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Triple Integrals + Change of Coordinates

More Triple Integrals

General Changes of Coordinates

Cylindrical Coordinates

This material represents §3.3.1 + 3.3.4-3.3.5 from the course
notes.



More Triple Integrals, I

Example: Set up an iterated integral for each of the following:

4.
∫∫∫

D z dV where D is the region bounded by y + z = 1,
y = x2, and the xy -plane.

For dz dy dx , we project
into the xy -plane.

The region lies between
y = 1 and y = x2.

So, we have −1 ≤ x ≤ 1
and x2 ≤ y ≤ 1.

The z limits are z = 0 and
z = 1− y .

Thus, our triple integral is∫ 1

−1

∫ 1

x2

∫ 1−y

0
z dz dy dx .
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More Triple Integrals, I

Example: Set up an iterated integral for each of the following:

4.
∫∫∫

D z dV where D is the region bounded by y + z = 1,
y = x2, and the xy -plane.

For dz dy dx , we project
into the xy -plane.

The region lies between
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So, we have −1 ≤ x ≤ 1
and x2 ≤ y ≤ 1.

The z limits are z = 0 and
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∫ 1

x2
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0
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More Triple Integrals, II

Example: Set up an iterated integral for each of the following:

4.
∫∫∫

D z dV where D is the region bounded by y + z = 1,
y = x2, and the xy -plane.

We could also do dx dz dy
by projecting into the
yz-plane.

The region is 0 ≤ y ≤ 1,
0 ≤ z ≤ 1− y .

The x limits are −√y
(front) and

√
y (back).

Thus, our triple integral is∫ 1

0

∫ 1−y

0

∫ √y
−√y

z dx dz dy .



More Triple Integrals, II

Example: Set up an iterated integral for each of the following:

4.
∫∫∫

D z dV where D is the region bounded by y + z = 1,
y = x2, and the xy -plane.

We could also do dx dz dy
by projecting into the
yz-plane.

The region is 0 ≤ y ≤ 1,
0 ≤ z ≤ 1− y .

The x limits are −√y
(front) and

√
y (back).

Thus, our triple integral is∫ 1

0

∫ 1−y

0

∫ √y
−√y

z dx dz dy .



More Triple Integrals, III

Example: Set up an iterated integral for each of the following:

5. The integral of f (x , y , z) = x on the region with x , y , z ≥ 0,
below x + z = 1, and also below y2 + z = 1.

If we use dz dy dx and
project into the xy -plane,
we will have to divide into
two regions, because the
top surface changes in the
middle of the region.

It is better to use a
different integration order
here, where we project into
the xz or yz plane.



More Triple Integrals, III

Example: Set up an iterated integral for each of the following:

5. The integral of f (x , y , z) = x on the region with x , y , z ≥ 0,
below x + z = 1, and also below y2 + z = 1.

If we use dz dy dx and
project into the xy -plane,
we will have to divide into
two regions, because the
top surface changes in the
middle of the region.

It is better to use a
different integration order
here, where we project into
the xz or yz plane.



More Triple Integrals, IV

Example: Set up an iterated integral for each of the following:

5. The integral of f (x , y , z) = x on the region with x , y , z ≥ 0,
below x + z = 1, and also below y2 + z = 1.

For dy dz dx , we project
into the xz-plane.

The region lies between
z = 0 and z = 1− x .

So, we have 0 ≤ x ≤ 1 and
0 ≤ z ≤ 1− x .

Then y ranges from 0
(front) to

√
1− z (back).

Thus, our triple integral is∫ 1

0

∫ 1−x

0

∫ √1−z
0

x dy dz dx .



More Triple Integrals, IV

Example: Set up an iterated integral for each of the following:

5. The integral of f (x , y , z) = x on the region with x , y , z ≥ 0,
below x + z = 1, and also below y2 + z = 1.

For dy dz dx , we project
into the xz-plane.

The region lies between
z = 0 and z = 1− x .

So, we have 0 ≤ x ≤ 1 and
0 ≤ z ≤ 1− x .

Then y ranges from 0
(front) to

√
1− z (back).

Thus, our triple integral is∫ 1

0

∫ 1−x

0

∫ √1−z
0

x dy dz dx .



More Triple Integrals, IV

Example: Set up an iterated integral for each of the following:

5. The integral of f (x , y , z) = x on the region with x , y , z ≥ 0,
below x + z = 1, and also below y2 + z = 1.

For dy dz dx , we project
into the xz-plane.

