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Triple Integrals in Cylindrical and Spherical Coordinates

Triple Integrals in Cylindrical Coordinates

Spherical Coordinates

Triple Integrals in Spherical Coordinates

This material represents §3.3.4-3.3.5 from the course notes.



Cylindrical Coordinates Reminders, I

We introduced cylindrical coordinates last time:

Definition

The cylindrical coordinates (r , θ, z) of a point whose rectangular
coordinates are (x , y , z) satisfy x = r cos(θ), y = r sin(θ), and
z = z for r ≥ 0 and 0 ≤ θ ≤ 2π.

Cylindrical coordinates are a simple three-dimensional version of
polar coordinates: we merely include the z-coordinate along with
the polar coordinates r and θ.

To convert from rectangular to cylindrical, we have
r =

√
x2 + y2 and θ = tan−1(y/x) (possibly plus π

depending on the signs of x and y), and obviously z = z .



Cylindrical Coordinates Reminders, II

The parameters r and θ are essentially the same as in polar.

Explicitly, r measures the distance of a point to the z-axis.

Also, θ measures the angle (in a horizontal plane) from the
positive x-direction.

Cylindrical coordinates are useful in simplifying regions that have a
circular symmetry.

In particular, the cylinder x2 + y2 = a2 in 3-dimensional
rectangular coordinates has the much simpler equation r = a
in cylindrical.

Likewise, the cone z = a
√

x2 + y2 has the much simpler
equation z = ar .

More generally, z = f (r) is the surface of revolution obtained
by revolving the graph of z = f (x) around the z-axis.



Cylindrical Coordinates Reminders, III

Like most of our other triple integrals, the most difficult part is
setting up the integral.

When we want to set up a triple integral in cylindrical
coordinates with integration order dz dr dθ, we can project
the solid into the xy -plane (equivalently, the rθ-plane) and
then set up the r and θ limits just as in polar coordinates.

We can then find the z limits just as with triple integrals in
rectangular coordinates: the lower z limit is the equation of
the lower bounding surface, while the upper z limit is the
equation of the upper bounding surface.

The volume differential in cylindrical coordinates is

dV = r dz dr dθ .



Integration in Cylindrical Coordinates, I

Example: Set up and evaluate
∫∫∫

D

√
x2 + y2 dV where D is the

region with 0 ≤ z ≤ 3 inside the cylinder x2 + y2 = 4.

Since
√

x2 + y2 = r , the
function is simply
f (r , θ, z) = r , and the
cylindrical differential is
r dz dr dθ.

The integral is therefore∫ 2π

0

∫ 2

0

∫ 3

0
r · r dz dr dθ

=

∫ 2π

0

∫ 2

0
3r2dr dθ

=

∫ 2π

0
8 dθ = 16π.



Integration in Cylindrical Coordinates, I
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∫∫∫
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f (r , θ, z) = r , and the
cylindrical differential is
r dz dr dθ.

The integral is therefore∫ 2π
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∫ 2
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Integration in Cylindrical Coordinates, II

Example: Set up and evaluate
∫∫∫

D z dV where D is the region
inside x2 + y2 = 9, below z = x2 + y2, and above z = 0.

We use cylindrical
coordinates, since the
bounding surfaces are
r = 3, z = r2, and z = 0 in
cylindrical.

There are no restrictions on
θ, so we have 0 ≤ θ ≤ 2π.
Also, we have 0 ≤ r ≤ 3,
and then 0 ≤ z ≤ r2.

The function is simply
f (r , θ, z) = z , and the
differential is r dz dr dθ.



Integration in Cylindrical Coordinates, II

Example: Set up and evaluate
∫∫∫

D z dV where D is the region
inside x2 + y2 = 9, below z = x2 + y2, and above z = 0.

We use cylindrical
coordinates, since the
bounding surfaces are
r = 3, z = r2, and z = 0 in
cylindrical.

There are no restrictions on
θ, so we have 0 ≤ θ ≤ 2π.
Also, we have 0 ≤ r ≤ 3,
and then 0 ≤ z ≤ r2.

The function is simply
f (r , θ, z) = z , and the
differential is r dz dr dθ.



Integration in Cylindrical Coordinates, II

Example: Set up and evaluate
∫∫∫

D z dV where D is the region
inside x2 + y2 = 9, below z = x2 + y2, and above z = 0.

We use cylindrical
coordinates, since the
bounding surfaces are
r = 3, z = r2, and z = 0 in
cylindrical.

