Math 2321 (Multivariable Calculus) Lecture $\#20$ of 38 \sim March 8, 2021

Triple Integrals in Cylindrical and Spherical Coordinates

- Triple Integrals in Cylindrical Coordinates
- Spherical Coordinates
- **•** Triple Integrals in Spherical Coordinates

This material represents §3.3.4-3.3.5 from the course notes.

We introduced cylindrical coordinates last time:

Definition

The cylindrical coordinates (r, θ, z) of a point whose rectangular coordinates are (x, y, z) satisfy $x = r \cos(\theta)$, $y = r \sin(\theta)$, and $z = z$ for $r > 0$ and $0 \le \theta \le 2\pi$.

Cylindrical coordinates are a simple three-dimensional version of polar coordinates: we merely include the z-coordinate along with the polar coordinates r and θ .

• To convert from rectangular to cylindrical, we have $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1}(y/x)$ (possibly plus π depending on the signs of x and y), and obviously $z = z$. The parameters r and θ are essentially the same as in polar.

- Explicitly, r measures the distance of a point to the z-axis.
- Also, θ measures the angle (in a horizontal plane) from the positive x-direction.

Cylindrical coordinates are useful in simplifying regions that have a circular symmetry.

- In particular, the cylinder $x^2 + y^2 = a^2$ in 3-dimensional rectangular coordinates has the much simpler equation $r = a$ in cylindrical.
- Likewise, the cone $z = a\sqrt{x^2 + y^2}$ has the much simpler equation $z = ar$.
- More generally, $z = f(r)$ is the surface of revolution obtained by revolving the graph of $z = f(x)$ around the z-axis.

Like most of our other triple integrals, the most difficult part is setting up the integral.

- When we want to set up a triple integral in cylindrical coordinates with integration order dz dr $d\theta$, we can project the solid into the xy-plane (equivalently, the $r\theta$ -plane) and then set up the r and θ limits just as in polar coordinates.
- We can then find the z limits just as with triple integrals in rectangular coordinates: the lower z limit is the equation of the lower bounding surface, while the upper z limit is the equation of the upper bounding surface.
- The volume differential in cylindrical coordinates is

$$
dV = r dz dr d\theta.
$$

Integration in Cylindrical Coordinates, I

<u>Example</u>: Set up and evaluate $\iiint_D \sqrt{x^2 + y^2} dV$ where D is the region with $0 \le z \le 3$ inside the cylinder $x^2 + y^2 = 4$.

Integration in Cylindrical Coordinates, I

<u>Example</u>: Set up and evaluate $\iiint_D \sqrt{x^2 + y^2} dV$ where D is the region with $0 \le z \le 3$ inside the cylinder $x^2 + y^2 = 4$.

- Since $\sqrt{x^2 + y^2} = r$, the function is simply $f(r, \theta, z) = r$, and the cylindrical differential is r dz dr d θ .
- The integral is therefore $\int^{2\pi}$ 0 \int^{2} 0 \int_0^3 0 $r\cdot r$ dz dr d θ $=$ $\int_{0}^{2\pi}$ 0 \int^{2} 0 $3r^2$ dr d θ $=\int_0^{2\pi}$ 0 $8 d\theta = 16\pi$.

Integration in Cylindrical Coordinates, II

Integration in Cylindrical Coordinates, II

Integration in Cylindrical Coordinates, II

- We use cylindrical coordinates, since the bounding surfaces are $r=3$, $z=r^2$, and $z=0$ in cylindrical.
- There are no restrictions on θ , so we have $0 \leq \theta \leq 2\pi$. Also, we have $0 \le r \le 3$, and then $0 \le z \le r^2$.
- The function is simply $f(r, \theta, z) = z$, and the differential is r dz dr $d\theta$.