The region lies between
z = 0 and z = 1− x .

So, we have 0 ≤ x ≤ 1 and
0 ≤ z ≤ 1− x .

Then y ranges from 0
(front) to

√
1− z (back).

Thus, our triple integral is∫ 1

0

∫ 1−x

0

∫ √1−z
0

x dy dz dx .



More Triple Integrals, V

Example: Set up an iterated integral for each of the following:

5. The integral of f (x , y , z) = x on the region with x , y , z ≥ 0,
below x + z = 1, and also below y2 + z = 1.

For dx dz dy , we project
into the yz-plane.

The region lies between
z = 0 and z = 1− y2.

So, we have 0 ≤ y ≤ 1 and
0 ≤ z ≤ 1− y2.

Then x ranges from 0
(front) to 1− z (back).

Thus, our triple integral is∫ 1

0

∫ 1−y2

0

∫ 1−z

0
x dx dz dy .



More Triple Integrals, V

Example: Set up an iterated integral for each of the following:

5. The integral of f (x , y , z) = x on the region with x , y , z ≥ 0,
below x + z = 1, and also below y2 + z = 1.

For dx dz dy , we project
into the yz-plane.

The region lies between
z = 0 and z = 1− y2.

So, we have 0 ≤ y ≤ 1 and
0 ≤ z ≤ 1− y2.

Then x ranges from 0
(front) to 1− z (back).

Thus, our triple integral is∫ 1

0

∫ 1−y2

0

∫ 1−z

0
x dx dz dy .



More Triple Integrals, V

Example: Set up an iterated integral for each of the following:

5. The integral of f (x , y , z) = x on the region with x , y , z ≥ 0,
below x + z = 1, and also below y2 + z = 1.

For dx dz dy , we project
into the yz-plane.

The region lies between
z = 0 and z = 1− y2.

So, we have 0 ≤ y ≤ 1 and
0 ≤ z ≤ 1− y2.

Then x ranges from 0
(front) to 1− z (back).

Thus, our triple integral is∫ 1

0

∫ 1−y2

0

∫ 1−z

0
x dx dz dy .



More Triple Integrals, VI

Example: Set up an iterated integral for each of the following:

6.
∫∫∫

D 1 dV where D is the region cut from the cylinder
x2 + y2 = 1 by the planes z = 0 and z = x + 2.

We try dz dy dx .

The xy -region is the
interior of the circle
x2 + y2 = 1, which we can
describe as −1 ≤ x ≤ 1,
−
√

1− x2 ≤ y ≤
√

1− x2.

Then z ranges from 0
(bottom) to x + 2 (top).

Thus, our triple integral is∫ 1

−1

∫ √1−x2
−
√
1−x2

∫ x+2

0
1 dz dy dx .



More Triple Integrals, VI

Example: Set up an iterated integral for each of the following:
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x2 + y2 = 1, which we can
describe as −1 ≤ x ≤ 1,
−
√

1− x2 ≤ y ≤
√

1− x2.

Then z ranges from 0
(bottom) to x + 2 (top).

Thus, our triple integral is∫ 1

−1

∫ √1−x2
−
√
1−x2

∫ x+2

0
1 dz dy dx .



More Triple Integrals, VI
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−
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1− x2 ≤ y ≤
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1− x2.

Then z ranges from 0
(bottom) to x + 2 (top).

Thus, our triple integral is∫ 1

−1

∫ √1−x2
−
√
1−x2

∫ x+2

0
1 dz dy dx .



Change of Coordinates, I

So far, we have primarily discussed double and triple integrals in
rectangular coordinates.

We will now talk about the multivariable equivalent of the
one-variable integration technique of substitution.

If we think about substitution as being a “change of variables”
to a new system of coordinates, then the answer is yes: we
can rewrite multiple integrals in different coordinate systems.

In fact, we have already discussed an alternative coordinate
system: namely, polar coordinates.

Our goal today is to discuss how integrals transform under
general changes of coordinates.



Change of Coordinates, II

Let’s review how we transform integrals from rectangular to polar,
as a prototype for other coordinate changes.

If we want to set up
∫∫

R f (x , y) dA, there are three things we
need to convert into polar coordinates:

1. The region of integration.
2. The function f (x , y).
3. The differential dA.

The same situation will hold if we want to transform into a
different coordinate system.