There are no restrictions on
θ, so we have 0 ≤ θ ≤ 2π.
Also, we have 0 ≤ r ≤ 3,
and then 0 ≤ z ≤ r2.

The function is simply
f (r , θ, z) = z , and the
differential is r dz dr dθ.



Integration in Cylindrical Coordinates, III

Example: Set up and evaluate
∫∫∫

D z dV where D is the region
inside x2 + y2 = 9, below z = x2 + y2, and above z = 0.

The integral is therefore∫ 2π

0

∫ 3

0

∫ r2

0
z · r dz dr dθ

=

∫ 2π

0

∫ 3

0

1

2
rz2
∣∣∣z=r2

z=0
dr dθ

=

∫ 2π

0

∫ 3

0

1

2
r5dr dθ

=

∫ 2π

0

243

4
dθ =

243π

2
.



Integration in Cylindrical Coordinates, IV

Example: Integrate the function f (x , y , z) = 1√
x2+y2

on the region

underneath z = 9− x2 − y2, above the xy -plane, with y ≤ 0.

We set up in cylindrical:
the paraboloid has equation
z = 9− r2, so the part
with z ≥ 0 has 0 ≤ r ≤ 3.

Here, we have π ≤ θ ≤ 2π,
and also 0 ≤ z ≤ 9− r2.

Since
√

x2 + y2 = r , the
function is simply f = 1/r ,
and the differential is
r dz dr dθ.



Integration in Cylindrical Coordinates, IV

Example: Integrate the function f (x , y , z) = 1√
x2+y2

on the region

underneath z = 9− x2 − y2, above the xy -plane, with y ≤ 0.

We set up in cylindrical:
the paraboloid has equation
z = 9− r2, so the part
with z ≥ 0 has 0 ≤ r ≤ 3.

Here, we have π ≤ θ ≤ 2π,
and also 0 ≤ z ≤ 9− r2.

Since
√

x2 + y2 = r , the
function is simply f = 1/r ,
and the differential is
r dz dr dθ.



Integration in Cylindrical Coordinates, IV

Example: Integrate the function f (x , y , z) = 1√
x2+y2

on the region

underneath z = 9− x2 − y2, above the xy -plane, with y ≤ 0.

We set up in cylindrical:
the paraboloid has equation
z = 9− r2, so the part
with z ≥ 0 has 0 ≤ r ≤ 3.

Here, we have π ≤ θ ≤ 2π,
and also 0 ≤ z ≤ 9− r2.

Since
√
x2 + y2 = r , the

function is simply f = 1/r ,
and the differential is
r dz dr dθ.



Integration in Cylindrical Coordinates, V

Example: Integrate the function f (x , y , z) = 1√
x2+y2

on the region

underneath z = 9− x2 − y2, above the xy -plane, with y ≤ 0.

The desired integral is∫ 2π

π

∫ 3

0

∫ 9−r2

0

1

r
· r dz dr dθ

=

∫ 2π

π

∫ 3

0

∫ 9−r2

0
1 dz dr dθ

=

∫ 2π

π

∫ 3

0
(9− r2) dr dθ

=

∫ 2π

π
(9r − 1

3
r3)
∣∣∣3
r=0

dθ

=

∫ 2π

π
18 dθ = 18π.



Integration in Cylindrical Coordinates, V

Example: Integrate the function f (x , y , z) = 1√
x2+y2

on the region

underneath z = 9− x2 − y2, above the xy -plane, with y ≤ 0.

The desired integral is∫ 2π
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∫ 3
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1

r
· r dz dr dθ

=

∫ 2π

π

∫ 3
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0
1 dz dr dθ

=

∫ 2π

π
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0
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=

∫ 2π

π
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3
r3)
∣∣∣3
r=0

dθ

=

∫ 2π

π
18 dθ = 18π.



Integration in Cylindrical Coordinates, VI

Example: Evaluate

∫ 2

0

∫ √4−x2
0

∫ 2

√
x2+y2

z
√
x2 + y2 dz dy dx .

This is an iterated integral of the function
f (x , y , z) = z

√
x2 + y2 over the solid region D defined by the

inequalities 0 ≤ x ≤ 2, 0 ≤ y ≤
√

4− x2,
√
x2 + y2 ≤ z ≤ 2.

Notice that the x and y limits describe the region 0 ≤ x ≤ 2,
0 ≤ y ≤

√
4− x2, which is a quarter-disc.