Integration in Cylindrical Coordinates, III

• The integral is therefore
\n
$$
\int_0^{2\pi} \int_0^3 \int_0^{r^2} z \cdot r \, dz \, dr \, d\theta
$$
\n
$$
= \int_0^{2\pi} \int_0^3 \frac{1}{2} r z^2 \Big|_{z=0}^{z=r^2} dr \, d\theta
$$
\n
$$
= \int_0^{2\pi} \int_0^3 \frac{1}{2} r^5 dr \, d\theta
$$
\n
$$
= \int_0^{2\pi} \frac{243}{4} d\theta = \frac{243\pi}{2}.
$$

Integration in Cylindrical Coordinates, IV

Integration in Cylindrical Coordinates, IV

Integration in Cylindrical Coordinates, IV

- We set up in cylindrical: the paraboloid has equation $z=9-r^2$, so the part with $z \geq 0$ has $0 \leq r < 3$.
- Here, we have $\pi \leq \theta \leq 2\pi$, and also $0 \le z \le 9 - r^2$.
- Since $\sqrt{x^2 + y^2} = r$, the function is simply $f = 1/r$, and the differential is r dz dr d θ .

Integration in Cylindrical Coordinates, V

<u>Example</u>: Integrate the function $f(x, y, z) = \frac{1}{\sqrt{2}}$ $\frac{1}{x^2+y^2}$ on the region underneath $z = 9 - x^2 - y^2$, above the xy-plane, with $y \le 0$.

• The desired integral is $\int^{2\pi}$ π \int_0^3 0 \int ^{9−r²} 0 1 r · r dz dr dθ

Integration in Cylindrical Coordinates, V

Integration in Cylindrical Coordinates, VI

Example: Evaluate
$$
\int_0^2 \int_0^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^2 z \sqrt{x^2+y^2} dz dy dx
$$
.

Example: Evaluate
$$
\int_0^2 \int_0^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^2 z \sqrt{x^2+y^2} dz dy dx
$$
.

- This is an iterated integral of the function $f(x, y, z) = z\sqrt{x^2 + y^2}$ over the solid region D defined by the inequalities $0\leq x\leq 2,~0\leq y\leq \sqrt{4-x^2},~\sqrt{x^2+y^2}\leq z\leq 2.$
- Notice that the x and y limits describe the region $0 \le x \le 2$, $0 \le y \le \sqrt{4-x^2}$, which is a quarter-disc.
- This, along with the presence of $\sqrt{x^2 + y^2}$ in the z-limit and in the function, strongly suggest converting to cylindrical coordinates.

Integration in Cylindrical Coordinates, VII

Example: Evaluate
$$
\int_0^2 \int_0^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^2 z \sqrt{x^2+y^2} dz dy dx
$$
.

Integration in Cylindrical Coordinates, VII

Example: Evaluate
$$
\int_0^2 \int_0^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^2 z \sqrt{x^2+y^2} dz dy dx
$$
.

- \bullet In cylindrical coordinates, we can see that the xy-region becomes $0 \le r \le 2$, $0 \le \theta \le \pi/2$. Also, the range for z becomes $r < z < 2$.
- Since $\sqrt{x^2 + y^2} = r$, the function is simply $f = zr$, and the cylindrical differential is r dz dr d θ .

The integral is therefore equal to $\int^{\pi/2}$ 0 \int^{2} 0 \int^{2} r zr \cdot r dz dr d $\theta.$

Integration in Cylindrical Coordinates, VIII

Example: Evaluate
$$
\int_0^2 \int_0^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^2 z \sqrt{x^2+y^2} dz dy dx.
$$

• Now we can evaluate it:

$$
\int_0^{\pi/2} \int_0^2 \int_r^2 zr \cdot r \, dz \, dr \, d\theta = \int_0^{\pi/2} \int_0^2 \left[\frac{1}{2} z^2 r^2 \right] \Big|_{z=r}^2 dr \, d\theta
$$

$$
= \int_0^{\pi/2} \int_0^2 \left[2r^2 - \frac{1}{2} r^4 \right] dr \, d\theta
$$

$$
= \int_0^{\pi/2} \left[\frac{2}{3} r^3 - \frac{1}{10} r^5 \right] \Big|_{r=0}^2 d\theta
$$

$$
= \int_0^{\pi/2} \left(\frac{16}{3} - \frac{32}{10} \right) d\theta
$$

$$
= \int_0^{\pi/2} \frac{32}{15} d\theta = \frac{16\pi}{15}.
$$

Cylindrical coordinates are very useful for evaluating integrals with circular symmetries.

