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Vector Fields, Work, Circulation, and Flux

Vector Fields

Circulation and Work Integrals in 2-Space and 3-Space

Flux Across Curves

This material represents §4.3.1-4.3.2 from the course notes.



Vector Fields, I

We now discuss vector fields and their applications. A vector field
is a function that assigns a vector to each point in space.

Thus, a vector field in 2 dimensions is a vector-valued
function of the form F(x , y) = 〈P(x , y),Q(x , y)〉, while a
vector field in 3 dimensions is a vector-valued function of the
form F(x , y , z) = 〈P(x , y , z),Q(x , y , z),R(x , y , z)〉 for some
functions P,Q,R.

Example: Two vector fields in the plane are
F(x , y) = 〈x2 + y , xy〉 and G(x , y) = 〈−y , x〉.
Another class of vector fields we have already encountered is
the vector field associated to the gradient of a function
f (x , y) or f (x , y , z): for example, if f (x , y) = x2 + xy , then
∇f (x , y) = 〈2x + y , x〉 is a vector field in the plane.



Vector Fields, II

Vector fields can be used to model fluid flow.

Specifically, if we have a fluid flowing in the plane, then we
obtain a vector field F(x , y) measuring the velocity of the
fluid at the point (x , y).

Likewise, if we have a fluid flowing in space, then we obtain a
vector field F(x , y , z) measuring the velocity of the fluid at
the point (x , y , z).

Motivating question #1: Given a path, how can we measure
how much fluid travels along the path?

Motivating question #2: Given a region, how can we measure
how much fluid flows in or out of the region?



Vector Fields, III

Vector fields can also be used to model the actions of forces
(sometimes they are called “force fields” in this situation).

If we have a physical phenomenon that imparts forces to
objects, we obtain a vector field F by measuring the force
imparted at a particular point. (Note that forces are vectors,
since they have magnitude and direction.)

Common examples include magnetic fields, electric fields, or
gravitational fields.

Motivating question: If a particle travels along a path through
one of these “force fields”, how can we measure the work
done by the field on the particle?



Vector Fields, IV

To represent a vector field visually, we choose some (nice)
collection of points (generally in a grid) and draw the vectors
corresponding to those points as arrows pointing in the appropriate
direction and with the appropriate length.

These plots tend to be rather tedious to produce by hand,
since it requires computing and then drawing a large number
of vectors at a scale that captures the relative magnitudes of
the vectors, but does not become too cluttered.

Naturally, we will prefer to use a computer to draw vector
field plots.



Vector Fields, V

Here is a plot of F(x , y) = 〈x , y〉:



Vector Fields, VI

Here is a plot of F(x , y) = 〈−y , x〉:



Vector Fields, VII

Here is a plot of F(x , y) = 〈x + y2, 2− 2xy〉:



Vector Fields, VIII

Here is a plot of F(x , y) = 〈x + y , x − y〉:



Vector Fields, IX

Here is a plot of F(x , y) = 〈y + 1, x − 1〉:



Vector Fields, X

We can also produce these plots in 3D, but they are usually very
cluttered. Here is one for F(x , y , z) = 〈x , z − y , x + y〉:



Work, I

Let’s now examine the behavior of vector fields representing forces.

If F represents the force imparted to a particle at a given
position, we would like to calculate the total work done on the
particle as it travels along a path.

To visualize this, imagine you are riding a bicycle on a windy
day. The wind can either be helping you (if it is a tailwind,
pushing you from behind) or hindering you (if it is a
headwind, pushing you from in front).

The total amount of help, or hindrance, the wind provides will
then depend on how much it is pushing you in the direction
you are already moving.



Work, II

If we have a parametrization r(t) of the path, then we are seeking
to measure “how much” of the force vector F is in the direction of
the path.

This is the same as asking how much of the force vector F is
in the direction tangent to the path.

The tangent direction to the path is given by the unit tangent

vector T(t) =
v(t)

||v(t)||
.

We therefore want to know how much of F is in the direction
of T.

From our discussion of dot products and vector projections,
this is precisely what the dot product F · T measures.
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Work, III

Our analysis indicates that the total work that a vector field F does
on a particle traveling on a path r(t) is given by integrating the
dot product F · T along the path.

Definition

The work performed on a particle by a vector field F as the particle
travels along a curve C is

∫
C F · T ds.

In order to evaluate the integral as written, we would need to
parametrize the curve C , find the unit tangent vector T(t) to the
curve, and then integrate the dot product F(x(t), y(t)) · T(t)
along the curve. Rather than setting up the problem this way, we
will investigate a more efficient approach.



