Math 2321 (Multivariable Calculus)
Lecture #20 of 38 ~ March 8, 2021

Triple Integrals in Cylindrical and Spherical Coordinates
@ Triple Integrals in Cylindrical Coordinates
@ Spherical Coordinates
@ Triple Integrals in Spherical Coordinates

This material represents §3.3.4-3.3.5 from the course notes.



Cylindrical Coordinates Reminders, |

We introduced cylindrical coordinates last time:

Definition

The cylindrical coordinates (r, 0, z) of a point whose rectangular
coordinates are (x, y, z) satisfy x = rcos(6), y = rsin(6), and
z=zforr>0and0 <0 < 2.

Cylindrical coordinates are a simple three-dimensional version of
polar coordinates: we merely include the z-coordinate along with
the polar coordinates r and 6.

@ To convert from rectangular to cylindrical, we have

r=+/x2+y?and 6 = tan"!(y/x) (possibly plus 7

depending on the signs of x and y), and obviously z = z.



Cylindrical Coordinates Reminders, Il

The parameters r and 0 are essentially the same as in polar.
@ Explicitly, r measures the distance of a point to the z-axis.

@ Also, 6 measures the angle (in a horizontal plane) from the
positive x-direction.

Cylindrical coordinates are useful in simplifying regions that have a
circular symmetry.
o In particular, the cylinder x* 4 y? = a? in 3-dimensional
rectangular coordinates has the much simpler equation r = a
in cylindrical.

o Likewise, the cone z = a\/x2 + y2 has the much simpler
equation z = ar.

@ More generally, z = f(r) is the surface of revolution obtained
by revolving the graph of z = f(x) around the z-axis.



Cylindrical Coordinates Reminders, Ill

Like most of our other triple integrals, the most difficult part is
setting up the integral.

@ When we want to set up a triple integral in cylindrical
coordinates with integration order dz dr df), we can project
the solid into the xy-plane (equivalently, the rf-plane) and
then set up the r and 6 limits just as in polar coordinates.

@ We can then find the z limits just as with triple integrals in
rectangular coordinates: the lower z limit is the equation of
the lower bounding surface, while the upper z limit is the
equation of the upper bounding surface.

@ The volume differential in cylindrical coordinates is
|dV = rdzdrdd|.




Integration in Cylindrical Coordinates, |

Example: Set up and evaluate [[[, \/x? + y?dV where D is the
region with 0 < z < 3 inside the cylinder x> 4 y? = 4.




Integration in Cylindrical Coordinates, |

Example: Set up and evaluate [[[, \/x? + y?dV where D is the
region with 0 < z < 3 inside the cylinder x> 4 y? = 4.

@ Since \/x2 + y2 =r, the
function is simply
f(r,0,z) = r, and the
cylindrical differential is
rdzdrdf.

@ The integral is therefore

27 2 3
/ //r~rdzdrd9
0 0 Jo
27 2
= / / 3r2drdf
0271' 0

=/ 8df = 16m.
0




Integration in Cylindrical Coordinates, |l

Example: Set up and evaluate [[[,zdV where D is the region
inside x% + y2 = 9, below z = x? 4+ y?, and above z = 0.



Integration in Cylindrical Coordinates, |l

Example: Set up and evaluate [[[,zdV where D is the region
inside x2 + y2 =9, below z = x* + y?, and above z = 0.




Integration in Cylindrical Coordinates, |l

Example: Set up and evaluate [[[,zdV where D is the region
inside x% + y2 = 9, below z = x? 4+ y?, and above z = 0.

@ We use cylindrical
coordinates, since the
bounding surfaces are
r=3,z=r%and z=0n
cylindrical.

@ There are no restrictions on
0, so we have 0 < 0 < 2.
Also, we have 0 < r < 3,
and then 0 < z < r2.

@ The function is simply
f(r,0,z) = z, and the
differential is r dz dr df.




Integration in Cylindrical Coordinates, Il

Example: Set up and evaluate [[[,zdV where D is the region
inside x2 + y2 =9, below z = x? + y?, and above z = 0.

@ The integral is therefore

27 3 pr?
/ // z-rdzdrdf

27

0

21
/ /—r5drd9
0

dr do




Integration in Cylindrical Coordinates, 1V

Example: Integrate the function f(x,y,z) = \/% on the region
x>ty

underneath z = 9 — x2 — y2, above the xy-plane, with y < 0.



Integration in Cylindrical Coordinates, 1V

Example: Integrate the function f(x,y,z) = \/% on the region
x>ty

underneath z = 9 — x> — y?, above the xy-plane, with y < 0.




Integration in Cylindrical Coordinates, 1V

Example: Integrate the function f(x,y,z) = \/% on the region
x>ty

underneath z = 9 — x2 — y2, above the xy-plane, with y < 0.

y T @ We set up in cylindrical:
T the paraboloid has equation

z=9—1r?, so the part

with z> 0 has 0 < r < 3.

