
Math 2321 (Multivariable Calculus)

Lecture #22 of 38 ∼ March 11, 2021

Applications of Double and Triple Integrals

Areas, Volumes, and Average Values

Masses, Moments, and Center of Mass

This material represents §3.4.1-3.4.2 from the course notes.

This lecture is the end of the material covered on Midterm 2.



Reminders, I

Recall cylindrical coordinates:

Definition

The cylindrical coordinates (r , θ, z) of a point whose rectangular
coordinates are (x , y , z) satisfy x = r cos(θ), y = r sin(θ), and
z = z for r ≥ 0 and 0 ≤ θ ≤ 2π.

The main feature to remember is that r =
√
x2 + y2.

The volume differential in cylindrical coordinates is

dV = r dz dr dθ .



Reminders, II

Also recall spherical coordinates:

Definition

The spherical coordinates (ρ, θ, ϕ) of a point (x , y , z) satisfy
x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ for ρ ≥ 0,
0 ≤ θ ≤ 2π, and 0 ≤ ϕ ≤ π.

The angle θ measures longitude and is the same as in
cylindrical, while the angle ϕ measures latitude, and ρ
measures the distance to the origin.

We also have ρ =
√
x2 + y2 + z2 =

√
r2 + z2 and

ϕ = tan−1(r/z) = tan−1(
√
x2 + y2z).

The differential in spherical coordinates is

dV = ρ2 sinϕ dρ dϕ dθ .



Areas, Volumes, and Averages, I

We can use multiple integrals to compute areas and volumes:

Area(R) =

∫∫
R

1 dA

Volume(D) =

∫∫∫
D

1 dV .

Closely related is the notion of the average value of a function:

Definition

The average value of f on a plane region R, and solid region D,

are
1

Area(R)

∫∫
R
f dA and

1

Volume(D)

∫∫∫
D
f dV respectively.



Areas, Volumes, and Averages, II

Example: Let D be the region between the surfaces z = x2 + y2

and z = 6−
√

x2 + y2.

1. Set up a double integral for the volume of D in rectangular.

2. Set up a double integral for the volume of D in polar.

3. Set up a triple integral for the volume of D in rectangular.

4. Set up a triple integral for the volume of D in cylindrical.

5. Find the average value of z on D.

Although we are first asked for double integrals, it will be
easier to work things out if we think in cylindrical coordinates,
since both surfaces have nice descriptions in cylindrical.



Areas, Volumes, and Averages, II
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5. Find the average value of z on D.
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easier to work things out if we think in cylindrical coordinates,
since both surfaces have nice descriptions in cylindrical.



Areas, Volumes, and Averages, III

Example: Let D be the region between the surfaces z = x2 + y2

and z = 6−
√

x2 + y2.

D is below the graph of
z = 6−

√
x2 + y2 and

above the graph of
z = x2 + y2.

In cylindrical, these are
z = 6− r and z = r2, so
they intersect when
6− r = r2, which is to say,
when r = 2.

So, the projection of D into
the xy -plane is the interior
of the circle r = 2.
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Areas, Volumes, and Averages, III
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Areas, Volumes, and Averages, IV

Example: Let D be the region between the surfaces z = x2 + y2

and z = 6−
√

x2 + y2.

1. Set up a double integral for the volume of D in rectangular.

The volume is equal to the integral of the difference in heights
between the bottom surface and the top surface.

Since the projection of D into the xy -plane is the interior of
the circle r = 2, which is x2 + y2 = 4 in rectangular, the
volume of D is given by∫ 2

−2

∫ √4−x2
−
√
4−x2

[6−
√
x2 + y2 − (x2 + y2)] dy dx .

This one is not so nice to evaluate, since we really want to be
using polar.



Areas, Volumes, and Averages, IV
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the circle r = 2, which is x2 + y2 = 4 in rectangular, the
volume of D is given by∫ 2

−2
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Areas, Volumes, and Averages, V

Example: Let D be the region between the surfaces z = x2 + y2

and z = 6−
√

x2 + y2.