- However, we often want to integrate over spherical regions too.
- The sphere $x^2 + y^2 + z^2 = 1$ does not have such a nice description in cylindrical: it is $r^2 + z^2 = 1$, which requires taking square roots when we set up the z-limits.

For this reason, we also have another 3-dimensional coordinate system, spherical coordinates, which we use for simplifying integrals involving spheres.

If you like, take a moment to imagine that you are located on a sphere, and consider how you could describe your position on the sphere to someone else.

Spherical Coordinates, II

Spherical coordinates are defined as follows:

Definition

The spherical coordinates (ρ, θ, φ) of a point (x, y, z) satisfy $x = \rho \sin \varphi \cos \theta$, $y = \rho \sin \varphi \sin \theta$, $z = \rho \cos \varphi$ for $\rho > 0$. $0 \leq \theta \leq 2\pi$, and $0 \leq \varphi \leq \pi$.

- The parameters θ and φ are angles: θ measures longitude, while φ measures latitude.
- The parameter ρ measures the distance to the origin.
- \bullet To find the spherical coordinates of a point in (x, y, z) in rectangular coordinates, we have $\rho=\sqrt{\mathsf{x}^2+\mathsf{y}^2+\mathsf{z}^2}=\sqrt{\mathsf{r}^2+\mathsf{z}^2}$ and $\varphi=\textsf{tan}^{-1}(r/z)=\textsf{tan}^{-1}(\sqrt{x^2+y^2}/z)$, while θ has the same definition as in cylindrical coordinates.

Spherical Coordinates, III

The parameter ρ measures the distance from the origin $(0, 0, 0)$, and so the equation $\rho = c$ is the sphere $x^2 + y^2 + z^2 = c^2$:

Spherical Coordinates, IV

The parameter φ measures the angle downward from the positive z-axis, so $\varphi = c$ is the cone $z = \tan(\varphi)r$.

Spherical Coordinates, V

The parameter φ measures the angle downward from the positive z-axis:

Spherical Coordinates, VI

The parameter φ measures the angle downward from the positive z-axis:

Example: Perform the following coordinate conversions:

- 1. Find rectangular coordinates for $(\rho, \theta, \varphi) = (4, 3\pi/2, \pi/2)$.
- 2. Find spherical coordinates for $(x,y,z)=(1,1,1)$ √ 2).
- 3. Find rectangular coordinates for $(\rho, \theta, \varphi) = (8, \pi/6, \pi/3)$.
- 4. Find spherical coordinates for $(r, \theta, z) = (2, \pi, -2)$.
- 5. Find cylindrical coordinates for $(\rho, \theta, \varphi) = (8, \pi/2, \pi/3)$.

Example: Perform the following coordinate conversions:

- 1. Find rectangular coordinates for $(\rho, \theta, \varphi) = (4, 3\pi/2, \pi/2)$.
- 2. Find spherical coordinates for $(x,y,z)=(1,1,1)$ √ 2).
- 3. Find rectangular coordinates for $(\rho, \theta, \varphi) = (8, \pi/6, \pi/3)$.
- 4. Find spherical coordinates for $(r, \theta, z) = (2, \pi, -2)$.
- 5. Find cylindrical coordinates for $(\rho, \theta, \varphi) = (8, \pi/2, \pi/3)$.
- For $(\rho, \theta, \varphi) = (4, 3\pi/2, \pi/2)$ we have $(x, y, z) = (0, -4, 0)$. √
- For $(x, y, z) = (1, 1, z)$ 2) we have $(\rho, \theta, \varphi) = (2, \pi/4, \pi/4)$. √
- For $(\rho, \theta, \varphi) = (8, \pi/6, \pi/3)$ we have $(x, y, z) = (6, 2)$ 3, 4).
- For $(r, \theta, z) = (2, \pi, -2)$ we get $(\rho, \theta, \varphi) = (2\sqrt{2}, \pi, 3\pi/4)$.
- For $(\rho, \theta, \varphi) = (8, \pi/2, \pi/3)$ we get $(r, \theta, z) = (4\sqrt{3}, \pi/2, 4)$.

