Math 2321 (Multivariable Calculus) Lecture $\#21$ of 38 \sim March 10, 2020

Triple Integrals in Cylindrical and Spherical Coordinates

- **•** Triple Integrals in Cylindrical and Spherical Coordinates
- **•** Areas, Volumes, and Average Values

This material represents §3.3.4-3.4.1 from the course notes.

Recall cylindrical coordinates:

Definition

The cylindrical coordinates (r, θ, z) of a point whose rectangular coordinates are (x, y, z) satisfy $x = r \cos(\theta)$, $y = r \sin(\theta)$, and $z = z$ for $r > 0$ and $0 < \theta < 2\pi$.

- The main feature to remember is that $r = \sqrt{x^2 + y^2}$.
- The volume differential in cylindrical coordinates is

$$
dV = r dz dr d\theta.
$$

Reminders, II

Also recall spherical coordinates:

Definition

The spherical coordinates (ρ, θ, φ) of a point (x, y, z) satisfy $x = \rho \sin \varphi \cos \theta$, $y = \rho \sin \varphi \sin \theta$, $z = \rho \cos \varphi$ for $\rho > 0$, $0 \leq \theta \leq 2\pi$, and $0 \leq \varphi \leq \pi$.

• The angle θ measures longitude and is the same as in cylindrical, while the angle φ measures latitude, and ρ measures the distance to the origin.

• We also have
$$
\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{r^2 + z^2}
$$
 and
\n $\varphi = \tan^{-1}(r/z) = \tan^{-1}(\sqrt{x^2 + y^2}/z)$.

• The differential in spherical coordinates is

$$
dV = \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta.
$$

Cylindrical and Spherical, I

Cylindrical and Spherical, I

Cylindrical and Spherical, I

- We set up in cylindrical.
- In cylindrical coordinates, the bounding surfaces are $z = r^2$ and $z = 2$, and the restrictions on x and y tells us that $3\pi/2 \leq \theta \leq 2\pi$.
- Note that $z = r^2$ intersects $z = 2$ when $r = \sqrt{2}$. So, our range for r is $0\leq r\leq \surd 2$, and then the bounds for z are $z = r^2$ and $z = 2$.

Cylindrical and Spherical, II

- The function is $f(x, y, z) = z^2$, and the differential is $dV = r dz dr d\theta$.
- Thus, the integral is $\int^{2\pi}$ $3\pi/2$ $\int_0^{\sqrt{2}}$ 0 \int^{2} $\int_{r^2} z^2 r \, dz \, dr \, d\theta$ $=$ $\int_{0}^{2\pi}$ $3\pi/2$ $\int^{\sqrt{2}}$ 0 1 $\frac{1}{3}(8r - r^7)$ dr d θ $=$ $\int^{2\pi}$ $3\pi/2$ $2 d\theta = \pi$.

Cylindrical and Spherical, III

Cylindrical and Spherical, III

Cylindrical and Spherical, III

- We use spherical coordinates.
- The sphere is $\rho = 1$, and the upper half corresponds to $0 \leq \varphi \leq \pi/2$.
- There are no restrictions on θ , so the region is $0 \leq \rho \leq 1$, $\pi/2 \leq \varphi \leq \pi$, and $0 \leq \theta \leq 2\pi$.

Cylindrical and Spherical, IV

Cylindrical and Spherical, V

Cylindrical and Spherical, V

Cylindrical and Spherical, V

- The surface $x^2 + y^2 = 1$ is a cylinder, and the other two bounding curves are functions of z.
- The function also involves $x^2 + y^2$.
- All of these things indicate that we should use cylindrical coordinates.

Cylindrical and Spherical, VI

- The integration bounds are $0 \le \theta \le 2\pi$, $0 \le r \le 1$, and $-2 - r \sin(\theta) \le z \le$ r cos (θ) .
- The function is $\sqrt{x^2 + y^2} = r$, with differential r dz dr d θ .
- Thus, in cylindrical coordinates the integral is $\int^{2\pi}$ 0 \int_0^1 0 $\int_0^r \cos(\theta)$ $-2-r \sin(\theta)$ r \cdot r dz dr d $\theta = \frac{4\pi}{3}$ $\frac{1}{3}$.

Cylindrical and Spherical, VII

Example: Integrate the function $f(x, y, z) = 1$ on the region below $z = \sqrt{x^2 + y^2}$ and inside $x^2 + y^2 + z^2 = 3$.

Cylindrical and Spherical, VII

<u>Example</u>: Integrate the function $f(x, y, z) = 1$ on the region below $z = \sqrt{x^2 + y^2}$ and inside $x^2 + y^2 + z^2 = 3$.

Cylindrical and Spherical, VII

Example: Integrate the function $f(x, y, z) = 1$ on the region below $z = \sqrt{x^2 + y^2}$ and inside $x^2 + y^2 + z^2 = 3$.

- We use spherical coordinates.
- The cone becomes $\varphi = \pi/4$, the *xy*-plane is while the sphere is $\rho =$ √ 3.
- The function is 1 and $dV = \rho^2 \sin(\varphi) d\rho d\varphi d\theta$.

