
Math 2321 (Multivariable Calculus)

Lecture #25 of 37 ∼ March 18, 2021

Midterm #2 Review #2



Midterm 2 Exam Topics

The topics for the exam are as follows:

Lagrange multipliers

Double integrals in rectangular coordinates

Changing the order of integration

Double integrals in polar coordinates

Triple integrals in rectangular coordinates

Triple integrals in cylindrical coordinates

Triple integrals in spherical coordinates

Areas, volumes, average value, mass, center of mass

This represents § 2.6 + § 3.1−3.2 + § 3.3.2−§3.4 from the notes
and WeBWorKs 5-8. Note that general changes of coordinates
(§3.3.1) are NOT included.



Exam Information

The exam format is essentially the same as the first midterm.

You will write your responses (either on a printout of the
exam or on blank paper) and then scan/photograph your
responses and upload them into Canvas.

There are approximately 6 pages of material, about 1/5
multiple choice and the rest free response.

The “official” exam time limit is 65+25 = 90 minutes, plus
30 minutes of turnaround time (not to be used for working).

Collaboration of any kind is not allowed. You may not discuss
anything about the exam with anyone other than me (the
instructor) until 5pm Eastern on Tuesday, March 23rd. This
includes Piazza posts.

I have sent Canvas notifications to everyone about their midterm 2
window. Please check to confirm it is the time you want.



Review Problems, I

(#5a) Reverse the order of integration for

∫ 3

0

∫ x2

0
xy dy dx .

The region is defined by the inequalities 0 ≤ x ≤ 3,
0 ≤ y ≤ x2.

These curves intersect at (0, 0) and (3, 9).

Therefore, when we reverse the order, y ranges from 0 to 9,
while x ranges from

√
y to 3.

Hence the new integral is

∫ 9

0

∫ 3

√
y
xy dx dy .
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Review Problems, II

(#2) You have 60 meters of fencing and wish to make a
rectangular enclosure along a straight river, meaning that you only
need to fence the east, west, and north sides (not the south side).
What dimensions maximize the total area of the enclosure?

Suppose the length (east-west) is l meters and the width
(north-south) is w meters.

Then the area is A = lw square meters and the total fence
used is 2l + w meters.

So we want to maximize A = lw subject to 2l + w = 60 m.

Using Lagrange multipliers yields the system gives w = 2λ,
l = λ, 2l + w = 60.

Plugging the first two equations into the third yields 4λ = 60,
so λ = 15.

Then l = 15 m, w = 30 m. This is easily seen to be the
maximum by the physical setup of the problem.
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Review Problems, III

(#10a) Compute

∫ 1

−1

∫ √1−x2
−
√
1−x2

∫ x+y

0

√
x2 + y2 dz dy dx by

converting to cylindrical or spherical.

Here, we want to use cylindrical, since the function and
z-limits will be nice in cylindrical.

The limits in x and y describe the interior of the circle
x2 + y2 = 1, which is 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1 in polar.

The z limits are then x + y = r cos θ + r sin theta and
x2 + y2 = r2. The differential is dV = r dz dr dθ.

So the integral is

∫ 2π

0

∫ 1

0

∫ r cos θ+r sin θ

0
r · r dz dr dθ =∫ 2π

0

∫ 1

0
r3(sin θ + cos θ) dr dθ =

∫ 2π

0

1
4(sin θ + cos θ) dθ = 0.
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Review Problems, IV

(#6c) Set up and evaluate a double integral in polar coordinates
for the volume under z = 4− x2 − y2 and above the xy -plane.

A quick sketch shows that the region underneath the surface
is the interior of the circle x2 + y2 = 4.

So, in polar, this is the region with 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 2.

Then the function, representing the height, is
f (x , y) = 4− x2 − y2 = 4− r2.

The differential is dA = r dr dθ.

Thus, the integral is

∫ 2π

0

∫ 2

0
(4− r2) r dr dθ.

