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Triple Integrals in Cylindrical and Spherical Coordinates

Triple Integrals in Cylindrical and Spherical Coordinates

Areas, Volumes, and Average Values

This material represents §3.3.4-3.4.1 from the course notes.



Reminders, I

Recall cylindrical coordinates:

Definition

The cylindrical coordinates (r , θ, z) of a point whose rectangular
coordinates are (x , y , z) satisfy x = r cos(θ), y = r sin(θ), and
z = z for r ≥ 0 and 0 ≤ θ ≤ 2π.

The main feature to remember is that r =
√
x2 + y2.

The volume differential in cylindrical coordinates is

dV = r dz dr dθ .



Reminders, II

Also recall spherical coordinates:

Definition

The spherical coordinates (ρ, θ, ϕ) of a point (x , y , z) satisfy
x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ for ρ ≥ 0,
0 ≤ θ ≤ 2π, and 0 ≤ ϕ ≤ π.

The angle θ measures longitude and is the same as in
cylindrical, while the angle ϕ measures latitude, and ρ
measures the distance to the origin.

We also have ρ =
√
x2 + y2 + z2 =

√
r2 + z2 and

ϕ = tan−1(r/z) = tan−1(
√
x2 + y2/z).

The differential in spherical coordinates is

dV = ρ2 sinϕ dρ dϕ dθ .



Cylindrical and Spherical, I

Example: Evaluate
∫∫∫

D z2 dV where D is the region between the
surfaces z = x2 + y2 and z = 2 where x ≥ 0 and y ≤ 0.

We set up in cylindrical.

In cylindrical coordinates,
the bounding surfaces are
z = r2 and z = 2, and the
restrictions on x and y tells
us that 3π/2 ≤ θ ≤ 2π.

Note that z = r2 intersects
z = 2 when r =

√
2. So,

our range for r is
0 ≤ r ≤

√
2, and then the

bounds for z are z = r2

and z = 2.
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Cylindrical and Spherical, I

Example: Evaluate
∫∫∫

D z2 dV where D is the region between the
surfaces z = x2 + y2 and z = 2 where x ≥ 0 and y ≤ 0.

We set up in cylindrical.

In cylindrical coordinates,
the bounding surfaces are
z = r2 and z = 2, and the
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Cylindrical and Spherical, II

Example: Evaluate
∫∫∫

D z2 dV where D is the region between the
surfaces z = x2 + y2 and z = 2 where x ≥ 0 and y ≤ 0.

The function is
f (x , y , z) = z2, and the
differential is
dV = r dz dr dθ.

Thus, the integral is∫ 2π

3π/2

∫ √2
0

∫ 2

r2
z2r dz dr dθ

=

∫ 2π

3π/2

∫ √2
0

1
3(8r − r7)dr dθ

=

∫ 2π

3π/2
2 dθ = π.



Cylindrical and Spherical, III

Example: Integrate the function f (x , y , z) = z√
x2+y2

over the

upper half of the sphere x2 + y2 + z2 = 1.

We use spherical
coordinates.

The sphere is ρ = 1, and
the upper half corresponds
to 0 ≤ ϕ ≤ π/2.

There are no restrictions on
θ, so the region is
0 ≤ ρ ≤ 1,
π/2 ≤ ϕ ≤ π, and
0 ≤ θ ≤ 2π.



Cylindrical and Spherical, III
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Cylindrical and Spherical, III

Example: Integrate the function f (x , y , z) = z√
x2+y2

over the

upper half of the sphere x2 + y2 + z2 = 1.

We use spherical
coordinates.

The sphere is ρ = 1, and
the upper half corresponds
to 0 ≤ ϕ ≤ π/2.

There are no restrictions on
θ, so the region is
0 ≤ ρ ≤ 1,
π/2 ≤ ϕ ≤ π, and
0 ≤ θ ≤ 2π.



Cylindrical and Spherical, IV

Example: Integrate the function f (x , y , z) = z√
x2+y2

over the

upper half of the sphere x2 + y2 + z2 = 1.

The function is f (ρ, θ, ϕ) =
ρ cos(ϕ)√
ρ2 sin2(ϕ)

=
cos(ϕ)

sin(ϕ)
and

the differential is
ρ2 sin(ϕ) dρ dϕ dθ.

So the integral is∫ 2π

0

∫ π/2

0

∫ 1

0

cos(ϕ)

sin(ϕ)
ρ2 sin(ϕ) dρ dϕ dθ

=

∫ 2π

0

∫ π/2

0

∫ 1

0
ρ2 cos(ϕ) dρ dϕ dθ

= 2π/3.



Cylindrical and Spherical, V

Example: Integrate f (x , y , z) =
√
x2 + y2 over the region inside

x2 + y2 = 1, below the plane z = x , and above the plane
z = −2− y .

The surface x2 + y2 = 1 is
a cylinder, and the other
two bounding curves are
functions of z .

The function also involves
x2 + y2.

All of these things indicate
that we should use
cylindrical coordinates.



