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Path-Independence, Conservative Fields, Potential Functions

Path-Independence of Work Integrals

The Fundamental Theorem of Line Integrals

Conservative Vector Fields and Potential Functions

Divergence and Curl

This material represents §4.4 from the course notes.



Work Reminder

Today we will discuss more with work integrals in 2 and 3
dimensions.

Remember that the work done by a vector field F on a particle
that travels along a plane curve C is Work =

∫
C P dx + Q dy ,

or along a space curve it is Work =
∫
C P dx + Q dy + R dz .

What we will investigate now is whether there is any relation
between the work integrals

∫
C1

F · dr and
∫
C2

F · dr for two
different curves C1 and C2.



Path Independence, I

Example: Let F(x , y) = 〈y , x〉. Evaluate the work integrals from
(0, 0) to (1, 1) along the paths

1. C1 : (x , y) = (t, t), for 0 ≤ t ≤ 1.

2. C2 : (x , y) = (t3, t2), for 0 ≤ t ≤ 1.

3. C3 : (x , y) = (t7, t10), for 0 ≤ t ≤ 1.

On C1, F = 〈t, t〉, so the work is∫
C1

F · dr =
∫ 1
0 [t · 1 + t · 1] dt =

∫ 1
0 2t dt = 1.

On C2, F =
〈
t2, t3

〉
, so the work is∫

C2
F · dr =

∫ 1
0

[
t2 · 3t2 + t3 · 2t

]
dt =

∫ 1
0 5t4 dt = 1.

On C3, F =
〈
t10, t7

〉
, so the work is∫

C3
F · dr =

∫ 1
0

[
t10 · 7t6 + t7 · 10t9

]
dt =

∫ 1
0 17t16 dt = 1.

Notice all three yield the same value!
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Path Independence, II

Example: Let G(x , y) =
〈
y2, x

〉
. Evaluate the work integrals from

(0, 0) to (1, 1) along the paths

1. C1 : (x , y) = (t, t), for 0 ≤ t ≤ 1.

2. C2 : (x , y) = (t3, t2), for 0 ≤ t ≤ 1.

3. C3 : (x , y) = (t7, t10), for 0 ≤ t ≤ 1.

On C1, G =
〈
t2, t

〉
, so the work is∫

C1
G · dr =

∫ 1
0

[
t2 · 1 + t · 1

]
dt =

∫ 1
0 (t2 + t) dt = 5/6.

On C2, G =
〈
t4, t3

〉
, so the work is

∫
C2

G · dr =∫ 1
0

[
t4 · 3t2 + t3 · 2t

]
dt =

∫ 1
0 (3t6 + 2t4) dt = 29/35.

On C3, G =
〈
t20, t7

〉
, so the work is

∫
C3

G · dr =∫ 1
0

[
t30 · 7t6 + t7 · 10t9

]
dt =

∫ 1
0 (7t36 + 10t16) dt = 389/459.

Notice all three yield different values!
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Path Independence, III

So, our question is: why is it that all of the work integrals for
F(x , y) = 〈y , x〉 had the same value, but the work integrals for
G(x , y) = 〈y2, x〉 didn’t?

It might be that I just chose misleading examples, and in fact
for F there are some other paths from (0, 0) to (1, 1) where
the value of the work integral is different.

This turns out not to be the case (if you like, you can try
some other paths!).

But it’s not so obvious why that would be, nor what causes
the difference in the behavior between F and G.



Conservative Fields, I

Let’s define the property we’re interested in, and then try to
characterize it in other ways:

Definition

A vector field F is conservative on a region R if, for any two paths
C1 and C2 (inside R) from P1 to P2, it is true that∫
C1

F · dr =
∫
C2

F · dr. In other words, F is conservative if any two
paths with the same endpoints yield the same work integral.



Conservative Fields, II

Here’s a starting point: F is conservative on a region R if, for any
closed curve C in R,

∮
C F · dr = 0. (A closed curve is one whose

start and end points are the same.)

Notation: For a line integral around a closed curve, we often
use the notation

∮
C , the circle being a suggestive example of

a closed curve.

The statement above is equivalent to the definition from the
previous slide because, if C1 and C2 are two paths from P1 to
P2, then we can construct a closed path C by following C1

from P1 to P2 and then following C2 from P2 back to P1.

