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Flux Across Surfaces

Circulation and Flux

Flux Across Surfaces

This material represents §4.3.3 from the course notes.



Circulation and Flux Reminders, I

Last time, we discussed circulation and flux, which are two natural
quantities that arise when studying vector fields representing fluid
flow.

To visualize these, imagine you are riding a bicycle on a windy
day.

The circulation measures how much the wind is helping or
hindering you: in other words, how much it is pushing you
tangentially along your path of motion.

The flux measures how much the wind is blowing you off
course: in other words, how much it is pushing normally
across your path of motion.



Circulation and Flux Reminders, II

In the plane, we can compute circulation and flux as line integrals:

Definition

Suppose F = 〈P,Q〉 is a vector field representing the velocity of a
fluid flowing through the plane.
The circulation (or flow) of the vector field F along the curve C is

Circulation =

∫
C
F · T ds =

∫
C

P dx + Q dy,

where T is the unit tangent vector to the curve C .
The flux of the vector field F across the curve C is

Flux =

∫
C
F ·N ds =

∫
C
−Q dx + P dy,

where N is the unit normal vector to the curve C .



Flux Across Surfaces, I

In 3-space, the notion of circulation along a curve remains
essentially the same as in the plane.

If F = 〈P,Q,R〉, the circulation of F along the curve C is∫
C P dx + Q dy + R dz =

∫ b
a

[
P dx

dt + Q dy
dt + R dz

dt

]
dt.

However, the physical interpretation of flux in 3-space means that
we must measure fluid flow across a surface, rather than a curve.

The resulting flux integral is then a surface integral, rather
than a line integral.

Instead of measuring how much F aligns with the unit normal
vector N to the curve C , we want to measure how much F
aligns with the unit normal vector n to a surface S .

Thus, we want to integrate the dot product F · n on the
surface S , where n represents the unit normal vector to S .



Flux Across Surfaces, II

Our analysis indicates that the total flux of a vector field F across
a surface S is the integral of F · n over the surface.

Definition

If F represents the velocity of a fluid flowing through 3-space, then
the (outward normal) flux of the vector field F across the surface S
is given by the surface integral∫∫

S
F · n dσ

where n is the outward unit normal vector to the surface.
The flux measures the total amount of fluid flowing across S.

As with the circulation and flux integrals in the plane, we (usually)
do not want to have to calculate the normal vector n explicitly.



Flux Across Surfaces, III

Some comments about notation and terminology:

When speaking of a unit normal vector to a surface we will
use a lowercase n, to keep the notation different from the unit
normal N to a curve (which is an uppercase N).

The unit normal vector to a surface is defined to be the
normal vector of the tangent plane.

The integral
∫∫

S F · n dσ computes the flux through the surface in
the direction of the outward normal vector to the surface.

All of this is assuming that there is a coherent notion of an
“outward normal vector”. This may seem like a reasonable
expectation, but some surfaces, like the Möbius strip, cannot
be consistently assigned a normal vector.

We will therefore assume, for our discussions, that all our
surfaces are “orientable”, meaning that there is a continuous
assignment of a normal vector to all points on the surface.



Flux Across Surfaces, IV

Since n is the normal vector to the surface’s tangent plane, we can
write it down explicitly, and thus set up the surface integral.

If S is parametrized by r(s, t) = 〈x(s, t), y(s, t), z(s, t)〉, then

a normal vector is given by the cross product
∂r

∂s
× ∂r

∂t
, so we

get a unit normal vector n =

(
∂r

∂s
× ∂r

∂t

)/∣∣∣∣∣∣∣∣∂r∂s
× ∂r

∂t

∣∣∣∣∣∣∣∣ .
If S is an implicit surface g(x , y , z) = c , then a normal vector
is given by the gradient ∇g , so we get a unit normal vector
n = ∇g/ ||∇g ||.
By plugging these expressions into the surface integral∫∫

S F · n dσ, we obtain explicit formulas for the outward
normal flux across a surface S .



Flux Across Surfaces, V

First, for a parametric surface:

Proposition (Flux Across a Parametric Surface)

Suppose F is a vector field and S is a surface parametrized by
r(s, t) = 〈x(s, t), y(s, t), z(s, t)〉 for s and t in a region R. Then
the outward normal flux of F across S is equal to

Flux =

∫∫
R
F ·
(
∂r

∂s
× ∂r

∂t

)
ds dt

provided that
∂r

∂s
× ∂r

∂t
is the outward-pointing normal vector of S.