Cylindrical and Spherical, V
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Example: Integrate f (x , y , z) =
√
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x2 + y2 = 1, below the plane z = x , and above the plane
z = −2− y .

The surface x2 + y2 = 1 is
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The function also involves
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All of these things indicate
that we should use
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Cylindrical and Spherical, VI

Example: Integrate f (x , y , z) =
√
x2 + y2 over the region inside

x2 + y2 = 1, below the plane z = x , and above the plane
z = −2− y .

The integration bounds are
0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1,
and −2− r sin(θ) ≤ z ≤
r cos(θ).

The function is√
x2 + y2 = r , with

differential r dz dr dθ.

Thus, in cylindrical
coordinates the integral is∫ 2π

0

∫ 1

0

∫ r cos(θ)

−2−r sin(θ)
r · r dz dr dθ =

4π

3
.



Cylindrical and Spherical, VII

Example: Integrate the function f (x , y , z) = 1 on the region below
z =

√
x2 + y2 and inside x2 + y2 + z2 = 3.

We use spherical
coordinates.

The cone becomes
ϕ = π/4, the xy -plane is
while the sphere is ρ =

√
3.

The function is 1 and
dV = ρ2 sin(ϕ) dρ dϕ dθ.

Thus, the integral is∫ 2π

0

∫ π

π/4

∫ √3
0

ρ2 sin(ϕ) dρ dϕ dθ

= (2
√

3 +
√

6)π.
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Example: Integrate the function f (x , y , z) = 1 on the region below
z =

√
x2 + y2 and inside x2 + y2 + z2 = 3.

We use spherical
coordinates.

The cone becomes
ϕ = π/4, the xy -plane is
while the sphere is ρ =
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3.

The function is 1 and
dV = ρ2 sin(ϕ) dρ dϕ dθ.

Thus, the integral is∫ 2π
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∫ √3
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= (2
√

3 +
√

6)π.



Cylindrical and Spherical, VIII

Example: Find

∫ 1

−1

∫ √1−x2
−
√
1−x2

∫ √2−x2−y2

√
x2+y2

√
x2 + y2 + z2 dz dy dx .

This is the integral of
f (x , y , z) = z

√
x2 + y2

over the solid region D
defined by −1 ≤ x ≤ 1,
−
√

1− x2 ≤ y ≤
√

1− x2,√
x2 + y2 ≤ z ≤

√
2− x2 − y2.

The region is the solid lying
below the hemisphere
z =

√
2− x2 − y2 and

above the cone
z =

√
x2 + y2.



Cylindrical and Spherical, VIII

Example: Find

∫ 1

−1

∫ √1−x2
−
√
1−x2

∫ √2−x2−y2

√
x2+y2

√
x2 + y2 + z2 dz dy dx .

This is the integral of
f (x , y , z) = z

√
x2 + y2

over the solid region D
defined by −1 ≤ x ≤ 1,
−
√

1− x2 ≤ y ≤
√

1− x2,√
x2 + y2 ≤ z ≤

√
2− x2 − y2.

The region is the solid lying
below the hemisphere
z =

√
2− x2 − y2 and

above the cone
z =

√
x2 + y2.



Cylindrical and Spherical, VIII

Example: Find

∫ 1

−1

∫ √1−x2
−
√
1−x2

∫ √2−x2−y2

√
x2+y2

√
x2 + y2 + z2 dz dy dx .

This is the integral of
f (x , y , z) = z

√
x2 + y2

over the solid region D
defined by −1 ≤ x ≤ 1,
−
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√
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The region is the solid lying
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z =

√
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above the cone
z =
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x2 + y2.



Cylindrical and Spherical, IX

Example: Find

∫ 1

−1

∫ √1−x2
−
√
1−x2

∫ √2−x2−y2

√
x2+y2

√
x2 + y2 + z2 dz dy dx .

Those surfaces have simple
descriptions in spherical
coordinates, as does the
function f (x , y , z) =√

x2 + y2 + z2.

The hemisphere
z =

√
2− x2 − y2

becomes ρ =
√

2, while the
cone z =

√
x2 + y2

becomes ϕ = π/4.



Cylindrical and Spherical, X

Example: Find

∫ 1

−1

∫ √1−x2
−
√
1−x2

∫ √2−x2−y2

√
x2+y2

√
x2 + y2 + z2 dz dy dx .

We want the region above
the cone, so 0 ≤ ϕ ≤ π/4.
We also have 0 ≤ θ ≤ 2π
and 0 ≤ ρ ≤

√
2.

The function is√
x2 + y2 + z2 = ρ, and

the differential is
dV = ρ2 sin(ϕ) dρ dϕ dθ.

The integral is therefore∫ 2π

0

∫ π/4

0

∫ √2
0

ρ · ρ2 sin(ϕ) dρ dϕ dθ

= (2π)(1−
√

2/2).



Applications of Integration, I

One straightforward but still very useful application of multiple
integration is to computing areas of regions in the plane, and
volumes of regions in space.