Spherical coordinates are most useful when integrating over regions with spherical symmetries. (Not so surprising, given the name....)

In spherical, the sphere $x^2 + y^2 + z^2 = a^2$ has the much simpler equation $\rho = a$.

• Also, the cone
$$
az = \sqrt{x^2 + y^2}
$$
 is quite simple: $\varphi = \tan^{-1}(a)$.

• Some common examples:
$$
z = \sqrt{3(x^2 + y^2)}
$$
 is $\varphi = \pi/6$, $z = \sqrt{x^2 + y^2}$ is $\varphi = \pi/4$, $z = 0$ is $\varphi = \pi/2$, $z = -\sqrt{x^2 + y^2}$ is $\varphi = 3\pi/4$, etc.

We typically set up spherical integrals with the integration order $d\rho d\varphi d\theta$, because typically the ρ bounds are the most complicated, while the θ bounds are the simplest.

It remains to compute the spherical volume differential dV .

- With $x = \rho \sin \varphi \cos \theta$, $y = \rho \sin \varphi \sin \theta$, $z = \rho \cos \varphi$, we get $J =$ $\cos\theta\sin\varphi\quad \rho\cos\theta\cos\varphi\quad -\rho\sin\theta\sin\varphi$ sin θ sin $\varphi \quad \rho$ sin θ cos $\varphi \quad \rho$ cos θ sin φ $\cos \varphi$ − $\rho \sin \varphi$ 0 $= \rho^2 \sin \varphi$.
- Thus the differential in spherical coordinates is

$$
dV = \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta.
$$

• This one is not quite as easy to remember as the cylindrical area differential. It must simply be memorized.

Spherical Coordinates, X

Spherical Coordinates, X

Spherical Coordinates, X

- The region is bounded by the two spheres $x^2 + y^2 + z^2 = 1$ and $x^2+y^2+z^2=$ 4, so we set up in spherical coordinates.
- The first sphere is $\rho = 1$ and the second is $\rho = 2$.
- There are no restrictions on φ and θ .
- Thus, the region of integration is $1 \leq \rho \leq 2$, $0 \leq \varphi \leq \pi$, and $0 \leq \theta \leq 2\pi$.

Spherical Coordinates, XI

- The region is $1 \leq \rho \leq 2$, $0 \leq \varphi \leq \pi$, $0 \leq \theta \leq 2\pi$.
- The function is $\sqrt{x^2 + y^2 + z^2} = \rho$ and the differential is ρ^2 sin (φ) d ρ d φ d θ .
- The integral in spherical coordinates is therefore $\int^{2\pi}$ 0 \int_0^π 0 \int^{2} 1 $\rho\cdot\rho^2\sin(\varphi)$ d ρ d φ d θ

Spherical Coordinates, XI

- The region is $1 \leq \rho \leq 2$, $0 \leq \varphi \leq \pi$, $0 \leq \theta \leq 2\pi$.
- The function is $\sqrt{x^2 + y^2 + z^2} = \rho$ and the differential is ρ^2 sin (φ) d ρ d φ d θ .

• The integral in spherical coordinates is therefore
\n
$$
\int_0^{2\pi} \int_0^{\pi} \int_1^2 \rho \cdot \rho^2 \sin(\varphi) d\rho d\varphi d\theta
$$
\n
$$
= \int_0^{2\pi} \int_0^{\pi} \int_1^2 \rho^3 \sin(\varphi) d\rho d\varphi d\theta
$$
\n
$$
= \int_0^{2\pi} \int_0^{\pi} \frac{1}{4} \rho^4 \sin(\varphi) \Big|_{\rho=1}^2 d\varphi d\theta
$$
\n
$$
= \int_0^{2\pi} \int_0^{\pi} \frac{15}{4} \sin(\varphi) d\varphi d\theta = \int_0^{2\pi} \frac{15}{2} d\theta = 15\pi.
$$

We discussed how to set up triple integrals in cylindrical coordinates.

We introduced spherical coordinates and how to set up triple integrals in spherical coordinates.

Next lecture: More triple integrals in cylindrical and spherical coordinates, applications of integration.