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Line Integrals

Center of Mass Examples

Line Integrals

Applications of Line Integrals

This material represents §4.1 from the course notes.



Exam Logistics

Please select your desired midterm 2 testing window on Piazza.

The format of the exam will be similar to midterm 1.

Midterm 2 covers sections 2.6 and chapter 3 of the course
notes. This represents Lectures 14-22 and WeBWorKs 5-8.

In particular, the material from Chapter 4 in today’s lecture,
on line integrals, is not on midterm 2. (Though it is
conceptually quite similar, as you will see.)

The lectures on Wednesday and Thursday will be devoted to
exam review. I will go over problems from the review sheets,
like with the midterm 1 reviews.



One More Moment(s problem), I

Since we didn’t do many examples of center of mass calculations
last time, let’s do a few more! (This also counts as exam review
because these are from the review sheet.)

If we have a 2-dimensional plate of variable density δ(x , y)
and total mass M, then the center of mass (x̄ , ȳ) has

x̄ =
1

M

∫∫
R

xδ(x , y) dA and ȳ =
1

M

∫∫
R

yδ(x , y) dA.

If we have a 3-dimensional plate of variable density δ(x , y , z)
and total mass M, then the center of mass (x̄ , ȳ , z̄) has

x̄ =
1

M

∫∫∫
D

xδ(x , y , z) dV , ȳ =
1

M

∫∫∫
D

yδ(x , y , z) dV ,

and z̄ =
1

M

∫∫∫
D

zδ(x , y , z) dV .



One More Moment(s problem), II

(#12a) Find the total mass and the center of mass for the solid
bounded by 0 cm ≤ x ≤ 1 cm, 0 cm ≤ y ≤ 2 cm, and
0 cm ≤ z ≤ 3 cm with density d(x , y , z) = z g/cm3.

Mass is M =
∫∫∫

D d(x , y , z) dV =
∫ 1

0

∫ 2
0

∫ 3
0 z dz dy dx = 9 g.

The moments for the center of mass are
Mx =

∫∫∫
D x d(x , y , z) dV =

∫ 1
0

∫ 2
0

∫ 3
0 xz dz dy dx = 9/2,

My =
∫∫∫

D y d(x , y , z) dV =
∫ 1

0

∫ 2
0

∫ 3
0 yz dz dy dx = 9,

Mz =
∫∫∫

D z d(x , y , z) dV =
∫ 1

0

∫ 2
0

∫ 3
0 z2 dz dy dx = 18.

So the center of mass is 1
M (Mx ,My ,Mz) = ( 1

2 cm, 1 cm, 2 cm).
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One More Moment(s problem), III

(#12d) Find the total mass of the solid between z =
√

x2 + y 2

and z =
√

3(x2 + y 2) inside x2 + y 2 + z2 = 9 with density
d(x , y , z) = 1 mg/mm3.

We use spherical coordinates. The surfaces are ϕ = π/4,
ϕ = π/6, and ρ = 3, while the density is d = 1.

Therefore, the mass is
M =

∫∫∫
D d(x , y , z) dV =

∫ 2π
0

∫ π/4
π/6

∫ 3
0 1 · ρ2 sinϕ dρ dϕ dθ.

Evaluating the integral yields M =∫ 2π

0

∫ π/4

π/6

1

3
ρ3 sinϕ

∣∣∣∣ρ=3

ρ=0

dϕ dθ =

∫ 2π

0

∫ π/4

π/6
9 sinϕ dϕ dθ

=

∫ 2π

0
9(
√

3− 1)/2 dθ = 9(
√

3− 1)π mg.
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§4: Vector Calculus, Overview

We now start the last chapter of the course (§4: Vector Calculus),
which will combine elements from all three of the previous
chapters. [To emphasize: this material is not on midterm 2.]

We begin with two additional generalizations of integration:
integration along curves (today) and integration on surfaces
(next week).

Then we discuss vector fields (vector-valued functions of
several variables) and work, circulation, flux, integrals.

