation:

Theorem (Green’s Theorem, Tangential Form)

If C is a simple closed rectifiable curve oriented counterclockwise,
and R is the region it encloses, then the (counterclockwise)

circulation around C is equal to

∮
C
F · T ds =

∫∫
R

(curlF) · k dA.

This follows from our original statement of Green’s theorem
just by writing everything out: if F = 〈P,Q〉 then
(curlF) · k = 〈0, 0,Qx − Py 〉 · 〈0, 0, 1〉 = Qx − Py .

So the tangential form of Green’s Theorem reads∮
C

P dx + Q dy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dy dx , which is exactly

the statement that we gave earlier.



Tangential and Normal Forms of Green’s Theorem, II

And now for flux:

Theorem (Green’s Theorem, Normal Form)

If C is a simple closed rectifiable curve oriented counterclockwise,
and R is the region it encloses, then the (outward normal) flux

across C is equal to

∮
C
F ·N ds =

∫∫
R

(divF) dA.

This also follows from our original statement of Green’s
theorem: if F = 〈P,Q〉 then divF = Px + Qy .

So the normal form of Green’s Theorem reads∮
C
−Q dx + P dy =

∫∫
R

(
∂P

∂x
+
∂Q

∂y

)
dy dx , which is the

original statement of Green’s theorem except with −Q in
place of P and P in place of Q.



Tangential and Normal Forms of Green’s Theorem, III

Here’s a nice interpretation of the normal form of Green’s Theorem:

Imagine that the vector field F is modeling population
movement, and that C is the border of a country taking up
the region R (where the only way in or out is via the border).

At a city along the border C , the value F ·N measures the
immigration (in or out) to that city from across the border.

At a city inside the country, the value divF measures the net
immigration (into or out of) that city.

The normal form of Green’s Theorem then says: if we add up
the net immigration along the border, this equals the total
population flow inside the country.

These two quantities are definitely equal, since they both tally
the net immigration into the country as a whole.



Tangential and Normal Forms of Green’s Theorem, IV

Example: Let F(x , y) =
〈
x2 − 2xy , y3 − x

〉
, and let C be the

counterclockwise boundary of the square with vertices (0, 0),
(2, 0), (2, 2), and (0, 2).

1. Find the circulation of F around C .

2. Find the outward normal flux of F across C .

We could parametrize the boundary of this region and
evaluate the line integrals to find the flux and circulation.

However, this would be very tedious, as it requires computing
four line integrals each time (one for each side of the square).

We can save a lot of effort by using Green’s Theorem, which
applies because the boundary is a closed curve.

Here, we have P = x2 − 2xy and Q = y3 − x , and the region
is 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2.



Tangential and Normal Forms of Green’s Theorem, IV

Example: Let F(x , y) =
〈
x2 − 2xy , y3 − x

〉
, and let C be the

counterclockwise boundary of the square with vertices (0, 0),
(2, 0), (2, 2), and (0, 2).

1. Find the circulation of F around C .

2. Find the outward normal flux of F across C .

We could parametrize the boundary of this region and
evaluate the line integrals to find the flux and circulation.

However, this would be very tedious, as it requires computing
four line integrals each time (one for each side of the square).

We can save a lot of effort by using Green’s Theorem, which
applies because the boundary is a closed curve.

Here, we have P = x2 − 2xy and Q = y3 − x , and the region
is 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2.



Tangential and Normal Forms of Green’s Theorem, V

Example: Let F(x , y) =
〈
x2 − 2xy , y3 − x

〉
, and let C be the

counterclockwise boundary of the square with vertices (0, 0),
(2, 0), (2, 2), and (0, 2).

1. Find the circulation of F around C .

For circulation, the tangential form of Green’s theorem says

Circulation =

∮
C
F · T ds =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dy dx .

Since
∂Q

∂x
= −1 and

∂P

∂y
= −2x , the circulation is∫ 2

0

∫ 2

0
(−1 + 2x) dy dx =

∫ 2

0
(−2 + 4x) dx = 4.



Tangential and Normal Forms of Green’s Theorem, V

Example: Let F(x , y) =
〈
x2 − 2xy , y3 − x

〉
, and let C be the

counterclockwise boundary of the square with vertices (0, 0),
(2, 0), (2, 2), and (0, 2).