Then
∫
C F · dr =

∫
C1

F · dr −
∫
C2

F · dr, and so the left-hand
side is zero if and only if the right-hand side is zero.
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Conservative Fields, III

It turns out that we can give a simple but very useful criterion for
when a vector field is conservative:

Theorem (Fundamental Theorem of Calculus for Line Integrals)

The vector field F is conservative on a simply-connected region R
if and only if there exists a function U, called a potential function
for F, such that F = ∇U. If such a function U exists, then∫ b

a
F · dr = U(b)− U(a) along any path from a to b.

Notice the similarity of the statement

∫ b

a
F · dr = U(b)− U(a) to

the Fundamental Theorem of Calculus, which relates the integral of
a derivative of a function to its values at the endpoints of a path.



Conservative Fields, IV

A technical note about the hypotheses of the theorem:

The term “simply-connected” is a technical requirement
needed for the proof of the theorem: intuitively, a
simply-connected region consists of a single piece that does
not have any “holes” in it.

More rigorously, it means that the region is connected
(contains only one “piece”) and that if we take any closed
loop in the region, we can continuously shrink it to a point
without leaving the region.

The disc x2 + y2 ≤ 4 is simply-connected, whereas the
annulus 1 ≤ x2 + y2 ≤ 4 is not.

We will show one direction of the proof. (The other we will
essentially deduce during the next lecture.)



Conservative Fields, V

Proof (Reverse Direction in 3-Space):

Suppose F = ∇U.

By the multivariable chain rule, if C is the path with
x = x(t), y = y(t), and z = z(t) for a ≤ t ≤ b, then

dU

dt
=
∂U

∂x
· dx

dt
+
∂U

∂y
· dy

dt
+
∂U

∂z
· dz

dt
.

Then, by the Fundamental Theorem of Calculus, we see∫
C
F · dr =

∫ b

a

〈
∂U

∂x
,
∂U

∂y
,
∂U

∂z

〉
·
〈

dx

dt
,

dy

dt
,

dz

dt

〉
dt

=

∫ b

a

[
∂U

∂x
· dx

dt
+
∂U

∂y
· dy

dt
+
∂U

∂z
· dz

dt

]
dt

=

∫ b

a

[
dU

dt

]
dt = U(r(b))− U(r(a))

and so F is conservative.



Conservative Fields, VI

The reason for the name “potential function” is because U
behaves like a potential-energy function when we interpret F as a
vector field doing work on a particle.

Specifically, if F = ∇U, then the work done by the field F on
a particle traveling from a to b is equal to U(b)− U(a).

Another way of saying this is: the sum of [the work done by F
in moving a particle from the origin to a point P] with [the
value −U(P)] is the same for all points P.

In this guise, the fundamental theorem of line integrals is a
conservation of energy statement: the work represents kinetic
energy, while the value −U(P) represents the potential energy
at P. The sum of these two energies is constant.



Conservative Fields, VII

If we can see that a vector field is conservative, then it is very easy
to compute work integrals: we just need to find a potential
function for the vector field.

Sometimes, you can spot a potential function just by trial and
error.

In a little while, we will discuss a more systematic method for
finding potential functions.



Conservative Fields, VIII

Example: Find the work done by the vector field
F(x , y) = 〈2x + y , x〉 on a particle traveling along the path
r(t) =

〈
−2 cos(πet), tan−1(t)

〉
from t = 0 to t = 1.

If we try to set up the integral directly using the
parametrization, it will be rather unpleasant.

However, this vector field is conservative: it is not hard to see
that for U(x , y) = x2 + xy , we have ∇U = 〈2x + y , x〉 = F.

By the Fundamental Theorem of Calculus for line integrals,
the work done by the vector field is then simply the value of
U(r(1))− U(r(0)).

Since r(1) = 〈−2 cos(πe), π/4〉 and r(0) = 〈−2, 0〉, the work
is U(2, π/4)− U(−2, 0) = 4 cos2(πe)− 2 cos(πe) · π/4− 4.



Conservative Fields, VIII
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is U(2, π/4)− U(−2, 0) = 4 cos2(πe)− 2 cos(πe) · π/4− 4.



Conservative Fields, IX

Example: Find the work done by the vector field
F(x , y) =

〈
3x2, 2y

〉
on a particle traveling along the path

r(t) =
〈
11t7 − 10t19, sin8(π

√
t)
〉

from t = 0 to t = 1.

