
Math 2321 (Multivariable Calculus)

Lecture #24 of 37 ∼ March 17, 2021

Midterm #2 Review #1



Midterm 2 Exam Topics

The topics for the exam are as follows:

Lagrange multipliers

Double integrals in rectangular coordinates

Changing the order of integration

Double integrals in polar coordinates

Triple integrals in rectangular coordinates

Triple integrals in cylindrical coordinates

Triple integrals in spherical coordinates

Areas, volumes, average value, mass, center of mass

This represents § 2.6 + § 3.1−3.2 + § 3.3.2−§3.4 from the notes
and WeBWorKs 5-8. Note that general changes of coordinates
(§3.3.1) are NOT included.



Exam Information

The exam format is essentially the same as the first midterm.

You will write your responses (either on a printout of the
exam or on blank paper) and then scan/photograph your
responses and upload them into Canvas.

There are approximately 6 pages of material, about 1/5
multiple choice and the rest free response.

I have set up a Piazza poll for you to select your desired exam
window. Please make your selection by this evening. I will
post your selection in Canvas so you can confirm it tomorrow.

The “official” exam time limit is 65+25 = 90 minutes, plus
30 minutes of turnaround time (not to be used for working).

Collaboration of any kind is not allowed. You may not discuss
anything about the exam with anyone other than me (the
instructor) until 5pm Eastern on Tuesday, March 23rd. This
includes Piazza posts.



Review Problems, I

(#1b) Find the minimum and maximum values of f (x , y) = xy2

subject to x2 + y2 = 12.

We use Lagrange multipliers: here f = xy2 and g = x2 + y2.

The system is ∇f = λ∇g and g = c .

Note ∇f = 〈y2, 2xy〉 and ∇g = 〈2x , 2y〉.
So we get y2 = 2λx , 2xy = 2λy , x2 + y2 = 12.

The second equation gives y = 0 or x = λ.

If y = 0 then we get points (±
√

12, 0).

If x = λ then the first equation gives y2 = 2λ2.

Plugging into the third equation then yields 3λ2 = 12 so
λ = ±2 and thus (x , y) = (±2,±

√
8).

Minimum is −16 at (−2,±
√

8), maximum is 16 at (2,±
√

8).
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Review Problems, II

(#8) Evaluate the double integral

∫ 8

0

∫ 4

x/2

ey

y
dy dx by reversing

the order of integration.

The region is interior of a right triangle bounded by x = 0,
x = 8, y = x/2, and y = 4, so it has vertices (0, 0), (8, 4),
and (0, 4).

Thus, with order dx dy , we see that y ranges from 0 to 4, and
then x ranges from 0 to 2y .

The reversed integral is then

∫ 4

0

∫ 2y

0

ey

y
dx dy .

Evaluating yields

∫ 4

0

∫ 2y

0

ey

y
dx dy =

∫ 4

0
2ey dy = 2(e4 − 1).
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Review Problems, III

(#11d) Set up the integral of z
√
x2 + y2 on the region with

x ≤ 0, inside x2 + y2 = 4, above z = 0, below y + z = 4.

We can use any coordinate system, but here cylindrical will be
easiest.

The surfaces are r = 2, z = 0, and z = 4− r sin θ.

The restriction x ≤ 0 gives π/2 ≤ θ ≤ 3π/2, and then r
ranges from 0 to 2 and z ranges from 0 to 4− r sin θ.

The function is z
√
x2 + y2 = zr and the differential is

dV = r dz dr dθ.

So the integral is

∫ 3π/2

π/2

∫ 2

0

∫ 4−r sin θ

0
zr · r dz dr dθ.
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Review Problems, IV

(#4c) Set up (but do not evaluate) double integrals for the volume
under z = x3 above the triangle in the xy -plane with vertices (0, 0),
(1, 1), and (2, 0), using both integration orders dy dx and dx dy .

A quick sketch of the triangle shows that the bounding lines
are y = x and y = 2− x .

For dy dx we must split into two ranges for x , since the upper
curve changes from y = x to y = 2− x at x = 1. The result

is

∫ 1

0

∫ x

0
x3 dy dx +

∫ 2

1

∫ 2−x

0
x3 dy dx .

For dx dy we do not need to split, since the left curve is
always x = y and the right curve is always x = 2− y . So the

integral is

∫ 1

0

∫ 2−y

y
x3 dx dy .
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Review Problems, V

(#1a) Find the minimum and maximum values of
f (x , y) = x + 3y + 2, and all points where they occur, subject to
the constraint x2 + y2 = 40.

We use Lagrange multipliers with f = x + 3y + 2 and
g = x2 + y2.

The system is ∇f = λ∇g and g = c .

Explicitly, this yields 1 = 2λx , 3 = 2λy , x2 + y2 = 40.

The first two equations give x = 1/(2λ), y = 3/(2λ).

Plugging into the third equation yields 10/(4λ2) = 40 so
λ = ±1/4, yielding (x , y) = (2, 6), (−2,−6).

The minimum is −18, at (−2,−6), and the maximum is 22,
at (2, 6).
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Review Problems, VI

(#11h) Set up an integral for the average value of x2 + y2 + z2 on
the portion of x2 + y2 + z2 ≤ 4 inside the first octant (with
x , y , z ≥ 0), which has volume 4π/3.

We can use any coordinate system, but here spherical will be
the simplest.

The integration bounds are θ from 0 to π/2 (x , y ≥ 0), ϕ
from 0 to π/2 (z ≥ 0), and ρ from 0 to 2.

The function is x2 + y2 + z2 = ρ2 and the differential is
dV = ρ2 sin(ϕ) dρ dϕ dθ.

