Math 2321 (Multivariable Calculus)
Lecture #21 of 38 ~ March 10, 2020

Triple Integrals in Cylindrical and Spherical Coordinates
@ Triple Integrals in Cylindrical and Spherical Coordinates
@ Areas, Volumes, and Average Values

This material represents §3.3.4-3.4.1 from the course notes.



Reminders, |

Recall cylindrical coordinates:

Definition
The cylindrical coordinates (r, 0, z) of a point whose rectangular

coordinates are (x, y, z) satisfy x = rcos(6), y = rsin(6), and
z=zforr>0and0 <0 < 2.

@ The main feature to remember is that r = y/x2 + y2.
@ The volume differential in cylindrical coordinates is

dV =rdzdrdf|




Reminders, Il

Also recall spherical coordinates:

Definition

The spherical coordinates (p,0, @) of a point (x, y, z) satisfy
x = psinpcosf, y = psinpsind, z= pcosp for p >0,
0<6<2m and 0 < p <.

@ The angle 6 measures longitude and is the same as in
cylindrical, while the angle ¢ measures latitude, and p
measures the distance to the origin.

e We also havep*\/x2+y + 22 = \/r2 + z2 and
o =tan"Y(r/z) = tan"1(y/x2 + y2/2).

@ The differential in spherical coordinates is

dV = p?sinpdpdpdb |




Cylindrical and Spherical, |

Example: Evaluate [[[, z% dV where D is the region between the
surfaces z = x> + y? and z = 2 where x > 0 and y < 0.
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Cylindrical and Spherical, |

Example: Evaluate [[[, z% dV where D is the region between the
surfaces z = x> + y? and z = 2 where x > 0 and y < 0.

. '
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@ We set up in cylindrical.

@ In cylindrical coordinates,

the bounding surfaces are
z=r?and z =2, and the
restrictions on x and y tells
us that 37/2 < 0 < 27.

Note that z = r? intersects
z =2 when r = /2. So,
our range for r is

0 < r < /2, and then the
bounds for z are z = r?
and z = 2.



Cylindrical and Spherical, Il

Example: Evaluate [[[,z? dV where D is the region between the
surfaces z = x2 + y? and z = 2 where x > 0 and y < 0.

y T @ The function is
] I f(x,y,z) = 2%, and the
v differential is
dV = rdzdrdo.
o e Thus, the integral is
z. V2 2
i / / / Z2rdzdrd
0sl, 3m/2

8r—r )dr do

w\l—l

X T = / 2d0 = .
3m/2



Cylindrical and Spherical, Il

z

/X2+y2

Example: Integrate the function f(x,y,z) = over the

upper half of the sphere x? + y? + 2% = 1.
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Cylindrical and Spherical, Il

Example: Integrate the function f(x,y,z) = \/227 over the
x2+y?

upper half of the sphere x? + y? + 2% = 1.

Y oo T @ We use spherical
- coordinates.

@ The sphere is p =1, and
the upper half corresponds
to 0 < p <m7/2.

@ There are no restrictions on
0, so the region is
0<p<i,

[ /2 < ¢ <, and
e |/ 0<6<2n.




Cylindrical and Spherical, IV

Example: Integrate the function f(x,y,z) =

upper half of the sphere x? + y? + 2% = 1.

1.0

00"

zZ
/X2+y2

over the

- @ The function is f(p,0, ) =
i peos(y)

cos ()

/2“/”/2/0

\/ P2 sin(¢)
the differential is
p?sin(p) dp dp db.

@ So the mtegral is

cos(¢
sm(gp

= — and

sin(¢)

p sin(p) dpdy db

2 pm/2
R / / /p cos(¢) dp d db
X 05 _ “

0 =2m/3.



Cylindrical and Spherical, V

Example: Integrate f(x,y,z) = \/x? + y? over the region inside
x? 4+ y? =1, below the plane z = x, and above the plane
z=-2—y.
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Example: Integrate f(x,y,z) = \/x? + y? over the region inside
x? 4+ y? =1, below the plane z = x, and above the plane
z=-2—y.




Cylindrical and Spherical, V

Example: Integrate f(x,y,z) = \/x? + y? over the region inside
x? 4+ y? =1, below the plane z = x, and above the plane
z=-2—y.

o The surface x>+ y?> =1is
a cylinder, and the other
two bounding curves are
functions of z.

@ The function also involves
x2 4+ y2.
@ All of these things indicate

that we should use
cylindrical coordinates.




Cylindrical and Spherical, VI

Example: Integrate f(x,y,z) = \/x? + y? over the region inside
x? 4+ y? =1, below the plane z = x, and above the plane
z=-2—y.

@ The integration bounds are
0<H<2mr,0<r<1,
and —2 —rsin(f) <z <
rcos(f).

@ The function is

VX2 + y? =r, with

differential r dz dr d6.

@ Thus, in cylindrical
coordmates the integral is

27 r cos(6
/ / / r-rdzdrdc9:4—7r.
2— rsm 3




Cylindrical and Spherical, VII

Example: Integrate the function f(x,y,z) =1 on the region below
z=+/x2+ y2 and inside x> + y? 4+ z° = 3.
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Example: Integrate the function f(x,y,z) =1 on the region below
z=+/x2+ y2 and inside x> + y? 4+ z° = 3.

A @ We use spherical
o coordinates.

@ The cone becomes
© = /4, the xy-plane is
while the sphere is p = V3.