• Thus, the integral is $\int^{2\pi}$ 0 \int_0^π $\pi/4$ $\int^{\sqrt{3}}$ 0 ρ^2 sin(φ) d ρ d φ d θ π /4 J 0
= $(2\sqrt{3} + \sqrt{6})\pi$.

Cylindrical and Spherical, VIII

Example: Find
$$
\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} \sqrt{x^2+y^2+z^2} dz dy dx.
$$

Cylindrical and Spherical, VIII

Cylindrical and Spherical, VIII

Cylindrical and Spherical, IX

$$
\sqrt{x^2+y^2+z^2}\,dz\,dy\,dx.
$$

- Those surfaces have simple descriptions in spherical coordinates, as does the $\sqrt{x^2 + y^2 + z^2}$. function $f(x, y, z) =$
- The hemisphere $z = \sqrt{2 - x^2 - y^2}$ becomes $\rho=\sqrt{2}$, while the cone $z=\sqrt{x^2+y^2}$ becomes $\varphi = \pi/4$.

Cylindrical and Spherical, X

$$
\sqrt{x^2+y^2+z^2}\,dz\,dy\,dx.
$$

- We want the region above the cone, so $0 \leq \varphi \leq \pi/4$. We also have $0 \le \theta \le 2\pi$ and $0\leq \rho \leq \sqrt{2}.$
- The function is $\sqrt{x^2 + y^2 + z^2} = \rho$, and the differential is $dV = \rho^2 \sin(\varphi) d\rho d\varphi d\theta$.

• The integral is therefore $\int_0^{\pi/4}$ 0 $\int_0^{\sqrt{2}}$ 0 $\rho\cdot\rho^2\sin(\varphi)$ d ρ d φ d θ $= (2\pi)(1 -$ √ $2/2$).

One straightforward but still very useful application of multiple integration is to computing areas of regions in the plane, and volumes of regions in space.

• The central ideas are that

Area(R) =
$$
\iint_{R} 1 dA
$$

Volume(D) =
$$
\iiint_{D} 1 dV.
$$

- Thus, if we can describe a region in a form that lends itself to integration, we can calculate the region's area (or volume).
- A closely related problem is to calculate the average value of a function on a region.
	- \bullet To calculate the average value of f on a region, we integrate f on the region and then divide by the region's area or volume.

- 1. Find the area of R.
- 2. Find the average value of y on R .

- 1. Find the area of R.
- 2. Find the average value of y on R .

- 1. Find the area of R.
- 2. Find the average value of y on R.

- We can set up the integrals with either integration order dy dx or dx dy.
- But if we use vertical slices. we have to divide the region into two pieces.
- So, we will use horizontal slices with the integration order dx dy.

Example: Let R be the plane region bounded by the curves $x = y^2 - 1$ and $y = 1 - x$.

1. Find the area of R.

Example: Let R be the plane region bounded by the curves $x = y^2 - 1$ and $y = 1 - x$.

1. Find the area of R.

Example: Let R be the plane region bounded by the curves $x = y^2 - 1$ and $y = 1 - x$.

1. Find the area of R.

- For the area, the function is $f(x, y) = 1$.
- \bullet With order $dx dy$, the integral is \int_0^1 −2 \int ^{1−y} y^2-1 1 dx dy $=$ \int_1^1 −2 $x\Big|$ $1-y$ $\int_{x=y^2-1} dy$ $=$ \int_1^1 −2 $\left[2 - y - y^2\right] dy = \frac{9}{2}$ $\frac{3}{2}$.

Example: Let R be the plane region bounded by the curves $x = y^2 - 1$ and $y = 1 - x$.

2. Find the average value of y on R .

- 2. Find the average value of y on R .
- For the average value of y, we integrate $f(x, y) = y$ and then divide by the area, which we just calculated as 9/2.
- With order *dx dy*, the integral is \int^1 −2 \int ^{1−y} y^2-1 y dx dy $=$ \int_0^1 −2 $xy\Big|$ $1-y$ $\int_{x=y^2-1}^{1-y} dy = \int_{-2}^{1}$ −2 $\left[2y - y^2 - y^3\right] dy = -\frac{9}{4}$ $\frac{5}{4}$.
- Thus, the average value is $(-9/4)/(9/2) = -1/2$.

<u>Example</u>: Find the volume of the sphere $x^2 + y^2 + z^2 = 4$.

<u>Example</u>: Find the volume of the sphere $x^2 + y^2 + z^2 = 4$.

<u>Example</u>: Find the volume of the sphere $x^2 + y^2 + z^2 = 4$.

- We want to evaluate $\int \int \int_D 1 \, dV$, where D is interior of the given sphere.
- In spherical coordinates, it is the sphere $\rho = 2$.
- So, the desired integral is $\int^{2\pi}$ 0 \int_0^π 0 \int^{2} 0 ρ^2 sin (φ) d ρ d φ d θ $=\int^{2\pi}$ 0 \int_0^π 0 8 $\frac{3}{3}$ sin (φ) d φ d θ $=\int_0^{2\pi}$ 0 16 $\frac{16}{3} d\theta = \frac{32\pi}{3}$ $\frac{2\pi}{3}$.

We did more examples of integrals in cylindrical and spherical coordinates.

We discussed how to use double and triple integrals to compute areas, volumes, and average values.

Next lecture: More applications of integration.