Pleasantly, the denominator for the unit normal vector

n =

(
∂r

∂s
× ∂r

∂t

)/∣∣∣∣∣∣∣∣∂r∂s
× ∂r

∂t

∣∣∣∣∣∣∣∣ cancels the factor

∣∣∣∣∣∣∣∣∂r∂s
× ∂r

∂t

∣∣∣∣∣∣∣∣
that comes from the surface area differential.



Flux Across Surfaces, VI

Also, for an implicit surface:

Proposition (Flux Across an Implicit Surface)

Suppose F is a vector field and S is a portion of the surface defined
implicitly by g(x , y , z) = c, where R is the projection of S in the
xy-plane. Then the outward normal flux of F across S is equal to

Flux =

∫∫
R

F · ∇g

|∇g · k|
dy dx

provided that ∂g/∂z is nonzero on R. (Note here that the
denominator term ∇g · k is simply the partial derivative ∂g/∂z.)

We also get a cancellation of the unpleasant denominator term
||∇g || in this formula.



Flux Across Surfaces, VII

Both of the formulas follow just by writing down the dot product
F · n as a function and setting up the appropriate surface integral.

Depending on the description of the surface, either of these
two methods (i.e., via a parametrization or as an implicit
surface) may be more convenient for computing a flux integral.

We also mention that, occasionally, the flux integral
∫∫

S F · n dσ is
written as

∫∫
S F · dσ.

Here, σ is being considered as a vector differential.

The resulting flux integral is then called “the integral of the
vector field F on the surface S”.

We will always refer to this integral explicitly as a flux integral,
using our regular surface integral notation

∫∫
S F · n dσ.



Flux Across Surfaces, VIII

Example: Consider the vector field F =
〈
xz2, yz2, x3ey

〉
on the

portion of the cylinder x2 + y2 = 4 between z = −1 and z = 1.

1. Find a parametrization for this portion of the cylinder.

2. Find the outward normal vector to the cylinder.

3. Set up and evaluate the flux of F across S .

From cylindrical coordinates, we can parametrize the cylinder
as r(s, t) = 〈2 cos t, 2 sin t, s〉.
The desired portion corresponds to −1 ≤ s ≤ 1 and
0 ≤ t ≤ 2π.



Flux Across Surfaces, VIII

Example: Consider the vector field F =
〈
xz2, yz2, x3ey

〉
on the

portion of the cylinder x2 + y2 = 4 between z = −1 and z = 1.

1. Find a parametrization for this portion of the cylinder.

2. Find the outward normal vector to the cylinder.

3. Set up and evaluate the flux of F across S .

From cylindrical coordinates, we can parametrize the cylinder
as r(s, t) = 〈2 cos t, 2 sin t, s〉.
The desired portion corresponds to −1 ≤ s ≤ 1 and
0 ≤ t ≤ 2π.



Flux Across Surfaces, IX

Example: Consider the vector field F =
〈
xz2, yz2, x3ey

〉
on the

portion of the cylinder x2 + y2 = 4 between z = −1 and z = 1.

2. Find the outward normal vector to the cylinder.

Since r(s, t) = 〈2 cos t, 2 sin t, s〉,

we see that
∂r/∂t = 〈−2 sin t, 2 cos t, 0〉 and ∂r/∂s = 〈0, 0, 1〉.
Thus, the normal vector is

∂r

∂t
× ∂r

∂s
=

∣∣∣∣∣∣
i j k

−2 sin t 2 cos t 0
0 0 1

∣∣∣∣∣∣ = 〈2 cos t, 2 sin t, 0〉.

This is indeed an outward-pointing normal vector, since it is
the vector pointing from (0, 0, s) to the point
r(s, t) = (2 cos t, 2 sin t, s) on the surface.



Flux Across Surfaces, IX

Example: Consider the vector field F =
〈
xz2, yz2, x3ey

〉
on the

portion of the cylinder x2 + y2 = 4 between z = −1 and z = 1.

