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Flux Across Surfaces
@ Circulation and Flux
@ Flux Across Surfaces

This material represents §4.3.3 from the course notes.



Circulation and Flux Reminders, |

Last time, we discussed circulation and flux, which are two natural
quantities that arise when studying vector fields representing fluid
flow.

@ To visualize these, imagine you are riding a bicycle on a windy
day.

@ The circulation measures how much the wind is helping or
hindering you: in other words, how much it is pushing you
tangentially along your path of motion.

@ The flux measures how much the wind is blowing you off
course: in other words, how much it is pushing normally
across your path of motion.



Circulation and Flux Reminders, Il

In the plane, we can compute circulation and flux as line integrals:

Definition

Suppose F = (P, Q) is a vector field representing the velocity of a
fluid flowing through the plane.
The circulation (or flow) of the vector field F along the curve C is

Circulation = /

F~Td5:/ Pdx+ Qdy,
C C

where T is the unit tangent vector to the curve C.
The flux of the vector field F across the curve C is

F/uxz/F-Nds:/de+de,
C C

where N is the unit normal vector to the curve C.




Flux Across Surfaces, |

In 3-space, the notion of circulation along a curve remains
essentially the same as in the plane.

o If F=(P,Q,R), the circulation of F along the curve C is
JePdx+Qdy+Rdz= [ [P+ Q% +R%| d.
However, the physical interpretation of flux in 3-space means that
we must measure fluid flow across a surface, rather than a curve.

@ The resulting flux integral is then a surface integral, rather
than a line integral.

@ Instead of measuring how much F aligns with the unit normal
vector N to the curve C, we want to measure how much F
aligns with the unit normal vector n to a surface S.

@ Thus, we want to integrate the dot product F - n on the
surface S, where n represents the unit normal vector to S.



Flux Across Surfaces, Il

Our analysis indicates that the total flux of a vector field F across
a surface S is the integral of F - n over the surface.

Definition

If F represents the velocity of a fluid flowing through 3-space, then
the (outward normal) flux of the vector field F across the surface S
is given by the surface integral

//SF-nda

where n is the outward unit normal vector to the surface.
The flux measures the total amount of fluid flowing across S.

4

As with the circulation and flux integrals in the plane, we (usually)
do not want to have to calculate the normal vector n explicitly.



Flux Across Surfaces, |l

Some comments about notation and terminology:

@ When speaking of a unit normal vector to a surface we will
use a lowercase n, to keep the notation different from the unit
normal N to a curve (which is an uppercase N).

@ The unit normal vector to a surface is defined to be the
normal vector of the tangent plane.

The integral [[F-ndo computes the flux through the surface in
the direction of the outward normal vector to the surface.

@ All of this is assuming that there is a coherent notion of an
“outward normal vector”. This may seem like a reasonable
expectation, but some surfaces, like the Mobius strip, cannot
be consistently assigned a normal vector.

@ We will therefore assume, for our discussions, that all our
surfaces are “orientable”, meaning that there is a continuous
assignment of a normal vector to all points on the surface.



Flux Across Surfaces, IV

Since n is the normal vector to the surface's tangent plane, we can
write it down explicitly, and thus set up the surface integral.

o If S is parametrized by r(s, t) = (x(s, t), y(s, t), z(s, t)), then

. r r
a normal vector is given by the cross product — x —, so we

S t

t i+ | vector n or " or or  Or
et a unit normal vector n = | — x —
& Os Ot

9s " ot

e If S is an implicit surface g(x, y, z) = ¢, then a normal vector
is given by the gradient Vg, so we get a unit normal vector
n=Vg/l|Vgll.

@ By plugging these expressions into the surface integral
[JsF-ndo, we obtain explicit formulas for the outward
normal flux across a surface S.




Flux Across Surfaces, V

First, for a parametric surface:

Proposition (Flux Across a Parametric Surface)

Suppose F is a vector field and S is a surface parametrized by
r(s,t) = (x(s,t), y(s,t), z(s, t)) fors and t in a region R. Then
the outward normal flux of F across S is equal to

Flux—// ( r) ds dt

_ or  Or . _
provided that — X — is the outward-pointing normal vector of S.

ds Ot

v

Pleasantly, the denominator for the unit normal vector

B gx& or  Or
~ \9s " ot

that comes from the surface area differential.

or  Or
7X7

cancels the factor
Js Ot

2s ot



Flux Across Surfaces, VI

Also, for an implicit surface:

Proposition (Flux Across an Implicit Surface)

Suppose F is a vector field and S is a portion of the surface defined
implicitly by g(x,y,z) = ¢, where R is the projection of S in the
xy-plane. Then the outward normal flux of F across S is equal to

F-Vg
F/ux—// dy dx
R |IVg K|

provided that 0g/0z is nonzero on R. (Note here that the
denominator term Vg - k is simply the partial derivative 0g/0z.)