We then study a number of generalizations of the
Fundamental Theorem of Calculus that relate all of these
different kinds of integrals to one another.

Finally, we will discuss in detail some applications of all of
these results to engineering and the physical sciences: physics,
engineering, computer science, applied math, chemistry, etc.



Line Integrals, I

The motivating problem for our development of double integrals
was to find the volume under the graph of a surface.

We will now develop yet another type of integral, called a line
integral.

The motivating problem is as follows: suppose we have a plane
parametric curve r(t) = 〈x(t), y(t)〉 and a function f (x , y).

If we “build a surface” along the curve with height given by
the function z = f (x , y), how can we calculate the area of
this surface?

This is a natural generalization of our typical single-variable
integration problem, in which we build the “surface” inside a
plane, thus making it the area under a curve.



Line Integrals, II

An illustration of the resulting “curtain surface”, with
r(t) =

〈
t2, t cos(2πt)

〉
, f (x , y) = x + 1, for 0 ≤ t ≤ 1.5:



Line Integrals, III

Some other motivating questions that are analogues of the other
applications of integration we have discussed:

Given a parametric curve r(t) = 〈x(t), y(t), z(t)〉 and a
function f (x , y , z), how can we calculate the average value of
f (x , y , z) on the curve?

Given a thin wire shaped along a curve r(t) = 〈x(t), y(t)〉
with variable density δ(x , y), what is the wire’s mass, and
where is its center of mass?

As with the other integrals we have examined, we will use Riemann
sums to formalize everything.

The idea is to approximate the curve with straight line
segments, sum (over all the segments) the function value
times the length of the segment, and then take the limit as
the segment lengths approach zero.



Line Integrals, IV

Definition

For a curve C , a partition of C into n pieces is a list of points
(x0, y0), ... , (xn, yn) on C , with the nth segment having length
∆si =

√
(∆xi )2 + (∆yi )2.

The norm of the partition P is the largest number among all of the
segment lengths in P.
If f (x , y) is continuous, the Riemann sum of f (x , y) on C

corresponding to P is RSP(f ) =
n∑

k=1

f (xk , yk) ∆sk .

Now what we will do is take the limit of the Riemann sums as the
size of the pieces goes to zero.



Line Integrals, V

Definition

For a function f (x , y), we define

the line integral of f on the curve C, denoted

∫
C

f (x , y) ds, to be

the value of L such that, for every ε > 0, there exists a δ > 0
(depending on ε) such that for every partition P with
norm(P) < δ, we have |RSP(f )− L| < ε.

It can be proven (with significant effort) that, if f (x , y) is
continuous and the curve C is smooth, then a value of L
satisfying the hypotheses actually does exist.

The differential ds in the definition of the line integral is the
“differential of arclength”, which we discussed (way back!) in
our study of vector-valued functions in Chapter 1.



Line Integrals, VI

In exactly the same way, we can use Riemann sums to give a
formal definition of the line integral along a curve C in 3-space.

Just go back to the previous two slides and put in the
appropriate z terms everywhere!

Like with the other types of integrals, line integrals have a number
of formal properties which can be deduced from the Riemann sum
definition.



Line Integrals, VII

For an arbitrary constant D and continuous functions f and g , the
following hold:

1. Integral of constant:
∫
C D ds = D · Arclength(C ).

2. Constant multiple of a function:
∫
C D f ds = D ·

∫
C f ds.

3. Addition of functions:
∫
C f ds +

∫
C g ds =

∫
C [f + g ] ds.

4. Subtraction of functions:
∫
C f ds −

∫
C g ds =

∫
C [f − g ] ds.

5. Nonnegativity: if f ≥ 0, then
∫
C f ds ≥ 0.

6. Union: If C1 and C2 are curves such that C2 starts where C1

ends, and C is the curve obtained by gluing the curves
end-to-end, then

∫
C1

f ds +
∫
C2

f ds =
∫
C f ds.



Line Integrals, VIII

As usual, we will not actually use Riemann sums to compute line
integrals. Instead, we will reduce them to “regular” single integrals.