2. Find the outward normal vector to the cylinder.

Since r(s, t) = 〈2 cos t, 2 sin t, s〉, we see that
∂r/∂t = 〈−2 sin t, 2 cos t, 0〉 and ∂r/∂s = 〈0, 0, 1〉.
Thus, the normal vector is

∂r

∂t
× ∂r

∂s
=

∣∣∣∣∣∣
i j k

−2 sin t 2 cos t 0
0 0 1

∣∣∣∣∣∣ = 〈2 cos t, 2 sin t, 0〉.

This is indeed an outward-pointing normal vector, since it is
the vector pointing from (0, 0, s) to the point
r(s, t) = (2 cos t, 2 sin t, s) on the surface.



Flux Across Surfaces, X

Example: Consider the vector field F =
〈
xz2, yz2, x3ey

〉
on the

portion of the cylinder x2 + y2 = 4 between z = −1 and z = 1.

3. Set up and evaluate the flux of F across S .

Since x = 2 cos t, y = 2 sin t, and z = s, we see
F = 〈xz2, yz2, x3ey 〉 = 〈2s2 cos t, 2s2 sin t, (2 cos t)3e2 sin t〉.

Then F ·
(
∂r

∂t
× ∂r

∂s

)
=
〈
2s2 cos t, 2s2 sin t, (2 cos t)3e2 sin t

〉
·

〈2 cos t, 2 sin t, 0〉 = 4s2 cos2 t + 4s2 sin2 t = 4s2.

The flux integral is thus∫ 2π

0

∫ 1

−1
4s2 ds dt =

∫ 2π

0

4

3
s3
∣∣∣1
s=−1

dt =

∫ 2π

0

8

3
dt =

16π

3
.



Flux Across Surfaces, X

Example: Consider the vector field F =
〈
xz2, yz2, x3ey

〉
on the

portion of the cylinder x2 + y2 = 4 between z = −1 and z = 1.

3. Set up and evaluate the flux of F across S .

Since x = 2 cos t, y = 2 sin t, and z = s, we see
F = 〈xz2, yz2, x3ey 〉 = 〈2s2 cos t, 2s2 sin t, (2 cos t)3e2 sin t〉.

Then F ·
(
∂r

∂t
× ∂r

∂s

)
=
〈
2s2 cos t, 2s2 sin t, (2 cos t)3e2 sin t

〉
·

〈2 cos t, 2 sin t, 0〉 = 4s2 cos2 t + 4s2 sin2 t = 4s2.

The flux integral is thus∫ 2π

0

∫ 1

−1
4s2 ds dt =

∫ 2π

0

4

3
s3
∣∣∣1
s=−1

dt =

∫ 2π

0

8

3
dt =

16π

3
.



Flux Across Surfaces, XI

Example: Find the outward flux of the vector field F = 〈2x , 2y , 2z〉
through the top half of the sphere x2 + y2 + z2 = 9.

1. Find a parametrization for the sphere.

2. Find the outward normal vector to the sphere.

3. Set up and evaluate the flux of F across S .

Using spherical coordinates, we can parametrize the
hemisphere as r(s, t) = 〈3 sin s cos t, 3 sin s sin t, 3 cos s〉 for
0 ≤ s ≤ π/2 and 0 ≤ t ≤ 2π.



Flux Across Surfaces, XI

Example: Find the outward flux of the vector field F = 〈2x , 2y , 2z〉
through the top half of the sphere x2 + y2 + z2 = 9.

1. Find a parametrization for the sphere.

2. Find the outward normal vector to the sphere.

3. Set up and evaluate the flux of F across S .

Using spherical coordinates, we can parametrize the
hemisphere as r(s, t) = 〈3 sin s cos t, 3 sin s sin t, 3 cos s〉 for
0 ≤ s ≤ π/2 and 0 ≤ t ≤ 2π.



Flux Across Surfaces, XII

Example: Find the outward flux of the vector field F = 〈2x , 2y , 2z〉
through the top half of the sphere x2 + y2 + z2 = 9.

2. Find the outward normal vector to the sphere.

We have r(s, t) = 〈3 sin s cos t, 3 sin s sin t, 3 cos s〉.