Evaluating yields

∫ 2π

0

∫ 2

0
(4− r2) r dr dθ =

∫ 2π

0
12 dθ = 24π.
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Review Problems, V

(#10c) Evaluate

∫ 3

0

∫ √9−x2
−
√
9−x2

∫ x2+y2

−1

1√
x2 + y2

dz dy dx by

converting to cylindrical or spherical.

Here, we want to use cylindrical, since the function and
z-limits both will be nice in cylindrical.

The limits in x and y describe the portion inside x2 + y2 = 9
where x ≥ 0, which is −π/2 ≤ θ ≤ pi/2, 0 ≤ r ≤ 3 in polar.

The z limits are then −1 and x2 + y2 = r2. The differential is
dV = r dz dr dθ.

So the integral is

∫ π/2

−π/2

∫ 3

0

∫ r2

−1

1

r
· r dz dr dθ =∫ π/2

−π/2

∫ 3

0
(r2 + 1) dr dθ =

∫ π/2

−π/2
12 dθ = 12π.
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Review Problems, VI

(#1d) Find the minimum and maximum values of
f (x , y , z) = 2x + 4y + 5z subject to x2 + y2 + z2 = 1.

We use Lagrange multipliers: here f = 2x + 4y + 5z and
g = x2 + y2 + z2.

The system is ∇f = λ∇g and g = c .

System is 2 = 2λx , 4 = 2λy , 5 = 2λz , x2 + y2 + z2 = 1.

Thus x = 2/(2λ), y = 4/(2λ), z = 5/(2λ), so 45/(4λ2) = 1.

Then the last equation is 4/(4λ2) + 16/(4λ2) + 25/(4λ2) = 1,
which yields 45/(4λ2) = 1.

Thus, λ = ±
√

45/4, yielding (x , y , z) = ± 1√
45

(2, 4, 5).

Minimum is −
√

45 at − 1√
45

(2, 4, 5).

Maximum is
√

45 at 1√
45

(2, 4, 5).
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Review Problems, VII

(#6a) Set up the integral of f (x , y) = x on the region inside
x2 + y2 = 1 with x ≤ 0 and y ≤ 0, in polar coordinates.

The region is the interior of the unit circle in the third
quadrant.

In polar, this is described by π ≤ θ ≤ 3π/2 and 0 ≤ r ≤ 1.

The function is x = r cos θ, and the differential is
dA = r dr dθ.

Thus, the integral is

∫ 3π/2

π

∫ 1

0
(r cos θ) r dr dθ.

Evaluating yields∫ 3π/2

π

∫ 1

0
(r cos θ) r dr dθ =

∫ 3π/2

π

1

3
cos θ dθ = −1

3
.
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Review Problems, VIII

(#10d) Find

∫ √2
−
√
2

∫ √2−x2
−
√
2−x2

∫ √4−x2−y2

√
x2+y2

z2√
x2 + y2 + z2

dz dy dx

by converting to cylindrical or spherical.

Here, we want to use spherical, since the function and upper
z-limit both involve spheres and ρ, and the lower z-limit is a
cone.

The region is the “ice cream cone” inside the sphere ρ = 2
and above the cone ϕ = π/4.

The function is z2√
x2+y2+z2

= ρ2 cos2 ϕ
ρ .

The differential is dV = ρ2 sinϕ dρ dϕ dθ.

So the integral is

∫ 2π

0

∫ π/4

0

∫ 2

0

ρ2 cos2 ϕ

ρ
·ρ2 sinϕ dρ dϕ dθ =∫ 2π

0

∫ π/4

0
4 cos2 ϕ sinϕ dρ dϕ dθ = 4π(4−

√
2)/3.
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Review Problems, IX

(#11i) Set up the integral of x on the region with x ≥ 0, y ≥ 0,
z ≥ 0 and below z = 4− x − y2.

We can use any coordinate system, but here rectangular is
easiest (don’t be fooled by the function: it’s not z = 4− r2!).

Drawing a quick sketch of the surface shows that x ranges
from 0 to 4, and then in the xy -plane, y ranges from 0 to√

4− x , and then z ranges from 0 to 4− x − y2.