Proposition (Line Integrals in the Plane)

If the curve C can be parametrized as x = x(t), y = y(t) for

a ≤ t ≤ b, then

∫
C

f (x , y) ds =

∫ b

a
f (x(t), y(t))

ds

dt
dt, where

ds

dt
=
√

x ′(t)2 + y ′(t)2 is the derivative of arclength.

The proof is to observe that the Riemann sum
∑n

k=1 f (xk , yk) ∆sk
for the line integral

∫
C f (x , y) ds is also a Riemann sum∑n

k=1 f (xk , yk) ∆sk
∆tk

∆tk for the integral
∫ b
a f (x(t), y(t))

ds

dt
dt.



Line Integrals, IX

We also have the 3-dimensional version, which is the same except
with z terms:

Proposition (Line Integrals in 3-Space)

If the curve C can be parametrized as x = x(t), y = y(t),
z = z(t) for a ≤ t ≤ b, then∫
C

f (x , y , z) ds =

∫ b

a
f (x(t), y(t), z(t))

ds

dt
dt, where

ds

dt
=
√

x ′(t)2 + y ′(t)2 + z ′(t)2 is the derivative of arclength.

Equivalently, this is the result of making a substitution in the
integral by changing from s-coordinates to t-coordinates, where

the differential changes using the rule ds =
ds

dt
dt.



Line Integrals, X

Thus, to evaluate the line integral of f on the curve C (i.e., the
line integral

∫
C f (x , y , z) ds), follow these steps:

1. Parametrize the curve C as a function of t, as
r(t) = 〈x(t), y(t), z(t)〉 for a ≤ t ≤ b.

2. Write the function f in terms of t:
f (x , y , z) = f (x(t), y(t), z(t)).

3. Write the differential

ds =
ds

dt
dt = ||v(t)|| dt =

√
x ′(t)2 + y ′(t)2 + z ′(t)2 dt in

terms of t.

4. Evaluate the resulting single-variable integral∫ b
a f (x(t), y(t), z(t))

√
x ′(t)2 + y ′(t)2 + z ′(t)2dt.



Line Integrals, XI

Example: Integrate the function f (x , y , z) = yz − 6x along the
curve r(t) =

〈
t3, 6t, 3t2

〉
from t = 0 to t = 1.

We have f (x , y , z) = yz − 6x = (6t)(3t2)− 6t3 = 12t3.

We also have
ds =

√
(3t2)2 + (6)2 + (6t)2 =

√
9t4 + 36t2 + 36 = 3t2 + 6.

The integral is therefore∫ 1

0
(12t3)(3t2 + 6)dt =

∫ 1

0
(36t5 + 72t3) dt = 24.



Line Integrals, XI
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Line Integrals, XII

Example: Integrate the function f (x , y , z) = z
√

x2 + y 2 along the
helix r(t) = 〈cos t, sin t, t〉 from the point (1, 0, 0) to the point
(1, 0, 4π).

We are given the parametrization, and we want the range
0 ≤ t ≤ 4π.

We have f (x , y , z) = t
√

cos2 t + sin2 t = t, and we also have
ds =

√
(− sin t)2 + (cos t)2 + 1 =

√
2.

The integral is therefore

∫ 4π

0
t
√

2dt = 8π2
√

2.



Line Integrals, XII
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Line Integrals, XIII

Example: Integrate the function f (x , y) = x2 + y along the top
half of the unit circle x2 + y 2 = 1, starting at (1, 0) and ending at
(−1, 0).

First, we need to parametrize the curve.

The unit circle is parametrized by r(t) = 〈cos t, sin t〉, and the
range we want is 0 ≤ t ≤ π.

We have f (x , y) = x2 + y = cos2 t + sin t, and we also have
ds =

√
(− sin t)2 + (cos t)2 = 1.

The integral is therefore∫ π

0

[
cos2 t + sin t

]
dt =

∫ π

0

[
1 + cos 2t

2
+ sin t

]
dt =

π

2
+ 2.