\ o

@ Here, we have 7 < 0 < 27,
and also 0 < z < 9 — 12,

@ Since \/x2 + y2 =r, the
function is simply f = 1/r,
and the differential is
rdzdrdf.




Integration in Cylindrical Coordinates, V

Example: Integrate the function f(x,y,z) = \/% on the region
x>ty

underneath z = 9 — x> — y?, above the xy-plane, with y < 0.

@ The desired integral is

27 3 9—r21
/ // L dzdrdo
~ Jo Jo r




Integration in Cylindrical Coordinates, V

Example: Integrate the function f(x,y,z) = \/% on the region
x>ty

underneath z = 9 — x2 — y2, above the xy-plane, with y < 0.

y o ooTTT— @ The desired integral is

27 p3 p9—r? 1
/ / / — - rdzdrdf
~ Jo Jo r
27 p3 p9—r2
= / / / 1dzdrdf
T 0 0
27 3
:/ /(9—r2)drd9
T 0

27 3
:/7r (9r—%r3) 40

2w
:/ 18 df = 18r.




Integration in Cylindrical Coordinates, VI

2 /A—x2 2
Example: Evaluate / / / zv/x%2 + y? dz dy dx.
0 Jo \/ x24y?



Integration in Cylindrical Coordinates, VI

2 /A—x2 2
Example: Evaluate / / / zv/x%2 + y? dz dy dx.
0 Jo \/ x24y?

@ This is an iterated integral of the function
f(x,y,z) = zy/x? + y? over the solid region D defined by the
inequalities 0 < x <2, 0 <y < V4 — x2, \/x2 +y2<z<2.

@ Notice that the x and y limits describe the region 0 < x < 2,
0 <y < V4 — x2, which is a quarter-disc.

e This, along with the presence of \/x2 + y2 in the z-limit and

in the function, strongly suggest converting to cylindrical
coordinates.




Integration in Cylindrical Coordinates, VII

2 VA—x2 2
Example: Evaluate / / / zv/x% + y? dz dy dx.
0 Jo \/ x2+4y?



Integration in Cylindrical Coordinates, VII

2 VA—x2 2
Example: Evaluate / / / zv/x% + y? dz dy dx.
0 Jo \/ x2+4y?

@ In cylindrical coordinates, we can see that the xy-region
becomes 0 < r < 2,0 <6 <7/2. Also, the range for z
becomes r < z < 2.

@ Since \/x2 + y2 = r, the function is simply f = zr, and the
cylindrical differential is r dz dr df.

T2 2 2
@ The integral is therefore equal to / / / zr - rdz dr df.
0 0 r



Integration in Cylindrical Coordinates, VIII

2 pVA—x2 2
Example: Evaluate / / / zv/x2 + y2 dz dy dx.
0 Jo \/ x2+y?

@ Now we can evaluate it:

w/2 2 2 /2 2
/ //zr-rdzdrd@ = / /[lzzrﬂ
0 0o Jr 0 0

/2
:/ /{2r2 }drd@
0 0
[l
0 3 10
/2 16 32
= [ G

/2 2 1
_ / 32 g = 207
0

dr do




Spherical Coordinates, |

Cylindrical coordinates are very useful for evaluating integrals with
circular symmetries.

@ However, we often want to integrate over spherical regions
too.

@ The sphere x> + y? 4+ z? = 1 does not have such a nice
description in cylindrical: it is r> + z2 = 1, which requires
taking square roots when we set up the z-limits.

For this reason, we also have another 3-dimensional coordinate
system, spherical coordinates, which we use for simplifying
integrals involving spheres.

o If you like, take a moment to imagine that you are located on
a sphere, and consider how you could describe your position
on the sphere to someone else.



Spherical Coordinates, Il

Spherical coordinates are defined as follows:

Definition

The spherical coordinates (p, 0, ) of a point (x, y, z) satisfy
X = psinpcosf, y = psinpsinf, z= pcosy for p >0,
0<0<2m, and 0 < p <.

@ The parameters 6 and ¢ are angles: 6 measures longitude,
while ¢ measures latitude.

@ The parameter p measures the distance to the origin.

e To find the spherical coordinates of a point in (x,y, z) in
rectangular coordinates, we have
p=x2+y2+22= \/r2—i—z2 and
¢ =tan"Y(r/z) = tan~}(y/x2 + y2/z), while 0 has the same
definition as in cylindrical coordinates.




Spherical Coordinates, Ill

The parameter p measures the distance from the origin (0,0, 0),
and so the equation p = c is the sphere x? 4 y? + 2% = ¢

Graphof p=1 Graphof p=2
2 2




Spherical Coordinates, IV

The parameter ¢ measures the angle downward from the positive
z-axis, so ¢ = c is the cone z = tan(p)r:

Graph of ¢ = 17/6 Graph of ¢ = 7/4
2 2
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Spherical Coordinates, V

The parameter ¢ measures the angle downward from the positive

Z-axis:
Graph of ¢ = 1/3 Graph of ¢ = 1/2
2 2

N o
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Spherical Coordinates, VI

Graph of ¢ = 3r1/4
2

The parameter ¢ measures the angle downward from the positive

Graph of ¢ = 511/6
2




Spherical Coordinates, VII

Example: Perform the following coordinate conversions:

1.