1. Find the circulation of F around C .

For circulation, the tangential form of Green’s theorem says

Circulation =

∮
C
F · T ds =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dy dx .

Since
∂Q

∂x
= −1 and

∂P

∂y
= −2x , the circulation is∫ 2

0

∫ 2

0
(−1 + 2x) dy dx =

∫ 2

0
(−2 + 4x) dx = 4.



Tangential and Normal Forms of Green’s Theorem, VI

Example: Let F(x , y) =
〈
x2 − 2xy , y3 − x

〉
, and let C be the

counterclockwise boundary of the square with vertices (0, 0),
(2, 0), (2, 2), and (0, 2).

2. Find the outward normal flux of F across C .

For the flux, the normal form of Green’s theorem says that

Flux =

∮
C
F ·N ds =

∫∫
R

(
∂P

∂x
+
∂Q

∂y

)
dy dx .

Therefore, since
∂P

∂x
= 2x − 2y and

∂Q

∂y
= 3y2, the flux is∫ 2

0

∫ 2

0

(
2x − 2y + 3y2

)
dy dx =∫ 2

0

(
2xy − y2 + y3

) ∣∣∣2
y=0

dx =

∫ 2

0
(4x + 4) dx = 16.



Tangential and Normal Forms of Green’s Theorem, VI

Example: Let F(x , y) =
〈
x2 − 2xy , y3 − x

〉
, and let C be the

counterclockwise boundary of the square with vertices (0, 0),
(2, 0), (2, 2), and (0, 2).

2. Find the outward normal flux of F across C .

For the flux, the normal form of Green’s theorem says that

Flux =

∮
C
F ·N ds =

∫∫
R

(
∂P

∂x
+
∂Q

∂y

)
dy dx .

Therefore, since
∂P

∂x
= 2x − 2y and

∂Q

∂y
= 3y2, the flux is∫ 2

0

∫ 2

0

(
2x − 2y + 3y2

)
dy dx =∫ 2

0

(
2xy − y2 + y3

) ∣∣∣2
y=0

dx =

∫ 2

0
(4x + 4) dx = 16.



Tangential and Normal Forms of Green’s Theorem, VII

Example: Let F(x , y) =
〈
4x − x2y , 2y + xy2

〉
.

1. Find the circulation of F around the circle x2 + y2 = 4.

2. Find the outward normal flux of F across x2 + y2 = 4.

We can again use the normal and tangential forms of Green’s
Theorem: in this case, the region R is the interior of the circle
x2 + y2 ≤ 4.

The integrals will be easiest to calculate if we set up in polar
coordinates, since in polar the circle has the nice description
0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π.



Tangential and Normal Forms of Green’s Theorem, VII

Example: Let F(x , y) =
〈
4x − x2y , 2y + xy2

〉
.

1. Find the circulation of F around the circle x2 + y2 = 4.

2. Find the outward normal flux of F across x2 + y2 = 4.

We can again use the normal and tangential forms of Green’s
Theorem: in this case, the region R is the interior of the circle
x2 + y2 ≤ 4.

The integrals will be easiest to calculate if we set up in polar
coordinates, since in polar the circle has the nice description
0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π.



Tangential and Normal Forms of Green’s Theorem, VIII

Example: Let F(x , y) =
〈
4x − x2y , 2y + xy2

〉
.

1. Find the circulation of F around the circle x2 + y2 = 4.

By the tangential form of Green’s theorem, the circulation is∮
C

P dx + Q dy =

∫∫
R

(Qx − Py ) dA.

The function is Qx − Py = y2 + x2 = r2.

Therefore, in polar coordinates, the integral is∫ 2π

0

∫ 2

0
r2 · r dr dθ =

∫ 2π

0

1

4
r4
∣∣∣2
r=0

dθ =

∫ 2π

0
4 dθ = 8π.



Tangential and Normal Forms of Green’s Theorem, VIII

Example: Let F(x , y) =
〈
4x − x2y , 2y + xy2

〉
.

1. Find the circulation of F around the circle x2 + y2 = 4.

By the tangential form of Green’s theorem, the circulation is∮
C

P dx + Q dy =

∫∫
R

(Qx − Py ) dA.