2. Set up a double integral for the volume of D in polar.

The volume is equal to the integral of the difference in heights
between the bottom surface and the top surface.

Since the projection of D into the xy -plane is the interior of
the circle r = 2, the volume of D in polar is given by∫ 2π

0

∫ 2

0
[6− r − r2] · r dr dθ =

∫ 2π

0

∫ 2

0
[6r − r2 − r3] dr dθ

=

∫ 2π

0
[3r2 − 1

3
r3 − 1

4
r4]
∣∣2
r=0

dθ =

∫ 2π

0

16

3
dθ =

32π

3
.
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Areas, Volumes, and Averages, V
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=
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.



Areas, Volumes, and Averages, VI

Example: Let D be the region between the surfaces z = x2 + y2

and z = 6−
√

x2 + y2.

3. Set up a triple integral for the volume of D in rectangular.

We use the rectangular region from the double integral (the
interior of x2 + y2 = 4) for the x and y limits, while the z
limits are x2 + y2 and 6−

√
x2 + y2.

Thus, the volume integral is∫ 2

−2

∫ √4−x2
−
√
4−x2

∫ 6−
√

x2+y2

x2+y2

1 dz dy dx .

Notice that if we evaluate the inner integral, we obtain the

double integral

∫ 2

−2

∫ √4−x2
−
√
4−x2

[6−
√
x2 + y2 − (x2 + y2)] dy dx

that we had earlier.



Areas, Volumes, and Averages, VI

Example: Let D be the region between the surfaces z = x2 + y2

and z = 6−
√

x2 + y2.

3. Set up a triple integral for the volume of D in rectangular.

We use the rectangular region from the double integral (the
interior of x2 + y2 = 4) for the x and y limits, while the z
limits are x2 + y2 and 6−

√
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Thus, the volume integral is∫ 2

−2

∫ √4−x2
−
√
4−x2

∫ 6−
√

x2+y2
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1 dz dy dx .

Notice that if we evaluate the inner integral, we obtain the

double integral

∫ 2

−2

∫ √4−x2
−
√
4−x2

[6−
√
x2 + y2 − (x2 + y2)] dy dx

that we had earlier.



Areas, Volumes, and Averages, VII

Example: Let D be the region between the surfaces z = x2 + y2

and z = 6−
√

x2 + y2.

4. Set up a triple integral for the volume of D in cylindrical.

We use the polar region from the double integral (the interior
of r = 2) for the r and θ limits, while the z limits are r2 and
6− r .

Thus, the volume integral is

∫ 2π

0

∫ 2

0

∫ 6−r

r2
1 · r dz dr dθ.

Like with the rectangular integral, if we evaluate the inner
integral, we obtain the polar double integral∫ 2π

0

∫ 2

0
[6− r − r2] · r dr dθ that we had earlier.



Areas, Volumes, and Averages, VII

Example: Let D be the region between the surfaces z = x2 + y2

and z = 6−
√

x2 + y2.

4. Set up a triple integral for the volume of D in cylindrical.

We use the polar region from the double integral (the interior
of r = 2) for the r and θ limits, while the z limits are r2 and
6− r .

Thus, the volume integral is

∫ 2π

0

∫ 2

0

∫ 6−r

r2
1 · r dz dr dθ.

Like with the rectangular integral, if we evaluate the inner
integral, we obtain the polar double integral∫ 2π

0

∫ 2

0
[6− r − r2] · r dr dθ that we had earlier.



Areas, Volumes, and Averages, VIII

Example: Let D be the region between the surfaces z = x2 + y2

and z = 6−
√

x2 + y2.

5. Find the average value of z on D.

We computed the volume of D as
32π

3
earlier.

To find the average value of z , we need to set up
∫∫∫

D z dV .

We use cylindrical, since it is clearly the most convenient.

The integral is

∫ 2π

0

∫ 2

0

∫ 6−r

r2
z · r dz dr dθ

=

∫ 2π

0

∫ 2

0

1
2 [r(6− r)2 − r5] dr dθ =

∫ 2π

0

50

3
dθ =

100π

3
.