Then ∂r/∂t = 〈−3 sin s sin t, 3 sin s cos t, 0〉 and
∂r/∂s = 〈3 cos s cos t, 3 cos s sin t,−3 sin s〉, so

∂r

∂t
× ∂r

∂s
=

∣∣∣∣∣∣
i j k

−3 sin s sin t 3 sin s cos t 0
3 cos s cos t 3 cos s sin t −3 sin s

∣∣∣∣∣∣ =〈
−9 sin2 s cos t,−9 sin2 s sin t,−9 sin s cos s

〉
.

However, this is actually an inward-pointing normal vector,
since it is −3 sin s times the position vector r(s, t).

So we must scale it by −1 to get the actual outward normal,〈
9 sin2 s cos t, 9 sin2 s sin t, 9 sin s cos s

〉
.



Flux Across Surfaces, XII

Example: Find the outward flux of the vector field F = 〈2x , 2y , 2z〉
through the top half of the sphere x2 + y2 + z2 = 9.

2. Find the outward normal vector to the sphere.

We have r(s, t) = 〈3 sin s cos t, 3 sin s sin t, 3 cos s〉.
Then ∂r/∂t = 〈−3 sin s sin t, 3 sin s cos t, 0〉 and
∂r/∂s = 〈3 cos s cos t, 3 cos s sin t,−3 sin s〉, so

∂r

∂t
× ∂r

∂s
=

∣∣∣∣∣∣
i j k

−3 sin s sin t 3 sin s cos t 0
3 cos s cos t 3 cos s sin t −3 sin s

∣∣∣∣∣∣ =〈
−9 sin2 s cos t,−9 sin2 s sin t,−9 sin s cos s

〉
.

However, this is actually an inward-pointing normal vector,
since it is −3 sin s times the position vector r(s, t).

So we must scale it by −1 to get the actual outward normal,〈
9 sin2 s cos t, 9 sin2 s sin t, 9 sin s cos s

〉
.



Flux Across Surfaces, XIII

Example: Find the outward flux of the vector field F = 〈2x , 2y , 2z〉
through the top half of the sphere x2 + y2 + z2 = 9.

3. Set up and evaluate the flux of F across S .

We have r(s, t) = 〈3 sin s cos t, 3 sin s sin t, 3 cos s〉 for
0 ≤ s ≤ π/2 and 0 ≤ t ≤ 2π.

So F = 〈6 sin s cos t, 6 sin s sin t, 6 cos s〉.

Then F · −
(
∂r

∂t
× ∂r

∂s

)
= 〈6 sin s cos t, 6 sin s sin t, 6 cos s〉 ·〈

9 sin2 s cos t, 9 sin2 s sin t, 9 sin s cos s
〉

=
54 sin3 s cos2 t + 54 sin3 s sin2 t + 54 sin s cos2 s = 54 sin s.

The flux of F across S is therefore∫ 2π

0

∫ π/2

0
54 sin s ds dt =

∫ 2π

0
−54 cos s

∣∣∣π/2
s=0

dt =

∫ 2π

0
54 dt =108π.



Flux Across Surfaces, XIII

Example: Find the outward flux of the vector field F = 〈2x , 2y , 2z〉
through the top half of the sphere x2 + y2 + z2 = 9.

3. Set up and evaluate the flux of F across S .

We have r(s, t) = 〈3 sin s cos t, 3 sin s sin t, 3 cos s〉 for
0 ≤ s ≤ π/2 and 0 ≤ t ≤ 2π.

So F = 〈6 sin s cos t, 6 sin s sin t, 6 cos s〉.

Then F · −
(
∂r

∂t
× ∂r

∂s

)
= 〈6 sin s cos t, 6 sin s sin t, 6 cos s〉 ·〈

9 sin2 s cos t, 9 sin2 s sin t, 9 sin s cos s
〉

=
54 sin3 s cos2 t + 54 sin3 s sin2 t + 54 sin s cos2 s = 54 sin s.

The flux of F across S is therefore∫ 2π

0

∫ π/2

0
54 sin s ds dt =

∫ 2π

0
−54 cos s

∣∣∣π/2
s=0

dt =

∫ 2π

0
54 dt =108π.



Flux Across Surfaces, XIV

Example: Find the outward flux of the vector field F = 〈2x , 2y , 2z〉
through the top half of the sphere x2 + y2 + z2 = 9 using the
implicit surface formula.