The function is Qx − Py = y2 + x2 = r2.

Therefore, in polar coordinates, the integral is∫ 2π

0

∫ 2

0
r2 · r dr dθ =

∫ 2π

0

1

4
r4
∣∣∣2
r=0

dθ =

∫ 2π

0
4 dθ = 8π.



Tangential and Normal Forms of Green’s Theorem, IX

Example: Let F(x , y) =
〈
4x − x2y , 2y + xy2

〉
.

2. Find the outward normal flux of F across x2 + y2 = 4.

By the normal form of Green’s theorem, the circulation is∮
C
−Q dx + P dy =

∫∫
R

(Px + Qy ) dA.

The function is Px + Qy = 4 + 2 = 6.

Therefore, in polar coordinates, the integral is∫ 2π

0

∫ 2

0
6 · r dr dθ =

∫ 2π

0
3r2
∣∣∣2
r=0

dθ =

∫ 2π

0
12 dθ = 24π.



Tangential and Normal Forms of Green’s Theorem, IX

Example: Let F(x , y) =
〈
4x − x2y , 2y + xy2

〉
.

2. Find the outward normal flux of F across x2 + y2 = 4.

By the normal form of Green’s theorem, the circulation is∮
C
−Q dx + P dy =

∫∫
R

(Px + Qy ) dA.

The function is Px + Qy = 4 + 2 = 6.

Therefore, in polar coordinates, the integral is∫ 2π

0

∫ 2

0
6 · r dr dθ =

∫ 2π

0
3r2
∣∣∣2
r=0

dθ =

∫ 2π

0
12 dθ = 24π.



Applications of Green’s Theorem, I

One application of Green’s Theorem is to give ways to compute the
area of a planar region using a line integral around its boundary.

If C is the counterclockwise boundary curve of the region R
and C and R satisfy the hypotheses of Green’s Theorem, then

Area of R =

∮
C

x dy =

∮
C
−y dx =

∮
C

1

2
(x dy − y dx)

because by Green’s Theorem, each of the line integrals is
equal to

∫∫
R 1 dy dx , which is the area of R.

You may have seen these formulas in single-variable calculus:
the area enclosed by x = x(t), y = y(t) is given by∫ b
a y(t) · x ′(t) dt =

∫
C y dx , or

∫ b
a −x(t) · y ′(t) dt =

∫
C −x dy .

Also, the area inside a polar graph r = r(θ) is
∫ θ2
θ1

1
2 r2 dθ: this

follows by writing the third formula in polar coordinates.



Applications of Green’s Theorem, II

Example: Compute the area enclosed by the ellipse x = a cos t,
y = b sin t, 0 ≤ t ≤ 2π.

Here we can use the formula Area of R =
∮
C

1

2
(x dy − y dx).

So then we see A =

∮
C

1

2
(x dy − y dx)

=

∫ 2π

0

1

2
[(a cos t)(b cos t)− (b sin t)(−a sin t)] dt

=

∫ 2π

0

ab

2
dt = πab.



Applications of Green’s Theorem, III

One physical application of this idea is the construction of
planimeters: they are devices used for measuring the area of a
region that operate by tracing along its boundary.

(Courtesy: American
Mathematical Society)

The basic principle is that the
planimeter measures the amount
of movement perpendicular to
its measuring arm: integrating
the resulting dot product around
the boundary of the curve, per
Green’s theorem, then yields the
area.



Applications of Green’s Theorem, IV

Another application of Green’s theorem is to establish one of our
characterizations of conservative vector fields in the plane.

As noted last class, F = 〈P,Q〉 is conservative if and only if
the circulation around any closed curve is zero.

By Green’s theorem, this is equivalent to saying that∫∫
R curl(F) · k dA = 0 for every region R.

But, because the function curl(F) · k = Qx − Py is
continuous, the only way it could integrate to zero on every
possible region is if it is actually zero everywhere.

Thus, F = 〈P,Q〉 is conservative if and only if its curl is zero,
is claimed.



Summary

We discussed Green’s theorem and its applications.

We described the normal and tangential forms of Green’s theorem,
and how to use them to find circulation and flux.

Next lecture: Review for midterm 3.