This, along with the presence of
√
x2 + y2 in the z-limit and

in the function, strongly suggest converting to cylindrical
coordinates.



Integration in Cylindrical Coordinates, VI

Example: Evaluate

∫ 2

0

∫ √4−x2
0

∫ 2

√
x2+y2

z
√
x2 + y2 dz dy dx .

This is an iterated integral of the function
f (x , y , z) = z

√
x2 + y2 over the solid region D defined by the

inequalities 0 ≤ x ≤ 2, 0 ≤ y ≤
√

4− x2,
√
x2 + y2 ≤ z ≤ 2.

Notice that the x and y limits describe the region 0 ≤ x ≤ 2,
0 ≤ y ≤

√
4− x2, which is a quarter-disc.

This, along with the presence of
√
x2 + y2 in the z-limit and

in the function, strongly suggest converting to cylindrical
coordinates.



Integration in Cylindrical Coordinates, VII

Example: Evaluate

∫ 2

0

∫ √4−x2
0

∫ 2

√
x2+y2

z
√
x2 + y2 dz dy dx .

In cylindrical coordinates, we can see that the xy -region
becomes 0 ≤ r ≤ 2, 0 ≤ θ ≤ π/2. Also, the range for z
becomes r ≤ z ≤ 2.

Since
√
x2 + y2 = r , the function is simply f = zr , and the

cylindrical differential is r dz dr dθ.

The integral is therefore equal to

∫ π/2

0

∫ 2

0

∫ 2

r
zr · r dz dr dθ.



Integration in Cylindrical Coordinates, VII

Example: Evaluate

∫ 2

0

∫ √4−x2
0

∫ 2

√
x2+y2

z
√
x2 + y2 dz dy dx .

In cylindrical coordinates, we can see that the xy -region
becomes 0 ≤ r ≤ 2, 0 ≤ θ ≤ π/2. Also, the range for z
becomes r ≤ z ≤ 2.

Since
√
x2 + y2 = r , the function is simply f = zr , and the

cylindrical differential is r dz dr dθ.

The integral is therefore equal to

∫ π/2

0

∫ 2

0

∫ 2

r
zr · r dz dr dθ.



Integration in Cylindrical Coordinates, VIII

Example: Evaluate

∫ 2

0

∫ √4−x2
0

∫ 2

√
x2+y2

z
√
x2 + y2 dz dy dx .

Now we can evaluate it:∫ π/2

0

∫ 2

0

∫ 2

r
zr · r dz dr dθ =

∫ π/2

0

∫ 2

0

[
1

2
z2r2

] ∣∣∣2
z=r

dr dθ

=

∫ π/2

0

∫ 2

0

[
2r2 − 1

2
r4
]
dr dθ

=

∫ π/2

0

[
2

3
r3 − 1

10
r5
] ∣∣∣2

r=0
dθ

=

∫ π/2

0
(

16

3
− 32

10
) dθ

=

∫ π/2

0

32

15
dθ =

16π

15
.



Spherical Coordinates, I

Cylindrical coordinates are very useful for evaluating integrals with
circular symmetries.

However, we often want to integrate over spherical regions
too.

The sphere x2 + y2 + z2 = 1 does not have such a nice
description in cylindrical: it is r2 + z2 = 1, which requires
taking square roots when we set up the z-limits.

For this reason, we also have another 3-dimensional coordinate
system, spherical coordinates, which we use for simplifying
integrals involving spheres.

If you like, take a moment to imagine that you are located on
a sphere, and consider how you could describe your position
on the sphere to someone else.



Spherical Coordinates, II

Spherical coordinates are defined as follows:

Definition

The spherical coordinates (ρ, θ, ϕ) of a point (x , y , z) satisfy
x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ for ρ ≥ 0,
0 ≤ θ ≤ 2π, and 0 ≤ ϕ ≤ π.

The parameters θ and ϕ are angles: θ measures longitude,
while ϕ measures latitude.

The parameter ρ measures the distance to the origin.

To find the spherical coordinates of a point in (x , y , z) in
rectangular coordinates, we have
ρ =

√
x2 + y2 + z2 =

√
r2 + z2 and

ϕ = tan−1(r/z) = tan−1(
√
x2 + y2/z), while θ has the same

definition as in cylindrical coordinates.