Change of Coordinates, III

For a change of coordinates in a double integral, we will have two
new variables: let’s call them s and t.

Specifically, suppose that we write x = x(s, t) and y = y(s, t)
in terms of s and t.

Then it is very easy to convert the function f (x , y) into a
function of s and t: we simply plug in the expressions for x
and y in terms of s and f .

We can also transform the region into the new st-coordinates,
much like we did with polar coordinates.

The only other question is: how do we convert the area
differential dA?



Change of Coordinates, IV

So, consider dA = dy dx .

If we change s slightly, then x and y will both change:
specifically, the change is ∆v ≈ 〈xs∆s, ys∆s〉.
Likewise, if we change t slightly, then we get another vector
∆w ≈ 〈xt∆t, yt∆t〉.
These two vectors form a parallelogram, and the area of this
parallelogram is ∆y ∆x .

But the area is also the magnitude of the cross product

||∆v ×∆w|| =

∣∣∣∣ xs ys
xt yt

∣∣∣∣ =

∣∣∣∣ ∂x/∂s ∂x/∂t
∂y/∂s ∂y/∂t

∣∣∣∣∆s ∆t.

Therefore, by taking limits as ∆s, ∆t approach 0, the area

differential is dA =

∣∣∣∣ ∂x/∂s ∂x/∂t
∂y/∂s ∂y/∂t

∣∣∣∣ ds dt.



Change of Coordinates, V

We give this “differential change of coordinates” quantity a name:

Definition

Suppose that x = x(s, t) and y = y(s, t) are functions of s and t.
Then we define the Jacobian as the determinant

J =
∂(x , y)

∂(s, t)
=

∣∣∣∣ ∂x/∂s ∂x/∂t
∂y/∂s ∂y/∂t

∣∣∣∣.
The idea is that the Jacobian tells us how to convert the area
differential into st-coordinates: specifically, we have

dA = dy dx =
∂(x , y)

∂(s, t)
dt ds.



Change of Coordinates, VI

Example: Find the Jacobian for the change of coordinates from
rectangular to polar, with x = r cos θ and y = r sin θ.

We just have to compute J =
∂(x , y)

∂(s, t)
=

∣∣∣∣ ∂x/∂r ∂x/∂θ
∂y/∂r ∂y/∂θ

∣∣∣∣.
We get J =

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r cos2 θ − (−r sin2 θ) = r .

Thus, as indeed we saw last week, the polar area differential is
dA = r dr dθ.



Change of Coordinates, VI

Example: Find the Jacobian for the change of coordinates from
rectangular to polar, with x = r cos θ and y = r sin θ.

We just have to compute J =
∂(x , y)

∂(s, t)
=

∣∣∣∣ ∂x/∂r ∂x/∂θ
∂y/∂r ∂y/∂θ

∣∣∣∣.
We get J =

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r cos2 θ − (−r sin2 θ) = r .

Thus, as indeed we saw last week, the polar area differential is
dA = r dr dθ.



Change of Coordinates, VII

Here is the general theorem on changing coordinates in a double
integral:

Theorem (General Substitution, 2 variables)

If f (x , y) is continuous on R, and x = x(s, t) and y = y(s, t) are
functions of s and t, then∫∫

R
f (x , y) dy dx =

∫∫
R′

f (x(s, y), y(s, t))

∣∣∣∣∂(x , y)

∂(s, t)

∣∣∣∣ dt ds

where R ′ is the region R expressed in st-coordinates and
∂(x , y)

∂(s, t)
= J(x , y) =

∣∣∣∣ ∂x/∂s ∂x/∂t
∂y/∂s ∂y/∂t

∣∣∣∣ is the Jacobian of the

coordinate transformation.



Change of Coordinates, VIII

As a warning, for this theorem to apply, the change of coordinates
needs to be injective (one-to-one) on the original region of
integration.

Specifically, if the image of the old region in the new set of
coordinates ranges over some parts of the new region of
integration more than once, the formula will be incorrect.

For example, the change of coordinates s = sin(x), t = sin(y)
fails this criterion if applied to the square 0 ≤ x ≤ 4π,
0 ≤ y ≤ 4π, then every point in the image square
−1 ≤ s ≤ 1, −1 ≤ t ≤ 1 will be covered four times.