We also get a cancellation of the unpleasant denominator term
[|[Vg]|| in this formula.



Flux Across Surfaces, VII

Both of the formulas follow just by writing down the dot product
F - n as a function and setting up the appropriate surface integral.

@ Depending on the description of the surface, either of these
two methods (i.e., via a parametrization or as an implicit
surface) may be more convenient for computing a flux integral.

We also mention that, occasionally, the flux integral [[sF-ndo is
written as [[.F - do.

@ Here, o is being considered as a vector differential.

@ The resulting flux integral is then called “the integral of the
vector field F on the surface S”.

o We will always refer to this integral explicitly as a flux integral,
using our regular surface integral notation [[¢F-ndo.



Flux Across Surfaces, VIII

Example: Consider the vector field F = (xz2, yz?, x3¢”) on the
portion of the cylinder x2 + y? = 4 between z = —1 and z = 1.

1. Find a parametrization for this portion of the cylinder.
2. Find the outward normal vector to the cylinder.

3. Set up and evaluate the flux of F across S.



Flux Across Surfaces, VIII

Example: Consider the vector field F = (xz2, yz?, x3¢”) on the
portion of the cylinder x? + y? = 4 between z = —1 and z = 1.

1. Find a parametrization for this portion of the cylinder.

2. Find the outward normal vector to the cylinder.

3. Set up and evaluate the flux of F across S.

@ From cylindrical coordinates, we can parametrize the cylinder
as r(s,t) = (2cost,2sint,s).

@ The desired portion corresponds to —1 < s <1 and
0<t<2nr.



Flux Across Surfaces, IX

Example: Consider the vector field F = <x22,yz2,x3ey> on the
portion of the cylinder x?> 4 y? = 4 between z = —1 and z = 1.

2. Find the outward normal vector to the cylinder.

@ Since r(s,t) = (2cost,2sint,s),



Flux Across Surfaces, IX

Example: Consider the vector field F = <x22,yz2,x3ey> on the
portion of the cylinder x?> 4 y? = 4 between z = —1 and z = 1.

2. Find the outward normal vector to the cylinder.

@ Since r(s,t) = (2cost,2sint,s), we see that
Or/0t = (—2sint, 2cost, 0) and Or/0s = (0,0, 1).

@ Thus, the normal vector is

i ] k
gxg: —2sint 2cost 0 | = (2cost,2sint,0).
ot 0Os 0 0 1

@ This is indeed an outward-pointing normal vector, since it is
the vector pointing from (0,0, s) to the point
r(s,t) = (2cost,2sint,s) on the surface.



Flux Across Surfaces, X

Example: Consider the vector field F = <x22,y22,x3ey> on the
portion of the cylinder x2 + y? = 4 between z = —1 and z = 1.

3. Set up and evaluate the flux of F across S.



Flux Across Surfaces, X

Example: Consider the vector field F = <x22,y22,x3ey> on the
portion of the cylinder x2 + y? = 4 between z = —1 and z = 1.

3. Set up and evaluate the flux of F across S.
@ Since x = 2cost, y = 2sint, and z = s, we see

F = (xz2,yz? x3e¥) = (2s% cos t,2s?sin t, (2 cos t)3e?sint).
or Or
at " s
(2cost, 2sint, 0) = 4s% cos® t + 4s2sin® t = 4s°.

@ The flux integral is thus
1 2
dt = / Sae=10"
s=—1 0 3 3

27 1 27 4
/ / 452 ds dt = / —s3
o J-1 o 3

@ Then F- ( > = (2s?cos t,2s?sin t, (2 cos t)3e?sin ) .




Flux Across Surfaces, Xl

Example: Find the outward flux of the vector field F = (2x, 2y, 2z)
through the top half of the sphere x? 4+ y? + 2% = 9.