So the average value is
1

4π/3

∫ π/2

0

∫ π/2

0

∫ 2

0
ρ2 · ρ2 sinϕ dρ dϕ dθ.
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Review Problems, VII

(#7) Evaluate the double integral

∫ 1

0

∫ √1−x2
0

1√
x2 + y2

dy dx by

converting it to polar coordinates.

The region is defined by the inequalities 0 ≤ x ≤ 1,
0 ≤ y ≤

√
1− x2.

This represents a quarter-circle: specifically, it is the interior
of x2 + y2 = 1 in the first quadrant.

In polar, the limits are θ = 0 to θ = π/2 and r = 0 to r = 1.

The function is
1√

x2 + y2
=

1

r
, and the differential is

dA = r dr dθ.

So the polar integral is
∫ π/2
0

∫ 1
0

1

r
· r dr dθ.

Evaluating gives∫ π/2
0

∫ 1
0

1

r
· r dr dθ =

∫ π/2
0

∫ 1
0 1 dr dθ =

∫ π/2
0 1 dθ = π/2.
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Review Problems, VIII

(#4a) Set up (but do not evaluate) the integral of x2y on the
region 0 ≤ x ≤ 1, 0 ≤ y ≤ 3 using both integration orders dy dx
and dx dy .

The region is a rectangle.

So with order dy dx the integral is

∫ 1

0

∫ 3

0
x2y dy dx .

With order dx dy the integral is

∫ 3

0

∫ 1

0
x2y dx dy .
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Review Problems, IX

(#11c) Set up the triple integral

∫∫∫
D

(x2 + y2 + z2) dV on the

region D above z = 2
√

x2 + y2 and below z = 3.

Here, cylindrical is the best choice, since the region and
function are easy to describe in cylindrical.

The bounding surfaces are z = 2r and z = 3, so there are no
restrictions on θ. We also need 2r ≤ 3, so r ranges from 0 to
3/2, and then z ranges from 2r to 3.

The function is x2 + y2 + z2 = r2 + z2 with differential
dV = r dz dr dθ.

So the integral is

∫ 2π

0

∫ 3/2

0

∫ 3

2r
(r2 + z2) r dz dr dθ.
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Review Problems, X

(#12c) Find the total mass, and the center of mass, of the solid
between x2 + y2 + z2 = 2 and x2 + y2 + z2 = 3 with density

d(x , y , z) = 3
√
x2 + y2 + z2

3/2
kg/m3.

We use spherical coordinates. The two surfaces are ρ =
√

2
and ρ =

√
3 while the density is 3ρ3 kg/m3.

Therefore, the mass is

M =
∫∫∫

D d(x , y , z) dV =
∫ 2π
0

∫ π
0

∫ √3√
2

3ρ3 · ρ2 sinϕ dρ dϕ dθ.

Evaluating the integral yields

M =

∫ 2π

0

∫ π

0

1

2
ρ6 sinϕ

∣∣∣∣ρ=
√
3

ρ=
√
2

dϕ dθ

=

∫ 2π

0

∫ π

0

19

2
sinϕ dϕ dθ =

∫ 2π

0
19 dθ = 38π kg.

Since the solid is spherically symmetric, the center of mass is
at the origin.
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Review Problems, XI

(#11b) Set up a triple integral of xyz on the region above z = y2,
below z = 9, between x = 1 and x = 2.

Here, rectangular is the best choice.

With order dz dy dx , we are given that x ranges from 1 to 2.

For the y -limits, note that z = y2 intersects z = 9 when
y = ±3, so the y range is −3 to 3.

Then z ranges from y2 to 9.

The function is xyz and the differential is dz dy dx .

So the integral is

∫ 2

1

∫ 3

−3

∫ 9

y2

xyz dz dy dx .
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Review Problems, XII

(#4d) Set up (but do not evaluate) double integrals for the area of
the region between the curves y = x2 − 1 and y = 5 using both
integration orders dy dx and dx dy .

To compute area, we integrate f (x , y) = 1 on the region.

The curves intersect when 5 = x2 − 1 so that x = ±
√

6,
yielding points (−

√
6, 5) and (

√
6, 5). The vertex of the

parabola is also (0,−1).

For dy dx we can see that x ranges from −
√

6 to
√

6, and on
this range, the lower curve is y = x2 − 1 and the upper curve

is y = 5. Thus the integral is

∫ √6
−
√
6

∫ 5

x2−1
1 dy dx .

For dx dy we can see that y ranges from −1 to 5, and on this
range, the left curve is x = −

√
y + 1 and the right curve is

x =
√
y + 1. Thus the integral is

∫ 5

−1

∫ √y+1

−
√
y+1

1 dx dy .
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Review Problems, Lucky XIII

(#10b) Find

∫ 2

−2

∫ √4−x2
0

∫ √4−x2−y2

0

√
x2 + y2 + z2 dz dy dx by

converting to cylindrical or spherical.

Here, we want to use spherical, since the function and z-limits
both involve spheres and ρ.

The limits of integration indicate that the region is inside the
sphere x2 + y2 + z2 = 4. Specifically, it is the upper half (from
the z limits) and also has y ≥ 0, so it is the quarter-sphere
where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ π/2, with 0 ≤ ρ ≤ 2.

The differential is dV = ρ2 sinϕ dρ dϕ dθ.

So the integral is

∫ π

0

∫ π/2

0

∫ 2

0
ρ · ρ2 sinϕ dρ dϕ dθ =∫ π

0

∫ π/2

0
4 sinϕ dρ dϕ dθ =

∫ π/2

0
4 dθ = 2π.
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Summary

We did some review problems for midterm 2.

Next lecture: Review for Midterm 2 (part 2)