Change of Coordinates, IX

Example: Evaluate
∫∫

R(x2 + y2) dA where R is the region in the
first quadrant defined by the inequalities 1 ≤ xy ≤ 9, 1 ≤ y/x ≤ 4.

We could divide this region
into 3 pieces (horizontal or
vertical slices).

But this would be very
laborious: we’d have to
find all the intersection
points, and then set up and
evaluate 3 separate double
integrals.

We can save a lot of effort
by instead doing a change
of variables.



Change of Coordinates, IX

Example: Evaluate
∫∫

R(x2 + y2) dA where R is the region in the
first quadrant defined by the inequalities 1 ≤ xy ≤ 9, 1 ≤ y/x ≤ 4.

We could divide this region
into 3 pieces (horizontal or
vertical slices).

But this would be very
laborious: we’d have to
find all the intersection
points, and then set up and
evaluate 3 separate double
integrals.

We can save a lot of effort
by instead doing a change
of variables.



Change of Coordinates, X

Example: Evaluate
∫∫

R(x2 + y2) dA where R is the region in the
first quadrant defined by the inequalities 1 ≤ xy ≤ 9, 1 ≤ y/x ≤ 4.

The inequalities for the
region suggest trying
s = xy and t = y/x , since
then the region is just
1 ≤ s ≤ 9, 1 ≤ t ≤ 4.

Solving for x and y gives
y =
√

st, x =
√

s/t, which
is one-to-one on the region
we have here.



Change of Coordinates, XI

Example: Evaluate
∫∫

R(x2 + y2) dA where R is the region in the
first quadrant defined by the inequalities 1 ≤ xy ≤ 9, 1 ≤ y/x ≤ 4.

With s = xy and t = y/x , so that y =
√

st, x =
√

s/t, we
now transform the region, function, and differential.

The bounds of integration are 1 ≤ s ≤ 9 and 1 ≤ t ≤ 4.

The function is x2 + y2 =
s

t
+ st.

For the new differential, we compute the Jacobian:

J =

∣∣∣∣ ∂x/∂s ∂x/∂t
∂y/∂s ∂y/∂t

∣∣∣∣ =

∣∣∣∣ 1
2s−1/2t−1/2 −1

2s1/2t−3/2
1
2s−1/2t1/2 1

2s1/2t−1/2

∣∣∣∣
=
(
1
2s−1/2t−1/2

) (
1
2s1/2t−1/2

)
−
(
1
2s−1/2t1/2

) (
−1

2s1/2t−3/2
)

=
1

4t
− (− 1

4t
) =

1

2t
. Thus, dA =

1

2t
dt ds.



Change of Coordinates, XI

Example: Evaluate
∫∫

R(x2 + y2) dA where R is the region in the
first quadrant defined by the inequalities 1 ≤ xy ≤ 9, 1 ≤ y/x ≤ 4.

With s = xy and t = y/x , so that y =
√

st, x =
√

s/t, we
now transform the region, function, and differential.

The bounds of integration are 1 ≤ s ≤ 9 and 1 ≤ t ≤ 4.

The function is x2 + y2 =
s

t
+ st.

For the new differential, we compute the Jacobian:

J =

∣∣∣∣ ∂x/∂s ∂x/∂t
∂y/∂s ∂y/∂t

∣∣∣∣ =

∣∣∣∣ 1
2s−1/2t−1/2 −1

2s1/2t−3/2
1
2s−1/2t1/2 1

2s1/2t−1/2

∣∣∣∣
=
(
1
2s−1/2t−1/2

) (
1
2s1/2t−1/2

)
−
(
1
2s−1/2t1/2

) (
−1

2s1/2t−3/2
)

=
1

4t
− (− 1

4t
) =

1

2t
. Thus, dA =

1

2t
dt ds.



Change of Coordinates, XII

Example: Evaluate
∫∫

R(x2 + y2) dA where R is the region in the
first quadrant defined by the inequalities 1 ≤ xy ≤ 9, 1 ≤ y/x ≤ 4.

Putting all of this together shows that the integral in

st-coordinates is

∫ 9

1

∫ 4

1

(s

t
+ st

)
·
(

1

2t

)
dt ds.

Now we can evaluate it:∫ 9

1

∫ 4

1

(s

t
+ st

)( 1

2t

)
dt ds =

∫ 9

1

∫ 4

1

s

2

[
t−2 + 1

]
dt ds

=

∫ 9

1

s

2

[
−t−1 + t

] ∣∣4
t=1

ds

=

∫ 9

1

s

2

[
3

4
+ 3

]
ds

=

∫ 9

1

15

8
s ds = 75.