@ The function is 1 and
dV = p?sin(p) dpdyp db.

@ Thus, the integral is

S~ |/ / / / p?sin(p) dp dy db
X T 7r/4

= (2V3+ Vo).



Cylindrical and Spherical, VIII

2 x2
Example: Flnd/ / / \/xz—l—y + z2 dz dy dx.

x2+y



Cylindrical and Spherical, VIII

2— x2
Example: Flnd/ / / \/xz—l—y + z2 dz dy dx.

x2+y
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Cylindrical and Spherical, VIII

2 x2
Example: Flnd/ / / \/xz—l—y + z2 dz dy dx.

x2+y
Y o — @ This is the integral of

e e f(x,y,2) = z/x? + y?

over the solid region D

defined by —1 < x <1,
—VI-x2<y<Vi-x%
VAR <z<\/2-x2 =y,

; 4 @ The region is the solid lying
o [/ below the hemisphere

m”‘n"s""-‘_’ 5 S 2_X2_y2 and

above the cone

e z=/x2+y2.

X EI‘ 5



Cylindrical and Spherical, IX

2x2
Example: Fmd// / mdzdydx

x2+y
Y oo — @ Those surfaces have simple
| - descriptions in spherical
coordinates, as does the
function f(x,y,z) =
Ny
@ The hemisphere
! , z=1/2—x2—y?
becomes p = V2, while the
?”,]/ I/ cone z = /x2 + y2

0 |/ becomes ¢ = /4.

X ‘ 55



Cylindrical and Spherical, X

2— X2—y
Example: Flnd/ / / VX2 + y?2 + 22 dz dy dx.

x2+y
Y ooaeT T o We want the region above
o T the cone, so 0 < p < 7/4.
‘ We also have 0 < 6 < 27
and 0 < p < V2.

@ The function is
x2+y2+ 72 = p, and
the differential is
dV = p?sin(¢) dp dp db.

o The mtegral is therefore

) 3 2 /4
X e/ // / p-p?sin(p) dpde db

: = (21)(1 — V2/2).



Applications of Integration, |

One straightforward but still very useful application of multiple
integration is to computing areas of regions in the plane, and
volumes of regions in space.

@ The central ideas are that

Area(R)

//RldA
Volume(D) = ///Dwv.

@ Thus, if we can describe a region in a form that lends itself to
integration, we can calculate the region’s area (or volume).

A closely related problem is to calculate the average value of a
function on a region.

@ To calculate the average value of f on a region, we integrate f
on the region and then divide by the region’s area or volume.



Applications of Integration, Il

Example: Let R be the plane region bounded by the curves
x=y>—landy=1-x.

1. Find the area of R.

2. Find the average value of y on R.
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Example: Let R be the plane region bounded by the curves

x=y>—landy=1-x.
1. Find the area of R.

2. Find the average value of y on R.

05+ N




Applications of Integration, Il

Example: Let R be the plane region bounded by the curves
x=y>—landy=1-x.

1. Find the area of R.

2. Find the average value of y on R.

@ We can set up the integrals
sl A N ] with either integration
4 order dy dx or dx dy.

\ . o But if we use vertical slices,
sl ] we have to divide the
‘ ‘ region into two pieces.

L ] @ So, we will use horizontal
asf ] slices with the integration
‘ order dx dy.
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Example: Let R be the plane region bounded by the curves
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1. Find the area of R.
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Applications of Integration, Il

Example: Let R be the plane region bounded by the curves
x=y>—landy=1-x.
1. Find the area of R.

f N @ For the area, the function
0sh / N ] is f(X7.y): L
;J A @ With order dx dy, the
il ] integral is
N 1 pl-y
05 ~‘~\ \.‘\ 1 / / 1 dX dy
~ N —2Jy2-1
oy a 1 1 11—y
\\\\._\ ‘ . = / X dy
asf T ] -2 x=y2-1
. \\\\-. - N 1 , 9
ank . ‘ - / 2-y-ydy=23.
-1 i 1 z 3 -2



Applications of Integration, IlI

Example: Let R be the plane region bounded by the curves
x=y?>~landy=1-x.

2. Find the average value of y on R.
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Example: Let R be the plane region bounded by the curves
x=y?>~landy=1-x.
2. Find the average value of y on R.

@ For the average value of y, we integrate f(x, y) = y and then
divide by the area, which we just calculated as 9/2.

1 1-y
o With order dx dy, the integral is / / ydxdy
—2Jy2-1

1 1-y 1 9
=/ xy| dy=/2[2y—y2—y3] dy = —7.

-2
@ Thus, the average value is (—9/4)/(9/2) = —1/2.




Applications of Integration, IV

Example: Find the volume of the sphere x? + y? + z% = 4.
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Example: Find the volume of the sphere x? + y? + z% = 4.

Graphof p=2
2




Applications of Integration, IV

Example: Find the volume of the sphere x? + y? + z% = 4.

Graphof p=2
2

o We want to evaluate
[[Jp1dV, where D is
interior of the given sphere.

@ In spherical coordinates, it
is the sphere p = 2.

@ So, the desired integral is

2 pmo 2

/ //p2sin Ydpdpdb
2

/ /sm )dy do



Summary

We did more examples of integrals in cylindrical and spherical
coordinates.

We discussed how to use double and triple integrals to compute
areas, volumes, and average values.

Next lecture: More applications of integration.