This vector field is conservative: for U(x , y) = x3 + y2, we
have ∇U =

〈
3x2, 2y

〉
= F.

By the Fundamental Theorem of Calculus for line integrals,
the work done by the vector field is then simply the value of
U(r(1))− U(r(0)).

Since r(1) = 〈1, 0〉 and r(0) = 〈0, 0〉, the work is
U(1, 0)− U(0, 0) = 3.
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Divergence and Curl, I

We would like to be able to determine easily whether a given
vector field is conservative. To do this, we require a preliminary
definition of a quantity known as the curl of a vector field.

Since it has a similar definition and we will be using it later,
we may as well also define the divergence now as well.

Both of these quantities are defined in terms of the differential

operator ∇ =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
.

Indeed, we have already used this operator in the past to
define the gradient of a function. There, we have

∇f =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= 〈fx , fy , fz〉.



Divergence and Curl, II

The divergence of a vector field is a scalar function:

Definition

If F = 〈P,Q,R〉 then the divergence of F is defined to be the
scalar function div F = ∇ · F = Px + Qy + Rz .

The curl of a vector field is a vector field:

Definition

If F = 〈P,Q,R〉 then the curl of F is defined to be the vector field

curl F = ∇× F =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
P Q R

∣∣∣∣∣∣=〈
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

〉
=〈Ry − Qz , Pz − Rx , Qx − Py 〉.



Divergence and Curl, III

Example: Let F =
〈
3x2y , xyz , exy

〉
.

1. Calculate the divergence of F.

2. Calculate the curl of F.

The divergence of 〈P,Q,R〉 is Px + Qy + Rz .

So div(F) = 6xy + xz + 0.

The curl of 〈P,Q,R〉 is 〈Ry − Qz ,Pz − Rx ,Qx − Py 〉. The
best way to remember this, by the way, is to write down the
determinant mnemonic.

So curl F = ∇× F =
〈
xexy − xy , 0− yexy , yz − 3x2

〉
.



Divergence and Curl, III
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.



Divergence and Curl, IV

We can also define divergence and curl for vector fields in the
plane. We simply pretend they have a z-coordinate that is zero.

Example: Let F =
〈
x3y2, sin(xy)

〉
.

1. Calculate the divergence of F.

2. Calculate the curl of F.

The divergence of 〈P,Q, 0〉 is Px + Qy .

So div(F) = 3x2y2 + x cos(xy).

The curl of 〈P,Q, 0〉 is 〈0, 0,Qx − Py 〉, when P and Q do not
depend on z .

So curl F = ∇× F =
〈
0, 0, y cos(xy)− 2x3y

〉
.
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.



Divergence and Curl, V

It is quite reasonable at this point to wonder why I am giving you
these definitions of divergence and the curl now.

The reason is that they will be very important in the next few
lectures, so I wanted you to be familiar with them now.

It is also quite reasonable to wonder what exactly the
divergence and the curl represent and why they are important.
Unfortunately, I cannot tell you the answer without spoiling
the main results of the rest of the lectures, so you’ll just have
to wait a few classes to find out!

But they have very concrete interpretations in terms of fluid
flow.



Conservative Fields and Curl, I

The main result is that the curl of a vector field determines
whether or not it is conservative:

Theorem (Zero Curl Implies Conservative)

A vector field on a simply-connected region in the plane or in
3-space is conservative if and only if its curl is zero. More
explicitly, we have the following:

1. The vector field F = 〈P,Q〉 is conservative on a
simply-connected region R in the plane if and only if Py = Qx .

2. The vector field F = 〈P,Q,R〉 is conservative on a
simply-connected region D in 3-space if and only if Py = Qx ,
Pz = Rx , and Qz = Ry .



Conservative Fields and Curl, II

It is fairly easy to see why a conservative field requires the equality
of the derivatives of the components.

Explicitly, if F = 〈P,Q〉 = ∇U then P = Ux and Q = Uy , so
by the equality of mixed partial derivatives, we see that
Py = Uxy = Uyx = Qx .

The three necessary equalities when F = 〈P,Q,R〉 follow in
the same way: if F = ∇U then P = Ux , Q = Uy , and
R = Uz , so Py = Uxy = Uyx = Qx , Pz = Uxz = Uzx = Rx ,
and Qz = Uyz = Uzy = Ry .