1. Find a parametrization for the sphere.
2. Find the outward normal vector to the sphere.

3. Set up and evaluate the flux of F across S.



Flux Across Surfaces, Xl

Example: Find the outward flux of the vector field F = (2x, 2y, 2z)
through the top half of the sphere x? 4+ y? + 2% = 9.

1. Find a parametrization for the sphere.

2. Find the outward normal vector to the sphere.

3. Set up and evaluate the flux of F across S.

@ Using spherical coordinates, we can parametrize the

hemisphere as r(s, t) = (3sinscost,3sinssint,3coss) for
0<s<m/2and 0 <t <2m.



Flux Across Surfaces, XlI

Example: Find the outward flux of the vector field F = (2x, 2y, 2z)
through the top half of the sphere x? + y? + z2 = 0.

2. Find the outward normal vector to the sphere.

o We have r(s, t) = (3sinscost,3sinssint,3coss).



Flux Across Surfaces, XlI

Example: Find the outward flux of the vector field F = (2x, 2y, 2z)
through the top half of the sphere x? + y? + z2 = 0.

2. Find the outward normal vector to the sphere.

o We have r(s, t) = (3sinscost,3sinssint,3coss).

@ Then Or/0t = (—3sinssint,3sinscost,0) and
Or/0s = (3cosscost,3cosssint,—3sins), so
or Or o ] k
— X — = | —3sinssint 3sinscost 0 =
ot Os 3cosscost 3cosssint —3sins
<—9 sin® s cos t,—9 sin s sin t,—9sin s cos s>.
@ However, this is actually an inward-pointing normal vector,
since it is —3sin s times the position vector r(s, t).
@ So we must scale it by —1 to get the actual outward normal,
<9 sin? s cos t, 9sin? ssin t, 9sin s cos s>.



Flux Across Surfaces, XIII

Example: Find the outward flux of the vector field F = (2x, 2y, 2z)
through the top half of the sphere x? 4+ y? + z°> = 9.

3. Set up and evaluate the flux of F across S.



Flux Across Surfaces, XIII

Example: Find the outward flux of the vector field F = (2x, 2y, 2z)
through the top half of the sphere x? 4+ y? + z°> = 9.

3. Set up and evaluate the flux of F across S.
e We have r(s, t) = (3sinscost,3sinssint,3coss) for
0<s<m/2and 0 <t < 27.

@ So F = (6sinscost,6sinssint,6coss).

or Or

@ Then F- — | — x —

e (81‘ Os
(9sin? scos t,9sin? ssin t,9sinscoss) =

54sin3 scos? t + 54sin3 ssin®t + 54sinscos?s = 54sin s.

@ The flux of F across S is therefore

2r pm/2 2
/ / 54 sins ds dt:/ —b4 coss
0 0 0

) = (6sinscost,bsinssint,6coss) -

/2 27
dt:/ 54 dt =108m.
0 0

s=




Flux Across Surfaces, XIV

Example: Find the outward flux of the vector field F = (2x,2y,2z)
through the top half of the sphere x> 4 y? + z? = 9 using the
implicit surface formula.



Flux Across Surfaces, XIV

Example: Find the outward flux of the vector field F = (2x,2y,2z)

through the top half of the sphere x> 4 y? + z? = 9 using the
implicit surface formula.

o If we use the implicit surface formula instead, then the flux is
F-V
given by // | £ dy dx, where g(x,y,z) = x> + y? + 2°.



Flux Across Surfaces, XIV

Example: Find the outward flux of the vector field F = (2x,2y,2z)

through the top half of the sphere x> 4 y? + z? = 9 using the
implicit surface formula.

o If we use the implicit surface formula instead, then the flux is
F-V
given by // | £ dy dx, where g(x,y,z) = x> + y? + 2°.

@ We have Vg = <2x, 2y,2z), and the region R is the interior
of the circle x> + y? = 9. Therefore, the flux integral is

// (2x, 2y,22 <2x 2y,22z) dA — // dydx.
R 2

° SW|tch|ng to poIar coordinates yields the epr|C|t mtegral

27 27 3
rdrd9:/ —184/9 — r2
/ /o 2v9 — r2 02 r=

—/ 54 df = 1087.
0

df
0



Flux Across Surfaces, XV

Example: Find the flux of the vector field F = (2xz, 2xy, 2z)
through the portion S of the surface z = x? + y? between the
cylinders x2 + y?2 = 1 and x? + y? = 4, with upward orientation.