Spherical Coordinates, III

The parameter ρ measures the distance from the origin (0, 0, 0),
and so the equation ρ = c is the sphere x2 + y2 + z2 = c2:



Spherical Coordinates, IV

The parameter ϕ measures the angle downward from the positive
z-axis, so ϕ = c is the cone z = tan(ϕ)r :



Spherical Coordinates, V

The parameter ϕ measures the angle downward from the positive
z-axis:



Spherical Coordinates, VI

The parameter ϕ measures the angle downward from the positive
z-axis:



Spherical Coordinates, VII

Example: Perform the following coordinate conversions:

1. Find rectangular coordinates for (ρ, θ, ϕ) = (4, 3π/2, π/2).

2. Find spherical coordinates for (x , y , z) = (1, 1,
√

2).

3. Find rectangular coordinates for (ρ, θ, ϕ) = (8, π/6, π/3).

4. Find spherical coordinates for (r , θ, z) = (2, π,−2).

5. Find cylindrical coordinates for (ρ, θ, ϕ) = (8, π/2, π/3).

For (ρ, θ, ϕ) = (4, 3π/2, π/2) we have (x , y , z) = (0,−4, 0).

For (x , y , z) = (1, 1,
√

2) we have (ρ, θ, ϕ) = (2, π/4, π/4).

For (ρ, θ, ϕ) = (8, π/6, π/3) we have (x , y , z) = (6, 2
√

3, 4).

For (r , θ, z) = (2, π,−2) we get (ρ, θ, ϕ) = (2
√

2, π, 3π/4).

For (ρ, θ, ϕ) = (8, π/2, π/3) we get (r , θ, z) = (4
√

3, π/2, 4).



Spherical Coordinates, VII

Example: Perform the following coordinate conversions:

1. Find rectangular coordinates for (ρ, θ, ϕ) = (4, 3π/2, π/2).

2. Find spherical coordinates for (x , y , z) = (1, 1,
√

2).

3. Find rectangular coordinates for (ρ, θ, ϕ) = (8, π/6, π/3).

4. Find spherical coordinates for (r , θ, z) = (2, π,−2).

5. Find cylindrical coordinates for (ρ, θ, ϕ) = (8, π/2, π/3).

For (ρ, θ, ϕ) = (4, 3π/2, π/2) we have (x , y , z) = (0,−4, 0).

For (x , y , z) = (1, 1,
√

2) we have (ρ, θ, ϕ) = (2, π/4, π/4).

For (ρ, θ, ϕ) = (8, π/6, π/3) we have (x , y , z) = (6, 2
√

3, 4).

For (r , θ, z) = (2, π,−2) we get (ρ, θ, ϕ) = (2
√

2, π, 3π/4).

For (ρ, θ, ϕ) = (8, π/2, π/3) we get (r , θ, z) = (4
√

3, π/2, 4).



Spherical Coordinates, VIII

Spherical coordinates are most useful when integrating over regions
with spherical symmetries. (Not so surprising, given the name....)

In spherical, the sphere x2 + y2 + z2 = a2 has the much
simpler equation ρ = a.

Also, the cone az =
√

x2 + y2 is quite simple: ϕ = tan−1(a).

Some common examples: z =
√

3(x2 + y2) is ϕ = π/6,

z =
√

x2 + y2 is ϕ = π/4, z = 0 is ϕ = π/2,
z = −

√
x2 + y2 is ϕ = 3π/4, etc.

We typically set up spherical integrals with the integration
order dρ dϕ dθ, because typically the ρ bounds are the most
complicated, while the θ bounds are the simplest.



Spherical Coordinates, IX

It remains to compute the spherical volume differential dV .

With x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ, we get

J =

∣∣∣∣∣∣
cos θ sinϕ ρ cos θ cosϕ −ρ sin θ sinϕ
sin θ sinϕ ρ sin θ cosϕ ρ cos θ sinϕ

cosϕ −ρ sinϕ 0

∣∣∣∣∣∣ = ρ2 sinϕ.

Thus the differential in spherical coordinates is

dV = ρ2 sinϕ dρ dϕ dθ .

This one is not quite as easy to remember as the cylindrical
area differential. It must simply be memorized.



Spherical Coordinates, X

Example: Find
∫∫∫

D

√
x2 + y2 + z2 dV where D is the region

1 ≤ x2 + y2 + z2 ≤ 4.

The region is bounded by
the two spheres
x2 + y2 + z2 = 1 and
x2 + y2 + z2 = 4, so we set
up in spherical coordinates.

The first sphere is ρ = 1
and the second is ρ = 2.

There are no restrictions on
ϕ and θ.