The converse statement (that zero curl implies the field
actually is conservative) is more difficult, and we will skip it
for now – in fact, it follows from the results we will cover next.



Conservative Fields and Curl, II

Our theorems give us an effective procedure for determining
whether a field is conservative: we first check whether its curl is
zero, and then (if it is) we can try to find a potential function by
computing antiderivatives.

If the field has nonzero curl, we automatically know it is not
conservative.

If the field has zero curl, we know it is conservative, and that
there exists a function U with F = ∇U.

We can then try to identify U by taking antiderivatives of the
components of F.

The only tricky part is that we may have to piece together the
shape of U from all of the partial derivatives, in case there are
terms that don’t involve all of the variables.



Conservative Fields and Curl, III

Example: Determine whether F(x , y) =
〈
x2 + y , x + y2

〉
is

conservative, and if so, find a potential function.

We see ∂
∂y

[
x2 + y

]
= 1 = ∂

∂x

[
x + y2

]
, so F is conservative.

To find a potential function U with ∇U = F, we need to find
U such that Ux = x2 + y and Uy = x + y2.

Taking the antiderivative of Ux = x2 + y with respect to x
yields U = 1

3x3 + xy + f (y), for some function f (y).

To find f (y) we differentiate: Uy = x + f ′(y), so we get
f ′(y) = y2 so we can take f (y) = 1

3y3.

So a potential function for F is U(x , y) = 1
3x3 + xy + 1

3y3.
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Conservative Fields and Curl, III
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Conservative Fields and Curl, IV

Example: Determine whether G(x , y) =
〈
x + y2, x2 + y

〉
is

conservative, and if so, find a potential function.

For G, we see
∂

∂y

[
x + y2

]
= 2y , while

∂

∂x

[
x2 + y

]
= 2x .

These are not equal, so the field is not conservative.



Conservative Fields and Curl, IV
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Conservative Fields and Curl, V

Example: Determine if H(x , y , z) = 〈y + 2z , x + 3z , 2x + 3y〉 is
conservative, and if so, find a potential function.

For H, we have
∂

∂y
[y + 2z ] = 1 =

∂

∂x
[x + 3z ],

∂

∂z
[y + 2z ] = 2 =

∂

∂x
[2x + 3y ], and

∂

∂z
[x + 3z ] = 3 =

∂

∂y
[2x + 3y ], so the field is conservative.
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Conservative Fields and Curl, VI

Example: Determine if H(x , y , z) = 〈y + 2z , x + 3z , 2x + 3y〉 is
conservative, and if so, find a potential function.

To find a potential function U with ∇U = H, we need to find
U such that Ux = y + 2z , Uy = x + 3z , and Uz = 2x + 3y .

Taking the antiderivative of Ux = y + 2z with respect to x
yields U = xy + 2xz + f (y , z), for some function f (y , z).

To find f (y , z) we differentiate: x + fy = x + 3z and
2x + fz = 2x + 3y , so fy = 3z and fz = 3y . Repeating the
process yields f = 3yz + g(z), where g ′(z) = 0.

Thus we see that a potential function for H is
U(x , y , z) = xy + 2xz + 3yz .



Conservative Fields and Curl, VI

Example: Determine if H(x , y , z) = 〈y + 2z , x + 3z , 2x + 3y〉 is
conservative, and if so, find a potential function.

To find a potential function U with ∇U = H, we need to find
U such that Ux = y + 2z , Uy = x + 3z , and Uz = 2x + 3y .

Taking the antiderivative of Ux = y + 2z with respect to x
yields U = xy + 2xz + f (y , z), for some function f (y , z).

To find f (y , z) we differentiate: x + fy = x + 3z and
2x + fz = 2x + 3y , so fy = 3z and fz = 3y . Repeating the
process yields f = 3yz + g(z), where g ′(z) = 0.

Thus we see that a potential function for H is
U(x , y , z) = xy + 2xz + 3yz .



Conservative Fields and Curl, VII

Example: Determine if
F(x , y , z) =

〈
3x2yz2, x3z2 + 2y − z , 2x3yz − y + 4z

〉
is

conservative, and if so, find a potential function.