Work, IV

So suppose that F(x , y) = 〈P,Q〉, where P and Q are functions of
x and y and C is parametrized by r(t) = 〈x(t), y(t)〉 for a ≤ t ≤ b.

Then T(t) =
v(t)

||v(t)||
=
〈dx/dt, dy/dx〉
||v(t)||

.

Thus, F · T =
〈P, Q〉 · 〈dx/dt, dy/dt〉

||v(t)||
=

P dx
dt + Q dy

dt

||v(t)||
.

Therefore, the work integral is∫
C
F · T ds =

∫ b

a

P dx
dt + Q dy

dt

||v(t)||
||v(t)|| dt

=

∫ b

a

[
P dx

dt + Q dy
dt

]
dt.



Work, V

Thus, to summarize, the work done by a vector field F(x , y) on a
particle traveling along a curve C in the plane is given by∫

C
P dx + Q dy =

∫ b

a

[
P

dx

dt
+ Q

dy

dt

]
dt.

We can also pose essentially the same definition for a curve in
3-space, and we obtain an analogous formula.

Explicitly, if F(x , y , z) = 〈P,Q,R〉, then the work done by F
on a particle traveling along a curve C in 3-space is∫

C
P dx + Q dy + R dz =

∫ b

a

[
P

dx

dt
+ Q

dy

dt
+ R

dz

dt

]
dt.



Work, VI

Example: Find the work done by the vector field F(x , y) =
〈
y , x2y

〉
on a particle traveling the curve r(t) = 〈t, t2〉 for 0 ≤ t ≤ 2.

We need to compute
∫
C P dx + Q dy .

On this curve, x = t and y = t2.

So P = y = t2 and Q = x2y = t4.

Also,
dx

dt
= 1 and

dy

dt
= 2t.

Therefore, the work is

∫ b

a

(
P

dx

dt
+ Q

dy

dt

)
dt =∫ 2

0

[
t2 · 1 + t4 · 2t

]
dt =

∫ 2

0
(t2 + 2t5) dt = 24.



Work, VI

Example: Find the work done by the vector field F(x , y) =
〈
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Work, VII

Example: Find the work done by the vector field
F(x , y , z) = 〈2x + z , yz , xy〉 on a particle traveling along the path
r(t) =

〈
t, t2, 2t

〉
from t = 0 to t = 1.

We need to compute
∫
C P dx + Q dy + R dz .

On this curve, x = t, y = t2, z = 2t.

We have P = 2x + z = 4t, Q = yz = 2t3, and R = xy = t3.

Also,
dx

dt
= 1,

dy

dt
= 2t, and

dz

dt
= 2.

Therefore, the work is

∫ b

a

(
P

dx

dt
+ Q

dy

dt
+ R

dz

dt

)
dt =∫ 1

0

[
(4t)(1) + (2t3)(2t) + (t3)(2)

]
dt =∫ 1

0
(4t + 4t4 + 2t3) =

33

10
.
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.



Work, VIII

We will also mention another different form for the work integral

Work =

∫
C
F · T ds =

∫ b

a

[
P dx

dt + Q dy
dt + R dz

dt

]
dt.

If we define the “vector differential” dr = 〈dx , dy , dz〉, then
we can think of the work integral as being the integral of the
formal dot product F · dr = P dx + Q dy + R dz .

Thus, the work integral is often also written in the form

Work =

∫
C
F · dr

and is sometimes referred to as “the integral of the vector
field F on the curve C ”.

Note also the units of work: if the force field F is measured in
newtons, with distances in meters, then the units of

∫
C F · dr

are newton-meters (i.e., joules).



Circulation and Flux, I

Now we will study the behavior of vector fields representing fluid
flow.

Imagine again that you are riding a bicycle on a windy day,
and we want to measure how much air flows along the path
you take.

We can see that air flows along your path whenever its
velocity is in the same direction as your path.

Therefore, just like the work integral, this is measuring how
much the vector field F points in the same direction as the
tangent vector T to your path.



Circulation and Flux, II

The resulting quantity, measuring how much the fluid flows along a
given path, is called circulation:

Definition

If F is a vector field representing the velocity of a fluid flowing
through space, then the (counterclockwise) circulation (or flow) of
the vector field F along the curve C is defined to be

Circulation =

∫
C
F · T ds,

where T is the unit tangent vector to the curve C .
The circulation measures the total amount of fluid flowing along
the curve.



Circulation and Flux, III

The circulation integral has the same form as the work integral, so
we can evaluate it in exactly the same way.