Thus, the average value of z on D is
100π/3

32π/3
=

100

32
= 3.125.
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Areas, Volumes, and Averages, VIII

Example: Find the average value of (x2 + y2 + z2)3/2 on the
bottom half of the sphere of radius 3 centered at (0, 0, 0).

We want to set this up in spherical coordinates.

In spherical, the region D is bounded by 0 ≤ θ ≤ 2π,
π/2 ≤ ϕ ≤ π, and 0 ≤ ρ ≤ 3.

First, we need to compute the volume, which is∫ 2π

0

∫ π

π/2

∫ 3

0
1 · ρ2 sin(ϕ) dρ dϕ dθ

=

∫ 2π

0

∫ π

π/2
9 sin(ϕ) dϕ dθ =

∫ 2π

0
9 dθ = 18π.

Alternatively, we could just have used the formula for the
volume of a sphere! (But that requires you to know it....)



Areas, Volumes, and Averages, VIII

Example: Find the average value of (x2 + y2 + z2)3/2 on the
bottom half of the sphere of radius 3 centered at (0, 0, 0).

We want to set this up in spherical coordinates.
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Areas, Volumes, and Averages, IX

Example: Find the average value of (x2 + y2 + z2)3/2 on the
bottom half of the sphere of radius 3 centered at (0, 0, 0).

The volume of the region is 18π.

Then, since the function is (x2 + y2 + z2)3/2 = ρ3, the
average value is equal to

1

18π

∫ 2π

0

∫ π

π/2

∫ 3

0
ρ3 · ρ2 sin(ϕ) dρ dϕ dθ

=
1

18π

∫ 2π

0

∫ π

π/2

243

2
sin(ϕ) dϕ dθ

=
1

18π

∫ 2π

0

243

2
dθ =

1

18π
· 243π =

27

2
= 13.5.



Masses, Moments, and Center of Mass, I

Another application of double and triple integrals is to compute
the mass of an object with a variable density.

If we have a 2-dimensional plate of variable density δ(x , y) on
a region R, then the total mass of the plate is

M =

∫∫
R
δ(x , y) dA.

Similarly, if we have a 3-dimensional solid of variable density
δ(x , y , z) on a region D, then the total mass of the solid is

M =

∫∫∫
D
δ(x , y , z) dV .



Masses, Moments, and Center of Mass, II

Example: A triangular plate with vertices at (0, 0), (2, 0), and
(0, 1) has a variable density δ(x , y) = 1 + x . Find the plate’s mass.

It is easiest here to use rectangular coordinates. Note that the
line joining (2, 0) to (0, 1) has equation x + 2y = 2.

With integration order dy dx , the desired mass integral is∫ 2

0

∫ 1−x/2

0
(1 + x) dy dx =

∫ 2

0
y(1 + x)

∣∣1−x/2
y=0

dx

=

∫ 2

0
(1 + x/2− x2/2) dx =

5

3
.

With integration order dx dy , the desired mass integral is∫ 1

0

∫ 2−2y

0
(1 + x) dx dy =

∫ 1

0
(x + x2/2)

∣∣2−2y
x=0

dy

=

∫ 1

0
(4− 6y + 2y2) dy =

5

3
.



Masses, Moments, and Center of Mass, II
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.



Masses, Moments, and Center of Mass, III

Example: A solid sphere of radius 2 cm centered at the origin has a
variable density: at a distance d cm away from the origin, its
density is (3− d) g

/
cm3 . Find the mass of the sphere.

Because of the spherical symmetry, it will be most convenient
to set up the mass integral in spherical coordinates.

The density is d = 3− ρ in spherical coordinates, and the solid
D has integration bounds 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π, 0 ≤ ρ ≤ 2.

Thus, the mass is given by∫ 2π

0

∫ π

0

∫ 2

0
(3− ρ) · ρ2 sin(ϕ) dρ dϕ dθ

=

∫ 2π

0

∫ π

0
4 sin(ϕ) dϕ dθ =

∫ 2π

0
8 dθ = (16π) g.
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Masses, Moments, and Center of Mass, IV

Another important application of integration is to find the center
of mass of an object.