The central ideas are that

Area(R) =

∫∫
R

1 dA

Volume(D) =

∫∫∫
D

1 dV .

Thus, if we can describe a region in a form that lends itself to
integration, we can calculate the region’s area (or volume).

A closely related problem is to calculate the average value of a
function on a region.

To calculate the average value of f on a region, we integrate f
on the region and then divide by the region’s area or volume.



Applications of Integration, II

Example: Let R be the plane region bounded by the curves
x = y2 − 1 and y = 1− x .

1. Find the area of R.
2. Find the average value of y on R.

We can set up the integrals
with either integration
order dy dx or dx dy .

But if we use vertical slices,
we have to divide the
region into two pieces.

So, we will use horizontal
slices with the integration
order dx dy .
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Example: Let R be the plane region bounded by the curves
x = y2 − 1 and y = 1− x .

1. Find the area of R.
2. Find the average value of y on R.

We can set up the integrals
with either integration
order dy dx or dx dy .
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order dx dy .



Applications of Integration, II

Example: Let R be the plane region bounded by the curves
x = y2 − 1 and y = 1− x .

1. Find the area of R.
2. Find the average value of y on R.

We can set up the integrals
with either integration
order dy dx or dx dy .

But if we use vertical slices,
we have to divide the
region into two pieces.

So, we will use horizontal
slices with the integration
order dx dy .



Applications of Integration, II

Example: Let R be the plane region bounded by the curves
x = y2 − 1 and y = 1− x .

1. Find the area of R.

For the area, the function
is f (x , y) = 1.

With order dx dy , the
integral is∫ 1

−2

∫ 1−y

y2−1
1 dx dy

=

∫ 1

−2
x
∣∣∣1−y
x=y2−1

dy

=

∫ 1

−2

[
2− y − y2

]
dy =

9

2
.
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Applications of Integration, II

Example: Let R be the plane region bounded by the curves
x = y2 − 1 and y = 1− x .

1. Find the area of R.

For the area, the function
is f (x , y) = 1.

With order dx dy , the
integral is∫ 1
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Applications of Integration, III

Example: Let R be the plane region bounded by the curves
x = y2 − 1 and y = 1− x .

2. Find the average value of y on R.

For the average value of y , we integrate f (x , y) = y and then
divide by the area, which we just calculated as 9/2.

With order dx dy , the integral is

∫ 1

−2

∫ 1−y

y2−1
y dx dy

=

∫ 1

−2
xy
∣∣∣1−y
x=y2−1

dy=

∫ 1

−2

[
2y − y2 − y3

]
dy = −9

4
.

Thus, the average value is (−9/4)/(9/2) = −1/2.



Applications of Integration, III

Example: Let R be the plane region bounded by the curves
x = y2 − 1 and y = 1− x .

2. Find the average value of y on R.

For the average value of y , we integrate f (x , y) = y and then
divide by the area, which we just calculated as 9/2.

With order dx dy , the integral is

∫ 1

−2

∫ 1−y

y2−1
y dx dy

=

∫ 1

−2
xy
∣∣∣1−y
x=y2−1

dy=

∫ 1

−2

[
2y − y2 − y3

]
dy = −9

4
.

Thus, the average value is (−9/4)/(9/2) = −1/2.



Applications of Integration, IV

Example: Find the volume of the sphere x2 + y2 + z2 = 4.

We want to evaluate∫∫∫
D 1 dV , where D is

interior of the given sphere.

In spherical coordinates, it
is the sphere ρ = 2.

So, the desired integral is∫ 2π

0

∫ π

0

∫ 2

0
ρ2 sin(ϕ) dρ dϕ dθ

=

∫ 2π

0

∫ π

0

8

3
sin(ϕ) dϕ dθ

=

∫ 2π

0

16

3
dθ =

32π

3
.



Applications of Integration, IV

Example: Find the volume of the sphere x2 + y2 + z2 = 4.

We want to evaluate∫∫∫
D 1 dV , where D is

interior of the given sphere.

In spherical coordinates, it
is the sphere ρ = 2.

So, the desired integral is∫ 2π

0

∫ π

0

∫ 2

0
ρ2 sin(ϕ) dρ dϕ dθ

=

∫ 2π

0

∫ π

0

8

3
sin(ϕ) dϕ dθ

=

∫ 2π

0

16

3
dθ =

32π

3
.



Applications of Integration, IV

Example: Find the volume of the sphere x2 + y2 + z2 = 4.

We want to evaluate∫∫∫
D 1 dV , where D is

interior of the given sphere.

In spherical coordinates, it
is the sphere ρ = 2.

So, the desired integral is∫ 2π

0

∫ π

0

∫ 2

0
ρ2 sin(ϕ) dρ dϕ dθ

=

∫ 2π

0

∫ π

0

8

3
sin(ϕ) dϕ dθ

=

∫ 2π

0

16

3
dθ =

32π

3
.



Summary

We did more examples of integrals in cylindrical and spherical
coordinates.

We discussed how to use double and triple integrals to compute
areas, volumes, and average values.

Next lecture: More applications of integration.