Thus, the integral is

∫ 4

0

∫ √4−x
0

∫ 4−x−y2

0
x dz dy dx .
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Review Problems, X

(#12b) Find the total mass and the center of mass for the solid
bounded by 0 ≤ z ≤

√
x2 + y2 ≤ 2 with density

d(x , y , z) = 2
√
x2 + y2 g/cm3.

We want to use cylindrical coordinates. The region is
0 ≤ z ≤ r ≤ 2 with density d = 2r .

Mass is
M =

∫∫∫
D d(x , y , z) dV =

∫ 2π
0

∫ 2
0

∫ r
0 1 · 2r dz dr dθ = 128π

5 g.

The moments for the center of mass are
Mx =

∫∫∫
D x d(x , y , z) dV =

∫ 2π
0

∫ 2
0

∫ r
0 r cos θ · 2r dz dr dθ =

0, My =
∫∫∫

D y d(x , y , z) dV =∫ 2π
0

∫ 2
0

∫ r
0 r sin θ · 2r dz dr dθ = 0, Mz =∫∫∫

D z d(x , y , z) dV =
∫ 2π
0

∫ 2
0

∫ r
0 z · 2r dz dr dθ = 64π/3.

So the center of mass is 1
M (Mx ,My ,Mz) = (0, 0, 56 cm).
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Review Problems, XI

(#6b) In polar coordinates, set up and then evaluate the integral∫∫
R

√
x2 + y2 dA where R is the region inside x2 + y2 = 16,

above y = x and y = −x .

The region is the interior of a quarter-circle, ranging from
θ = π/4 to θ = 3π/4.

The function is
√

x2 + y2 = r , and the differential is
dA = r dr dθ.

Therefore, the integral is

∫ 3π/4

π/4

∫ 4

0
(r) r dr dθ.

Evaluating yields

∫ 3π/4

π/4

∫ 4

0
r2 dr dθ =

∫ 3π/4

π/4

64

3
dθ =

32π

3
.
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Review Problems, XII

(#1e) Find the minimum and maximum values of f (x , y , z) = xyz
subject to x2 + 4y2 + 16z2 = 48.

We use Lagrange multipliers.

The system is yz = 2λx , xz = 8λy , xy = 32λz ,
x2 + 4y2 + 16z2 = 48.

If one variable is zero then so must be a second, so we get
points (x , y , z) = (±

√
48, 0, 0), (0,±

√
12, 0), (0, 0,±

√
3).

If no variables are zero, dividing the first two equations gives
y/x = x/(4y) so x2 = 4y2.

Similarly, dividing the 1st and 3rd equations gives x2 = 16z2.

So the last equation yields 3x2 = 48, so
(x , y , z) = (±4,±2,±1) with all possible sign choices.

The minimum is −8 (at 4 of these) and the maximum is 8 (at
the other 4).
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Review Problems, XIII

(#11f) Set up the integral of
√

x2 + y2 + z2 on the region below
z = −3

√
x2 + y2 and inside x2 + y2 + z2 = 4.

We can use any coordinate system, but here spherical will be
the simplest.

The surfaces are ϕ = 5π/6 and ρ = 2. There is no restriction
on θ so it goes from 0 to 2π. We want the part below the
cone, so ϕ goes from 5π/6 to π, and ρ goes from 0 to 2.

The function is
√
x2 + y2 + z2 = ρ and the differential is

dV = ρ2 sin(ϕ) dρ dϕ dθ.

So the integral is

∫ 2π

0

∫ π

5π/6

∫ 2

0
ρ · ρ2 sinϕ dρ dϕ dθ.
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Review Problems, XV

(#11e) Set up an integral for the volume of the region bounded by
z = 2x , z = 3x , y = 1, y = 2, x = y , and x = 2y .

We can use any coordinate system, but here rectangular will
be easiest. To compute volume, we integrate the function
f (x , y , z) = 1 on the region.

If we reorder the equations as y = 1, y = 2, x = y , x = 2y ,
z = 2x , z = 3x we can see that they are giving us the limits of
integration for the integration order with y on the outside, x
in the middle, and z on the inside, which is the order dz dx dy .