The center of mass of a physical object is its “balancing
point”, where, if the object is supported only at that point,
gravity will not cause it to tip over.

The center of mass is also called the centroid of an object.



Masses, Moments, and Center of Mass, V

To find the center of mass, recall the lever principle of Archimedes:
if we place masses m1 and m2 at distances d1 and d2 from a pivot
point, then the masses will balance when m1d1 = m2d2.

More generally, if we have a mass mi at x-coordinate xi ,
where the pivot is at x = 0, then the masses will balance
precisely when

∑
mixi = 0.

If the balance point is at x = x̄ instead, then the balance
condition becomes

∑
mi (xi − x̄) = 0, so

∑
mixi = x̄

∑
mi .

If we instead have a continuous density function δ(x), then
(by recognizing the sum above as a Riemann sum), then the
corresponding balance condition becomes∫∞
−∞ xδ(x) dx = x̄

∫∞
−∞ δ(x) dx , so x̄ =

∫∞
−∞ xδ(x) dx∫∞
−∞ δ(x) dx

.



Masses, Moments, and Center of Mass, VI

To summarize the previous slide, if we have a continuous density
function δ(x) for masses on a line, then the center of mass x̄ is

given by x̄ =

∫∞
−∞ xδ(x) dx∫∞
−∞ δ(x) dx

.

Notice that the numerator is the integral of x times the
density function, while the denominator is simply the total
mass M.

We can think of this formula as computing the average value
of x on the line, weighted by the density function δ(x).



Masses, Moments, and Center of Mass, VII

We can now easily generalize these ideas into higher dimensions.

If we have a 2-dimensional plate of variable density δ(x , y)
and total mass M, then the center of mass (x̄ , ȳ) has

x̄ =
1

M

∫∫
R
xδ(x , y) dA and ȳ =

1

M

∫∫
R
yδ(x , y) dA.

If we have a 3-dimensional plate of variable density δ(x , y , z)
and total mass M, then the center of mass (x̄ , ȳ , z̄) has

x̄ =
1

M

∫∫∫
D
xδ(x , y , z) dV , ȳ =

1

M

∫∫∫
D
yδ(x , y , z) dV ,

and z̄ =
1

M

∫∫∫
D
zδ(x , y , z) dV .



Masses, Moments, and Center of Mass, VIII

The integrals we compute for the center of mass are called
first moments: the first x-moment is the integral of x times the
density function, the first y -moment is the integral of y times the
density function, and so forth.

Various higher moments also exist (e.g., the second moment
of x is the integral of x2 times the density function, etc.).

One moment arising often in physics is the moment of inertia
of an object to an axis: this is the second moment of the
distance to the axis.

The moment of inertia of an object relative to an axis through
its center of mass measures how much torque is required to
impart angular acceleration around that axis.

In particular, an object with a high moment of inertia will roll
more slowly down an incline than an object with a smaller
moment of inertia.



Masses, Moments, and Center of Mass, IX

Example: Find the center of mass of the region with density δ = 1
inside x2 + y2 = 1 in the first quadrant.

We need to compute
∫∫

R x dA and
∫∫

R y dA, since the mass
here is simply the area of the quarter-circle, which is π/4.

We set up the integrals in polar coordinates.

The x-moment is∫ π/2

0

∫ 1

0
r cos θ · r dr dθ =

∫ π/2

0

1

3
cos θ =

1

3
.

The y -moment is∫ π/2

0

∫ 1

0
r sin θ · r dr dθ =

∫ π/2

0

1

3
sin θ =

1

3
.

Thus, the center of mass is (x̄ , ȳ) = ( 4
3π ,

4
3π ).

We could have used the symmetry of the quarter-circle to
observe that the x and y coordinates of the center of mass
would be equal.
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3
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Summary

We discussed how to use double and triple integrals to compute
areas, volumes, and average values.

We discussed how to use double and triple integrals to compute
masses, moments, and the center of mass of an object.

Next lecture: Line integrals.