For F, we have
∂

∂y

[
3x2yz2

]
= 3x2z2 =

∂

∂x

[
x3z2 + 2y − z

]
,

∂

∂z

[
3x2yz2

]
= 6x2yzy =

∂

∂x

[
2x3yz − y + 4z

]
, and

∂

∂z

[
x3z2 + 2y − z

]
= 2x3z − 1 =

∂

∂y

[
2x3yz − y + 4z

]
, so

the field is conservative.



Conservative Fields and Curl, VII

Example: Determine if
F(x , y , z) =

〈
3x2yz2, x3z2 + 2y − z , 2x3yz − y + 4z

〉
is

conservative, and if so, find a potential function.

For F, we have
∂

∂y

[
3x2yz2

]
= 3x2z2 =

∂

∂x

[
x3z2 + 2y − z

]
,

∂

∂z

[
3x2yz2

]
= 6x2yzy =

∂

∂x

[
2x3yz − y + 4z

]
, and

∂

∂z

[
x3z2 + 2y − z

]
= 2x3z − 1 =

∂

∂y

[
2x3yz − y + 4z

]
, so

the field is conservative.



Conservative Fields and Curl, VIII

Example: Determine if
F(x , y , z) =

〈
3x2yz2, x3z2 + 2y − z , 2x3yz − y + 4z

〉
is

conservative, and if so, find a potential function.

To find a potential function U with ∇U = F, we need to find
U such that Ux = 3x2yz2, Uy = x2z2 + 2y − z , and
Uz = 2x3yz − y + 4z .

Looking at Ux , we see that we need a term x3yz2 in U.

If U = x3yz2 then this accounts for the x2z2 term in Uy , but
it still needs a 2y − z , which we can get by adding y2 − yz to
U.

If U = x3yz2 + y2 − yz then Ux and Uy are correct, but Uz is
missing the +4z , which we can get by adding 2z2 to U.

So, finally, we get U = x3yz2 + y2 − yz + 2z2, which works.



Conservative Fields and Curl, VIII

Example: Determine if
F(x , y , z) =

〈
3x2yz2, x3z2 + 2y − z , 2x3yz − y + 4z

〉
is

conservative, and if so, find a potential function.

To find a potential function U with ∇U = F, we need to find
U such that Ux = 3x2yz2, Uy = x2z2 + 2y − z , and
Uz = 2x3yz − y + 4z .

Looking at Ux , we see that we need a term x3yz2 in U.

If U = x3yz2 then this accounts for the x2z2 term in Uy , but
it still needs a 2y − z , which we can get by adding y2 − yz to
U.

If U = x3yz2 + y2 − yz then Ux and Uy are correct, but Uz is
missing the +4z , which we can get by adding 2z2 to U.

So, finally, we get U = x3yz2 + y2 − yz + 2z2, which works.



Conservative Fields and Curl, IX

Example: For the vector field
F(x , y , z) =

〈
3x2yz2, x3z2 + 2y − z , 2x3yz − y + 4z

〉
, find the

work done by F on a particle that travels along the curve
C : r(t) =

〈
sin(πt), t

√
t + 3, 2t3 + 2

〉
for 0 ≤ t ≤ 1.

We can use the potential function U = x3yz2 − y2 + yz + 2z2

we just calculated.

By the fundamental theorem of line integrals, the work is then
U(r(1))− U(r(0)) = U(0, 2, 4)− U(0, 0, 2) = 36− 0 = 36.



Conservative Fields and Curl, IX

Example: For the vector field
F(x , y , z) =

〈
3x2yz2, x3z2 + 2y − z , 2x3yz − y + 4z

〉
, find the

work done by F on a particle that travels along the curve
C : r(t) =

〈
sin(πt), t

√
t + 3, 2t3 + 2

〉
for 0 ≤ t ≤ 1.

We can use the potential function U = x3yz2 − y2 + yz + 2z2

we just calculated.

By the fundamental theorem of line integrals, the work is then
U(r(1))− U(r(0)) = U(0, 2, 4)− U(0, 0, 2) = 36− 0 = 36.



Summary

We discussed path independence of work integrals, conservative
vector fields, and potential functions.

We established the fundamental theorem for line integrals.

We introduced the divergence and curl of a vector field.

We discussed how to establish whether a vector field is
conservative by computing its curl.

Next lecture: Green’s theorem.