Line Integrals, XIII
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Line Integrals, XIII
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Line Integrals, XIV

To find the average value of a function on a curve, we simply
integrate the function over the curve, and then divide by the
curve’s arclength.

This is the same procedure we used for finding the average
value of a function on a region: integrate the function, and
then divide by the size of the region.

To find the arclength of a curve C , we can integrate the
function 1 along the curve.



Line Integrals, XV

Example: Let C be the line segment from (1,−1, 0) to (2, 2, 1).

1. Set up a parametrization of C and use it to find the arclength
of C .

The direction vector for the line is
v = 〈2, 2, 1〉 − 〈1,−1, 0〉 = 〈1, 3, 1〉. Thus, we can parametrize
the line segment as 〈x , y , z〉 = 〈1,−1, 0〉+ t 〈1, 3, 1〉 for
0 ≤ t ≤ 1.

Explicitly, x = 1 + t, y = −1 + 3t, z = t for 0 ≤ t ≤ 1.

Then
ds

dt
=
√

12 + 32 + 12 =
√

11, so the arclength is∫ 1
0 1 ds =

∫ 1
0

√
11dt =

√
11 (which we could also have found

using the distance formula).



Line Integrals, XV
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Line Integrals, XVI

Example: Let C be the line segment from (1,−1, 0) to (2, 2, 1).

2. Find the average value of f (x , y , z) = x2 + y 2 + z2 on C .

We found the arclength was
√

11. Now we set up the integral
of the function.

The function is f (x , y , z) = x2 + y 2 + z2 =
(1 + t)2 + (−1 + 3t)2 + (t)2 = 11t2 − 4t + 2.

Since x ′(t) = 1, y ′(t) = 3, and z ′(t) = 1, we also have

The integral of f is therefore
∫ 1

0

[
11t2 − 4t + 2

]√
11dt =

√
11

[
11

3
t3 − 2t2 + 2t

]∣∣∣∣1
t=0

=
11
√

11

3
.

To compute the average value, we divide by the arclength,
giving an average of 11/3.



Line Integrals, XVI

Example: Let C be the line segment from (1,−1, 0) to (2, 2, 1).

2. Find the average value of f (x , y , z) = x2 + y 2 + z2 on C .

We found the arclength was
√

11. Now we set up the integral
of the function.

The function is f (x , y , z) = x2 + y 2 + z2 =
(1 + t)2 + (−1 + 3t)2 + (t)2 = 11t2 − 4t + 2.

Since x ′(t) = 1, y ′(t) = 3, and z ′(t) = 1, we also have

The integral of f is therefore
∫ 1

0

[
11t2 − 4t + 2

]√
11dt =

√
11

[
11

3
t3 − 2t2 + 2t

]∣∣∣∣1
t=0

=
11
√

11

3
.

To compute the average value, we divide by the arclength,
giving an average of 11/3.



Line Integrals, XVII

We also have formulas for the mass and moments of a wire of
variable density:
Center of Mass and Moment Formulas (Thin Wire): Given a
1-dimensional wire of variable density δ(x , y , z) along a parametric
curve C in 3-space:

The total mass M is given by M =
∫
C δ(x , y , z) ds.

The x-moment Myz is given by Myz =
∫
C x δ(x , y , z) ds.

The y -moment Mxz is given by Mxz =
∫
C y δ(x , y , z) ds.

The z-moment Mxy is given by Mxy =
∫
C z δ(x , y , z) ds.

The center of mass (x̄ , ȳ , z̄) is

(
Myz

M
,

Mxz

M
,

Mxy

M

)
.

Note: For a wire in 2-space, the formulas are essentially the
same (except without the z-coordinate), though the
x-moment is denoted My and the y -moment is denoted Mx .



Line Integrals, XVIII

Example: Find the total mass, and the center of mass, of a thin
wire in the xy -plane having the shape of the unit circle with
variable density δ(x , y) = 2 + x .

We can parametrize the unit circle with x = cos t, y = sin t,

so
ds

dt
=
√

(− sin t)2 + (cos t)2 = 1.