Thus, the integral is

∫ 2

1

∫ 2y

y

∫ 3x

2x
1 dz dx dy .
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Review Problems, XVI

(#4b) Set up (but do not evaluate)

∫∫
R

(x + y) dA on the region

R between the curves y = 8
√
x and y = x2 using both integration

orders dy dx and dx dy .

The curves intersect at (0, 0) and (4, 32).

For dy dx the ranges are 0 ≤ x ≤ 4 and x2 ≤ y ≤ 8
√

2, so the

integral is

∫ 4

0

∫ 8
√
x

x2
(x + y) dy dx .

For dx dy the ranges are 0 ≤ y ≤ 32 and y2/64 ≤ x ≤ √y so

the integral is

∫ 16

0

∫ √y
y2/64

(x + y) dy dx .
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√
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Review Problems, XVII

(#5b) Reverse the order of integration for

∫ 2

1

∫ y2

y
y4 dx dy .

The region is defined by the inequalities 1 ≤ x ≤ 2,
y ≤ x ≤ y2.

From a quick sketch, we can see that when we change the
order, we need to split into two pieces because the right curve
changes from y = x to y = 2 at x = 2.

Thus, the new integral is

∫ 2

1

∫ x

√
x
y4 dy dx +

∫ 4

2

∫ 2

√
x
y4 dy dx .
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order, we need to split into two pieces because the right curve
changes from y = x to y = 2 at x = 2.

Thus, the new integral is

∫ 2

1

∫ x

√
x
y4 dy dx +

∫ 4

2

∫ 2

√
x
y4 dy dx .



Review Problems, XVIII

(#1c) Find the minimum and maximum values of f (x , y) = xy ,
and all points where they occur, subject to 3x + y = 60.

We use Lagrange multipliers with f = xy and g = 3x + y .

The system is y = 3λ, x = λ, 3x + y = 60.

Thus, 6λ = 60 so λ = 10.

This yields a single point (x , y) = (10, 30).

Here, because the constraint region is not bounded, we have
to worry about what happens as (x , y) goes to ∞. In that
case, f goes to −∞ for large x or large y .

Thus, the minimum does not exist, whereas the maximum is
300 at (10, 30).



Review Problems, XVIII

(#1c) Find the minimum and maximum values of f (x , y) = xy ,
and all points where they occur, subject to 3x + y = 60.

We use Lagrange multipliers with f = xy and g = 3x + y .

The system is y = 3λ, x = λ, 3x + y = 60.

Thus, 6λ = 60 so λ = 10.

This yields a single point (x , y) = (10, 30).

Here, because the constraint region is not bounded, we have
to worry about what happens as (x , y) goes to ∞. In that
case, f goes to −∞ for large x or large y .

Thus, the minimum does not exist, whereas the maximum is
300 at (10, 30).



Review Problems, XIX

(#11g) Set up a triple integral for the volume of the solid below
z = 5− x2 − y2, above the xy -plane, and outside x2 + y2 = 1.

Here, cylindrical is the best choice since the bounding surfaces
are z = 5− r2, z = 0, and r = 1.

Here we have no restrictions on θ, and 1 ≤ r ≤
√

5 based on
the surface intersections.

Then z ranges from 0 to 5− r2.

The function is 1 for finding a volume, and the differential is
dV = r dz dr dθ.

So the integral is

∫ 2π

0

∫ √5
1

∫ 5−r2

0
1 · r dz dr dθ.
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∫ √5
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0
1 · r dz dr dθ.



Review Problems, XX

(#11a) Set up the integral
∫∫∫

D(x2 + y2) dV on the region D
above z = x2 + y2, below z = 7, for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2.

We can use any coordinate system, but here rectangular will
be easiest.

With order dz dy dx the limits are 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, and
x2 + y2 ≤ z ≤ 7.

Thus, the integral is

∫ 1

0

∫ 2

0

∫ 7

x2+y2

(x2 + y2) dz dy dx .
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Thus, the integral is

∫ 1

0

∫ 2

0

∫ 7

x2+y2

(x2 + y2) dz dy dx .



Summary

We did some more review problems for midterm 2.

Next lecture: Surfaces and surface integrals.