AR

Find rectangular coordinates for (p, 0, ¢) = (4,37/2,7/2).
Find spherical coordinates for (x,y,z) = (1,1,v2).

Find rectangular coordinates for (p, 0, ¢) = (8,7/6,7/3).
Find spherical coordinates for (r,0,z) = (2, m, —2).

Find cylindrical coordinates for (p,0,¢) = (8,7/2,7/3).



Spherical Coordinates, VII

Example: Perform the following coordinate conversions:
1. Find rectangular coordinates for (p, 0, ¢) = (4,37/2,7/2).

2. Find spherical coordinates for (x,y,z) = (1,1,v/2).

3. Find rectangular coordinates for (p, 0, p) = (8,7/6,7/3).

4. Find spherical coordinates for (r,0,z) = (2,7, —2).

5. Find cylindrical coordinates for (p, 6, ) = (8,7/2,7/3).

e For (p,0,p) = (4,31/2,7/2) we have (x,y,z) = (0,—4,0).
e For (x, y, z) = (1,1,v/2) we have (p,0, ) = (2,7/4,7/4).

° For( ,¢) = (8,7/6,7/3) we have (x,y,z) = (6,2V3, 4).
e For (r,0 z) (2,7, —2) we get (p, 0, ) = (2v/2,7,31/4).
o For (p,0,0) = (8,7/2,7/3) we get (r,0,z) = (4/3,7/2,4).



Spherical Coordinates, VIII

Spherical coordinates are most useful when integrating over regions
with spherical symmetries. (Not so surprising, given the name....)

o In spherical, the sphere x? 4+ y? 4+ z? = a? has the much
simpler equation p = a.

o Also, the cone az = \/x2 + y2 is quite simple: ¢ = tan™1(a).

@ Some common examples: z = 1/3(x2 + y?) is ¢ = 7/6,
z=\/x24+y’isp=n/4 z=01is p = 7/2,
z=—y/x2+y?is p = 371/4, etc.

@ We typically set up spherical integrals with the integration

order dp dy df, because typically the p bounds are the most
complicated, while the 6 bounds are the simplest.



Spherical Coordinates, IX

It remains to compute the spherical volume differential dV.

o With x = psinpcosf, y = psinpsinf, z= pcosy, we get
cosfsinp pcosfcosp —psinfsinp
J=| sinfsing psinfcosp pcosfsing | = p?sinp.
cos —psinp 0
@ Thus the differential in spherical coordinates is
dV = p?singpdpdodb |

@ This one is not quite as easy to remember as the cylindrical
area differential. It must simply be memorized.




Spherical Coordinates, X

Example: Find fffD V/x2 + y?2 + z2dV where D is the region

1<x?24+y2+22<4



Spherical Coordinates, X

Example: Find [[[, /x? + y? + z2 dV where D is the region
1§X2—|—y2+22§4.




Spherical Coordinates, X

Example: Find fffD V/x2 + y?2 + z2dV where D is the region

1<x?24+y2+22<4
o

The region is bounded by
the two spheres

x>+ y?+ 272 =1 and

x2 + y? + 22 = 4, so we set
up in spherical coordinates.
The first sphereis p=1
and the second is p = 2.

There are no restrictions on
w and 6.

Thus, the region of
integration is 1 < p < 2,
0<p<m, and
0<0<2n7.



Spherical Coordinates, Xl

Example: Find [[[, /x? + y? + z2 dV where D is the region
1<x®+y?+22<4



Spherical Coordinates, Xl

Example: Find [[[, /x? + y? + z2 dV where D is the region
1<x®+y?+22<4

@ Theregionis1<p<2,0<p<m0<60< 27,

@ The function is \/x2 + y2 + z2 = p and the differential is
p?sin(p) dp dip do.

@ The integral in spherical coordinates is therefore

27 T 2
/ / / p-p’sin(p)dpdedo
0 0 1



Spherical Coordinates, Xl

Example: Find [[[, /x? + y? + z2 dV where D is the region
1<x®+y?+22<4

@ Theregionis1<p<2,0<p<m0<60< 27,

@ The function is \/x2 + y2 + z2 = p and the differential is
p?sin(p) dp dip do.

@ The integral in spherical coordinates is therefore

2 ™ 2
/ / / p-p’sin(p)dpdedo
o Jo J1
2 pm 2
:/ / / p>sin(y) dp dp db
02 0 1
:/ / fp4sin(g0)‘ dy do
o, Jo 4 p=1

27 ™1 27 1
= / / b sin(p) dp do = / n df = 15m.
o Jo 4 o 2



Summary

We discussed how to set up triple integrals in cylindrical
coordinates.

We introduced spherical coordinates and how to set up triple
integrals in spherical coordinates.

Next lecture: More triple integrals in cylindrical and spherical
coordinates, applications of integration.