The total mass is M =
∫
C δ(x , y) ds =

∫ 2π
0 (2 + cos t) dt = 2π.

The x-moment My is My =
∫
C x δ(x , y) ds =∫ 2π

0 cos t(2 + cos t) dt =

[
2 sin t +

1

2
t +

1

4
sin(2t)

]∣∣∣∣2π
t=0

= π.

The y -moment Mx is Mx =
∫
C y δ(x , y) ds =∫ 2π

0 sin t(2 + cos t) dt =

[
−2 cos t − 1

4
cos(2t)

]∣∣∣∣2π
t=0

= 0.

So the center of mass is
(
My

M , Mx
M

)
=
(

1
2 , 0
)
.



Line Integrals, XVIII
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.



Line Integrals, XIX

We will also be interested in computing line integrals involving the
differentials dx , dy , and dz rather than ds: namely, expressions of

the form

∫
C

f dx + g dy + h dz .

We evaluate such line integrals by making the appropriate
substitutions.

Specifically, if C is parametrized by x = x(t), y = y(t),
z = z(t) for a ≤ t ≤ b, then the line integral∫
C

f dx + g dy + h dz is given by the single-variable integral∫ b

a

[
f

dx

dt
+ g

dy

dt
+ h

dz

dt

]
dt.



Line Integrals, XX

Example: Find

∫
C

y dx + z dy + x2 dz , where C is the curve

(x , y , z) = (t, t2, t3) ranging from t = 0 to t = 1.

We have x = t, y = t2, and z = t3.

Thus, dx = dt, dy = 2t dt, and dz = 3t2 dt.

The integral is

∫ 1

0

[
t2 · dt + 3t2 · 2t dt + t2 · 3t2 dt

]
=

∫ 1

0

[
t2 + 6t3 + 3t4

]
dt = 73/30.



Line Integrals, XX

Example: Find
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C

y dx + z dy + x2 dz , where C is the curve

(x , y , z) = (t, t2, t3) ranging from t = 0 to t = 1.

We have x = t, y = t2, and z = t3.

Thus, dx = dt, dy = 2t dt, and dz = 3t2 dt.

The integral is

∫ 1

0

[
t2 · dt + 3t2 · 2t dt + t2 · 3t2 dt

]
=

∫ 1

0

[
t2 + 6t3 + 3t4

]
dt = 73/30.



Line Integrals, XXI

Example: Find

∫
C

x dy − y dx , where C is the upper half of the

ellipse x2/9 + y 2/16 = 1, starting at (3, 0) and ending at (−3, 0).

This ellipse is parametrized by r(t) = 〈3 cos t, 4 sin t〉, and the
range we want is 0 ≤ t ≤ π.

We have x = 3 cos t and y = 4 sin t, so that dx = −3 sin t dt
and dy = 4 cos t dt.

The desired integral is∫ π

0
[3 cos t · (4 cos t dt)− 4 sin t · (−3 sin t dt)]

=

∫ π

0

[
12 cos2 t + 12 sin2 t

]
dt = 12π.



Line Integrals, XXI

Example: Find

∫
C

x dy − y dx , where C is the upper half of the

ellipse x2/9 + y 2/16 = 1, starting at (3, 0) and ending at (−3, 0).

This ellipse is parametrized by r(t) = 〈3 cos t, 4 sin t〉, and the
range we want is 0 ≤ t ≤ π.

We have x = 3 cos t and y = 4 sin t, so that dx = −3 sin t dt
and dy = 4 cos t dt.

The desired integral is∫ π

0
[3 cos t · (4 cos t dt)− 4 sin t · (−3 sin t dt)]

=

∫ π

0

[
12 cos2 t + 12 sin2 t

]
dt = 12π.



Summary

We finished some examples about center of mass.

We developed line integrals and discussed how to set them up as
one-variable integrals.

We discussed how to compute average values and masses on
curves using line integrals.

Next lecture: Review for Midterm 2 (part 1)