In the plane, if F = 〈P,Q〉 and C is parametrized by
r(t) = 〈x(t), y(t)〉 for a ≤ t ≤ b, the circulation is∫

C
F · T ds =

∫ b

a

[
P

dx

dt
+ Q

dy

dt

]
dt.

In 3-space, if F = 〈P,Q,R〉 and C is parametrized by
r(t) = 〈x(t), y(t), z(t)〉 for a ≤ t ≤ b, the circulation is∫

C
F · T ds =

∫ b

a

[
P

dx

dt
+ Q

dy

dt
+ R

dz

dt

]
dt.

Although the circulation integral has the same form as the work
integral, the interpretation and the units are different.

Here, F is now a velocity field, with units of meters per
second: then the units of

∫
C F · T ds are square meters per

second. The circulation integral represents a rate of fluid flow.



Circulation and Flux, IV

Example: Find the circulation of F(x , y) = 〈−y , x〉 around a path
that winds once counterclockwise around the unit circle.

We need to compute
∫
C P dx + Q dy .

We can parametrize the path as x = cos t, y = sin t for
0 ≤ t ≤ 2π.

Thus, P = −y = − sin t and Q = x = cos t, and also
dx

dt
= − sin t and

dy

dt
= cos t.

So, the circulation is

∫ b

a

(
P

dx

dt
+ Q

dy

dt

)
dt =∫ 2π

0
((− sin t)(− sin t) + (cos t)(cos t)) dt =

∫ 2π

0
1 dt = 2π.
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Circulation and Flux, IV
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Circulation and Flux, V

Here is a picture of F(x , y) = 〈−y , x〉 along with the unit circle:



Circulation and Flux, VI

Example: Find the circulation of F(x , y , z) =
〈
2xz , 2z2, y

〉
along

the line segment from (0, 1, 0) to (2, 2, 2).

We need to compute
∫
C P dx + Q dy + R dz .

We can parametrize the path as x = 2t, y = 1 + t, z = 2t for
0 ≤ t ≤ 1.

Then dx/dt = 2, dy/dt = 1, and dz/dt = 2.

Also, P = 2xz = 8t2, Q = 2z2 = 8t2, and R = y = 1 + t.

So, the circulation is∫ b

a

(
P

dx

dt
+ Q

dy

dt
+ R

dz

dt

)
dt =

∫ 1

0
(8t2 · 2 + 8t2 · 1 + (1 + t) · 2) dt

=

∫ 1

0
(24t2 + 2t + 2) dt = 11.
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Circulation and Flux, VI
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Circulation and Flux, VII

We can also measure the amount of fluid that flows across the
path, rather than along the path.

If you are once again riding your bicycle on a windy day, what
we now want to measure is how much the wind is pushing you
off course.

Equivalently, we want to measure how much of the vector
field F points in the direction perpendicular to the curve.

In the plane, the unit normal vector N is perpendicular to the
unit tangent vector T, and so N is the direction perpendicular
to the curve.

Thus, to measure the amount of fluid flowing across the
curve, we want to integrate F ·N along the curve.
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Circulation and Flux, VIII

The resulting quantity, measuring how much the fluid flows across
a given plane curve, is called flux:

Definition

If F is a vector field representing the velocity of a fluid flowing
through space, then the (normal) flux of the vector field F across
the curve C is

Flux =

∫
C
F ·N ds

where N is the unit normal vector to the curve.
The flux measures the total amount of fluid flowing across the
curve.

Just as with the circulation integral, we could set this up as a line
integral by computing N directly. But this is quite messy.



Circulation and Flux, IX

So suppose that F(x , y) = 〈P,Q〉, where P and Q are functions of
x and y and C is parametrized by r(t) = 〈x(t), y(t)〉 for a ≤ t ≤ b.

Then T(t) =
v(t)

||v(t)||
=
〈dx/dt, dy/dt〉
||v(t)||

. Some algebra then

gives N(t) =
T′(t)

||T′(t)||
=
〈dy/dt,−dx/dt〉

||v(t)||
.

Then F ·N =
〈P, Q〉 · 〈dy/dt, −dx/dt〉

||v(t)||
=

P dy
dt − Q dx

dt

||v(t)||
.

Therefore, the flux integral is given explicitly by∫
C
F ·N ds =

∫ b

a

P dy
dt − Q dx

dt

||v(t)||
||v(t)|| dt

=

∫ b

a

[
−Q dx

dt + P dy
dt

]
dt.



Circulation and Flux, X

Thus, to summarize, the flux of the vector field F(x , y) across the
curve C in the plane is given by

Flux =

∫
C
−Q dx + P dy =

∫ b

a

[
−Q

dx

dt
+ P

dy

dt

]
dt.