If we use the implicit surface formula instead, then the flux is

given by

∫∫
R

F · ∇g

|∇g · k|
dy dx , where g(x , y , z) = x2 + y2 + z2.

We have ∇g = 〈2x , 2y , 2z〉, and the region R is the interior
of the circle x2 + y2 = 9. Therefore, the flux integral is∫∫

R

〈2x , 2y , 2z〉 · 〈2x , 2y , 2z〉
2z

dA =

∫∫
R

36

2
√

9− x2 − y2
dy dx .

Switching to polar coordinates yields the explicit integral∫ 2π

0

∫ 3

0

36

2
√

9− r2
r dr dθ =

∫ 2π

0
−18

√
9− r2

∣∣∣3
r=0

dθ

=

∫ 2π

0
54 dθ = 108π.



Flux Across Surfaces, XIV

Example: Find the outward flux of the vector field F = 〈2x , 2y , 2z〉
through the top half of the sphere x2 + y2 + z2 = 9 using the
implicit surface formula.

If we use the implicit surface formula instead, then the flux is

given by

∫∫
R

F · ∇g

|∇g · k|
dy dx , where g(x , y , z) = x2 + y2 + z2.

We have ∇g = 〈2x , 2y , 2z〉, and the region R is the interior
of the circle x2 + y2 = 9. Therefore, the flux integral is∫∫

R

〈2x , 2y , 2z〉 · 〈2x , 2y , 2z〉
2z

dA =

∫∫
R

36

2
√

9− x2 − y2
dy dx .

Switching to polar coordinates yields the explicit integral∫ 2π

0

∫ 3

0

36

2
√

9− r2
r dr dθ =

∫ 2π

0
−18

√
9− r2

∣∣∣3
r=0

dθ

=

∫ 2π

0
54 dθ = 108π.



Flux Across Surfaces, XIV

Example: Find the outward flux of the vector field F = 〈2x , 2y , 2z〉
through the top half of the sphere x2 + y2 + z2 = 9 using the
implicit surface formula.

If we use the implicit surface formula instead, then the flux is

given by

∫∫
R

F · ∇g

|∇g · k|
dy dx , where g(x , y , z) = x2 + y2 + z2.

We have ∇g = 〈2x , 2y , 2z〉, and the region R is the interior
of the circle x2 + y2 = 9. Therefore, the flux integral is∫∫

R

〈2x , 2y , 2z〉 · 〈2x , 2y , 2z〉
2z

dA =

∫∫
R

36

2
√

9− x2 − y2
dy dx .

Switching to polar coordinates yields the explicit integral∫ 2π

0

∫ 3

0

36

2
√

9− r2
r dr dθ =

∫ 2π

0
−18

√
9− r2

∣∣∣3
r=0

dθ

=

∫ 2π

0
54 dθ = 108π.



Flux Across Surfaces, XV

Example: Find the flux of the vector field F = 〈2xz , 2xy , 2z〉
through the portion S of the surface z = x2 + y2 between the
cylinders x2 + y2 = 1 and x2 + y2 = 4, with upward orientation.

The description of the portion of the surface suggests using
cylindrical coordinates to write down a parametrization.

In cylindrical, the surface is z = r2, and the portion we want
has 1 ≤ r ≤ 2.

Thus, we get a parametrization r(r , θ) = 〈r cos θ, r sin θ, r2〉
with 1 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π.



Flux Across Surfaces, XV

Example: Find the flux of the vector field F = 〈2xz , 2xy , 2z〉
through the portion S of the surface z = x2 + y2 between the
cylinders x2 + y2 = 1 and x2 + y2 = 4, with upward orientation.

The description of the portion of the surface suggests using
cylindrical coordinates to write down a parametrization.

In cylindrical, the surface is z = r2, and the portion we want
has 1 ≤ r ≤ 2.

Thus, we get a parametrization r(r , θ) = 〈r cos θ, r sin θ, r2〉
with 1 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π.



Flux Across Surfaces, XVI

Example: Find the flux of the vector field F = 〈2xz , 2xy , 2z〉
through the portion S of the surface z = x2 + y2 between the
cylinders x2 + y2 = 1 and x2 + y2 = 4, with upward orientation.