Thus, the region of
integration is 1 ≤ ρ ≤ 2,
0 ≤ ϕ ≤ π, and
0 ≤ θ ≤ 2π.



Spherical Coordinates, X

Example: Find
∫∫∫

D

√
x2 + y2 + z2 dV where D is the region

1 ≤ x2 + y2 + z2 ≤ 4.

The region is bounded by
the two spheres
x2 + y2 + z2 = 1 and
x2 + y2 + z2 = 4, so we set
up in spherical coordinates.

The first sphere is ρ = 1
and the second is ρ = 2.

There are no restrictions on
ϕ and θ.

Thus, the region of
integration is 1 ≤ ρ ≤ 2,
0 ≤ ϕ ≤ π, and
0 ≤ θ ≤ 2π.



Spherical Coordinates, X

Example: Find
∫∫∫

D

√
x2 + y2 + z2 dV where D is the region

1 ≤ x2 + y2 + z2 ≤ 4.

The region is bounded by
the two spheres
x2 + y2 + z2 = 1 and
x2 + y2 + z2 = 4, so we set
up in spherical coordinates.

The first sphere is ρ = 1
and the second is ρ = 2.

There are no restrictions on
ϕ and θ.

Thus, the region of
integration is 1 ≤ ρ ≤ 2,
0 ≤ ϕ ≤ π, and
0 ≤ θ ≤ 2π.



Spherical Coordinates, XI

Example: Find
∫∫∫

D

√
x2 + y2 + z2 dV where D is the region

1 ≤ x2 + y2 + z2 ≤ 4.

The region is 1 ≤ ρ ≤ 2, 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π.

The function is
√
x2 + y2 + z2 = ρ and the differential is

ρ2 sin(ϕ) dρ dϕ dθ.

The integral in spherical coordinates is therefore∫ 2π

0

∫ π

0

∫ 2

1
ρ · ρ2 sin(ϕ) dρ dϕ dθ

=

∫ 2π

0

∫ π

0

∫ 2

1
ρ3 sin(ϕ) dρ dϕ dθ

=

∫ 2π

0

∫ π

0

1

4
ρ4 sin(ϕ)

∣∣∣2
ρ=1

dϕ dθ

=

∫ 2π

0

∫ π

0

15

4
sin(ϕ) dϕ dθ =

∫ 2π

0

15

2
dθ = 15π.



Spherical Coordinates, XI

Example: Find
∫∫∫

D

√
x2 + y2 + z2 dV where D is the region

1 ≤ x2 + y2 + z2 ≤ 4.

The region is 1 ≤ ρ ≤ 2, 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π.

The function is
√
x2 + y2 + z2 = ρ and the differential is

ρ2 sin(ϕ) dρ dϕ dθ.

The integral in spherical coordinates is therefore∫ 2π

0

∫ π

0

∫ 2

1
ρ · ρ2 sin(ϕ) dρ dϕ dθ

=

∫ 2π

0

∫ π

0

∫ 2

1
ρ3 sin(ϕ) dρ dϕ dθ

=

∫ 2π

0

∫ π

0

1

4
ρ4 sin(ϕ)

∣∣∣2
ρ=1

dϕ dθ

=

∫ 2π

0

∫ π

0

15

4
sin(ϕ) dϕ dθ =

∫ 2π

0

15

2
dθ = 15π.



Spherical Coordinates, XI

Example: Find
∫∫∫

D

√
x2 + y2 + z2 dV where D is the region

1 ≤ x2 + y2 + z2 ≤ 4.

The region is 1 ≤ ρ ≤ 2, 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π.

The function is
√
x2 + y2 + z2 = ρ and the differential is

ρ2 sin(ϕ) dρ dϕ dθ.

The integral in spherical coordinates is therefore∫ 2π

0

∫ π

0

∫ 2

1
ρ · ρ2 sin(ϕ) dρ dϕ dθ

=

∫ 2π

0

∫ π

0

∫ 2

1
ρ3 sin(ϕ) dρ dϕ dθ

=

∫ 2π

0

∫ π

0

1

4
ρ4 sin(ϕ)

∣∣∣2
ρ=1

dϕ dθ

=

∫ 2π

0

∫ π

0

15

4
sin(ϕ) dϕ dθ =

∫ 2π

0

15

2
dθ = 15π.



Summary

We discussed how to set up triple integrals in cylindrical
coordinates.

We introduced spherical coordinates and how to set up triple
integrals in spherical coordinates.

Next lecture: More triple integrals in cylindrical and spherical
coordinates, applications of integration.