Unlike with circulation, however, the 3-dimensional version of
this formula is quite a bit different.

The reason is that the flux integral is intended to measure
fluid flow across a membrane.

In 2-space, a membrane will be a curve, but in 3-space, a
membrane will be a surface, and so flux integrals in 3-space
are surface integrals. (We will discuss them next class.)



Circulation and Flux, XI

Example: Find the flux of the vector field G(x , y) = 〈x , y〉 across a
path that winds once counterclockwise around the unit circle.

We need to compute
∫
C −Q dx + P dy .

We can parametrize the path as x = cos t, y = sin t for
0 ≤ t ≤ 2π.

Then dx/dt = − sin t and dy/dt = cos t.

Also, P = x = cos t and Q = y = sin t.

Therefore, the flux integral is

∫ b

a

(
−Q

dx

dt
+ P

dy

dt

)
dt =∫ 2π

0
(−(sin t)(− sin t) + (cos t)(cos t)) dt =

∫ 2π

0
1 dt = 2π.
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Circulation and Flux, XII

Here is a picture of F(x , y) = 〈x , y〉 along with the unit circle:



Circulation and Flux, XIII

Example: For the vector field F(x , y) = 〈x + y , 2x + y〉, find the
flux across, and circulation along, the parabolic arc r(t) =

〈
t, t2

〉
between (0, 0) and (1, 1).

Here, we can see that the
vector field primarily points
along the curve most of the
way, which suggests that
the circulation should be
fairly large and positive.

The field does not flow
substantially across the
curve anywhere, so the flux
should be relatively small.
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Circulation and Flux, XIV

Example: For the vector field F(x , y) = 〈x + y , 2x + y〉, find the
flux across, and circulation along, the portion of the curve
r(t) =

〈
t, t2

〉
between (0, 0) and (1, 1).

We have x = t and y = t2, so dx/dt = 1 and dy/dt = 2t.

Also, P = x + y = t2 + t and Q = 2x + y = 2t2 + t.

The circulation is

∫ b

a

(
P

dx

dt
+ Q

dy

dt

)
dt

=

∫ 1

0
[(t2 + t) ·1+(2t2 + t) ·2t]dt =

∫ 1

0
[4t3 +3t2 + t] dt =

5

2
.

The flux is

∫ b

a

(
−Q

dx

dt
+ P

dy

dt

)
dt

=

∫ 1

0
[−(2t2 + t) ·1 + (t2 + t) ·2t]dt =

∫ 1

0
[2t3−2t] dt = −1

2
.



Circulation and Flux, XIV
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.



Circulation and Flux, XV

Example: For F(x , y) = 〈2x − 1, 4y〉, find the flux across, and
circulation around, the curve r(t) =

〈
t2, t3 − t

〉
for −1 ≤ t ≤ 1.

The field flows outward
across the curve most
everywhere, so we would
expect the flux to be fairly
large and positive.

It also flows a bit along the
curve on the bottom right,
so we would also expect
the circulation to be
positive, but not as large.
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Example: For F(x , y) = 〈2x − 1, 4y〉, find the flux across, and
circulation around, the curve r(t) =

〈
t2, t3 − t

〉
for −1 ≤ t ≤ 1.

The field flows outward
across the curve most
everywhere, so we would
expect the flux to be fairly
large and positive.

It also flows a bit along the
curve on the bottom right,
so we would also expect
the circulation to be
positive, but not as large.



Circulation and Flux, XVI

Example: For F(x , y) = 〈2x − 1, x + 4y〉, find the flux across, and
circulation around, the curve r(t) =

〈
t2, t3 − t

〉
for −1 ≤ t ≤ 1.

We have x = t2 and y = t3 − t.

Thus dx/dt = 2t and dy/dt = 3t2 − 1.

Also, P = 2x − 1 = 2t2 − 1 and Q = x + 4y = 4t3 + t2 − 4t.

The circulation is

∫ b

a

(
P

dx

dt
+ Q

dy

dt

)
dt

=

∫ 1

−1
[(2t2 − 1)(2t) + (4t3 + t2 − 4t)(3t2 − 1)]dt =

8

15
.

The flux is

∫ b

a

(
−Q

dx

dt
+ P

dy

dt

)
dt

=

∫ 1

−1
[−(4t3 + t2 − 4t)(2t) + (2t2 − 1)(3t2 − 1)]dt =

16

5
.



Summary

We introduced vector fields and ways to represent them
algebraically and geometrically.

We introduced work, circulation, and flux integrals (in the plane),
and described how to calculate them.

Next lecture: Flux across surfaces.