Flux Across Surfaces, XV

Example: Find the flux of the vector field F = (2xz, 2xy, 2z)
through the portion S of the surface z = x? + y? between the
cylinders x2 + y?2 = 1 and x? + y? = 4, with upward orientation.
@ The description of the portion of the surface suggests using
cylindrical coordinates to write down a parametrization.

@ In cylindrical, the surface is z = r?. and the portion we want
has 1 <r <2.

e Thus, we get a parametrization r(r,0) = (rcosf,rsin@, r?)
with 1 <r<2and 0 <60 < 2r.



Flux Across Surfaces, XVI

Example: Find the flux of the vector field F = (2xz, 2xy, 2z)
through the portion S of the surface z = x? + y? between the
cylinders x2 + y? = 1 and x? + y? = 4, with upward orientation.

o If r(r,0) = (rcosb,rsin6,r?),



Flux Across Surfaces, XVI

Example: Find the flux of the vector field F = (2xz, 2xy, 2z)
through the portion S of the surface z = x? + y? between the
cylinders x2 + y? = 1 and x? + y? = 4, with upward orientation.
o If r(r,0) = (rcos®,rsinf, r?), then dr/dr = (cosf,sin b, 2r)
and dr/90 = (—rsinf, rcosb,0).
. . K
or 0 ' 3
@ So then we get A cos 6 sinf  2r
or 90 .
—rsinf rcosf 0
= (=2r?cos,—2r%sin0,r).
@ This normal vector does point upward, as required, since the
z-coordinate is positive.



Flux Across Surfaces, XVII

Example: Find the flux of the vector field F = (2xz,2yz, 2z)
through the portion S of the surface z = x? + y? between the
cylinders x? + y? =1 and x% + y? = 4, with upward orientation.



Flux Across Surfaces, XVII

Example: Find the flux of the vector field F = (2xz,2yz, 2z)
through the portion S of the surface z = x? + y? between the
cylinders x? + y? =1 and x% + y? = 4, with upward orientation.
e We have r(r,0) = (rcosf,rsinf,r?) for 1 < r <2 and
0<0<27. Thus F = <2r3 cosf, 2r3sin 0, 2r2>.
or Or
ThenF- | — x — | =
@ Then <8t X B
<2r3 cos@,2r3siné, 2r2> . <—2r2 cosf,—2r’sin b, r>
= —4r%cos? 0 — 4r°sin? 6 4 2r3 = 2r3 — 45,

@ The flux of F across S is therefore

27 2 21 69
/ / (2r® — 4r%) dr df = / ——df = —697.
o J1 0 2



Flux Across Surfaces, XVIII

Example: Compute the flux of F = <—xz, —yz, X% + y2> across

the portion of the cone z = y/x2 + y? inside the cylinder
x? 4+ y? = 6, with upward orientation.



Flux Across Surfaces, XVIII

Example: Compute the flux of F = <—xz, —yz, X% + y2> across
the portion of the cone z = \/x2 + y? inside the cylinder
x? 4+ y? = 6, with upward orientation.

@ In cylindrical the cone is z = r, so using parameters r, 8 we

get the parametrization r(r,6) = (rcos@,rsin6,r) for
0<r<+6,0<6<2n.



Flux Across Surfaces, XVIII

Example: Compute the flux of F = <—xz, —yz, X% + y2> across

the portion of the cone z = \/x2 + y? inside the cylinder
x? 4+ y? = 6, with upward orientation.

@ In cylindrical the cone is z = r, so using parameters r, 8 we
get the parametrization r(r,6) = (rcos@,rsin6,r) for
0<r<+6,0<6<2n.

@ Then % X % = (—rcosf,—rsin@,r), which has upward
orientation since the z-coordinate is positive.

@ Then F = <—r2 cos, —r?sinb, r2> and so
F-n=(—r?cosf,—r?sin0,r?) - (—rcos,—rsin6,r) = 2r.

27 \@ 21
@ Thus, the flux is/ / 2r3 dr do :/ 18 d6 = 36r.
0 0 0



Summary

We introduced flux across a surface.

We discussed how to calculate flux across parametric surfaces and
how to calculate flux across implicit surfaces.

Next lecture: Conservative vector fields and potential functions.