If r(r , θ) = 〈r cos θ, r sin θ, r2〉,

then ∂r/∂r = 〈cos θ, sin θ, 2r〉
and ∂r/∂θ = 〈−r sin θ, r cos θ, 0〉.

So then we get
∂r

∂r
× ∂r

∂θ
=

∣∣∣∣∣∣
i j k

cos θ sin θ 2r
−r sin θ r cos θ 0

∣∣∣∣∣∣
=
〈
−2r2 cos θ,−2r2 sin θ, r

〉
.

This normal vector does point upward, as required, since the
z-coordinate is positive.



Flux Across Surfaces, XVI

Example: Find the flux of the vector field F = 〈2xz , 2xy , 2z〉
through the portion S of the surface z = x2 + y2 between the
cylinders x2 + y2 = 1 and x2 + y2 = 4, with upward orientation.

If r(r , θ) = 〈r cos θ, r sin θ, r2〉, then ∂r/∂r = 〈cos θ, sin θ, 2r〉
and ∂r/∂θ = 〈−r sin θ, r cos θ, 0〉.

So then we get
∂r

∂r
× ∂r

∂θ
=

∣∣∣∣∣∣
i j k

cos θ sin θ 2r
−r sin θ r cos θ 0

∣∣∣∣∣∣
=
〈
−2r2 cos θ,−2r2 sin θ, r

〉
.

This normal vector does point upward, as required, since the
z-coordinate is positive.



Flux Across Surfaces, XVII

Example: Find the flux of the vector field F = 〈2xz , 2yz , 2z〉
through the portion S of the surface z = x2 + y2 between the
cylinders x2 + y2 = 1 and x2 + y2 = 4, with upward orientation.

We have r(r , θ) = 〈r cos θ, r sin θ, r2〉 for 1 ≤ r ≤ 2 and
0 ≤ θ ≤ 2π. Thus F =

〈
2r3 cos θ, 2r3 sin θ, 2r2

〉
.

Then F ·
(
∂r

∂t
× ∂r

∂s

)
=〈

2r3 cos θ, 2r3 sin θ, 2r2
〉
·
〈
−2r2 cos θ,−2r2 sin θ, r

〉
= −4r5 cos2 θ − 4r5 sin2 θ + 2r3 = 2r3 − 4r5.

The flux of F across S is therefore∫ 2π

0

∫ 2

1
(2r3 − 4r5) dr dθ =

∫ 2π

0
−69

2
dθ = −69π.



Flux Across Surfaces, XVII

Example: Find the flux of the vector field F = 〈2xz , 2yz , 2z〉
through the portion S of the surface z = x2 + y2 between the
cylinders x2 + y2 = 1 and x2 + y2 = 4, with upward orientation.

We have r(r , θ) = 〈r cos θ, r sin θ, r2〉 for 1 ≤ r ≤ 2 and
0 ≤ θ ≤ 2π. Thus F =

〈
2r3 cos θ, 2r3 sin θ, 2r2

〉
.

Then F ·
(
∂r

∂t
× ∂r

∂s

)
=〈

2r3 cos θ, 2r3 sin θ, 2r2
〉
·
〈
−2r2 cos θ,−2r2 sin θ, r

〉
= −4r5 cos2 θ − 4r5 sin2 θ + 2r3 = 2r3 − 4r5.

The flux of F across S is therefore∫ 2π

0

∫ 2

1
(2r3 − 4r5) dr dθ =

∫ 2π

0
−69

2
dθ = −69π.



Flux Across Surfaces, XVIII

Example: Compute the flux of F =
〈
−xz , −yz , x2 + y2

〉
across

the portion of the cone z =
√

x2 + y2 inside the cylinder
x2 + y2 = 6, with upward orientation.

In cylindrical the cone is z = r , so using parameters r , θ we
get the parametrization r(r , θ) = 〈r cos θ, r sin θ, r〉 for
0 ≤ r ≤

√
6, 0 ≤ θ ≤ 2π.

Then ∂r
∂r ×

∂r
∂θ = 〈−r cos θ,−r sin θ, r〉, which has upward

orientation since the z-coordinate is positive.
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0
18 dθ = 36π.
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Summary

We introduced flux across a surface.

We discussed how to calculate flux across parametric surfaces and
how to calculate flux across implicit surfaces.

Next lecture: Conservative vector fields and potential functions.