Change of Coordinates, XII

Example: Evaluate
∫∫
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∫ 9

1

s

2

[
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] ∣∣4
t=1
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∫ 9

1
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[
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∫ 9

1

15

8
s ds = 75.



Change of Coordinates, XIII

We can also do changes of coordinates in triple integrals.

The general procedure is essentially identical, except for
having three variables s, t, and u instead of just two: we must
transform the region, the function, and the differential.

The region and function work just as before. The differential
is again given by a Jacobian, which is now a 3× 3
determinant instead of a 2× 2 determinant.

This 3× 3 determinant measures the volume of a
3-dimensional “parallelepiped”, just as the 2× 2 determinant
measured the volume of a 2-dimensional parallelogram.



Change of Coordinates, XIV

Here is the general coordinate-change theorem for triple integrals:

Theorem (General Substitution, 3 variables)

If f (x , y , z) is continuous on D, and x = x(s, t, u), y = y(s, t, u),
and z = z(s, t, u) are functions of s, t, u, then∫∫∫

D
f (x , y , z) dz dy dx

=

∫∫∫
D′

f (x(s, t, u), y(s, t, u), z(s, t, u))

∣∣∣∣∂(x , y , z)

∂(s, t, u)

∣∣∣∣ du dt ds

where D ′ is the region D expressed in stu-coordinates and

J =
∂(x , y , z)

∂(s, t, u)
=

∣∣∣∣∣∣
∂x/∂s ∂x/∂t ∂x/∂u
∂y/∂s ∂y/∂t ∂y/∂u
∂z/∂s ∂z/∂t ∂z/∂u

∣∣∣∣∣∣ is the Jacobian of

the coordinate transformation.



Change of Coordinates, XV

In general, unless the region has some kind of obvious description,
doing three-dimensional coordinate changes can be very tricky.

Therefore, we won’t bother doing any of these general
3-dimensional coordinate changes.

We will instead focus on two important 3-dimensional
generalizations of polar coordinates that are very useful for
simplifying integrals on regions that have circular or spherical
symmetries.

Such situations arise often in physics, chemistry, and
engineering due to the spherical symmetry of gravitational and
electrical fields.

These coordinate systems are cylindrical coordinates (r , θ, z)
and spherical coordinates (ρ, θ, ϕ).



Cylindrical Coordinates, I

We start with cylindrical coordinates.

Definition

The cylindrical coordinates (r , θ, z) of a point whose rectangular
coordinates are (x , y , z) satisfy x = r cos(θ), y = r sin(θ), and
z = z for r ≥ 0 and 0 ≤ θ ≤ 2π.

Cylindrical coordinates are a simple three-dimensional version of
polar coordinates: we merely include the z-coordinate along with
the polar coordinates r and θ.

To convert from rectangular to cylindrical, we have
r =

√
x2 + y2 and θ = tan−1(y/x) (possibly plus π

depending on the signs of x and y), and obviously z = z .



Cylindrical Coordinates, II

The graphs of r = c are vertical cylinders x2 + y2 = c2:



Cylindrical Coordinates, III

The graphs of θ = c are vertical half-planes:



Cylindrical Coordinates, IV

Example: Perform the following coordinate conversions:

1. Find cylindrical coordinates for (x , y , z) = (1, 1, 3).

2. Find rectangular coordinates for (r , θ, z) = (4, π/6, 0).

3. Find cylindrical coordinates for (x , y , z) = (−
√

3, 1,−2).

For (x , y , z) = (1, 1, 3) we have (r , θ, z) = (
√

2, π/4, 3).

For (r , θ, z) = (4, π/6, 0) we have (x , y , z) = (2
√

3, 2, 0).

For (x , y , z) = (−
√

3, 1,−2) we have (r , θ, z) = (2, 5π/6,−2).



Cylindrical Coordinates, IV

Example: Perform the following coordinate conversions:

1. Find cylindrical coordinates for (x , y , z) = (1, 1, 3).

2. Find rectangular coordinates for (r , θ, z) = (4, π/6, 0).

3. Find cylindrical coordinates for (x , y , z) = (−
√

3, 1,−2).

For (x , y , z) = (1, 1, 3) we have (r , θ, z) = (
√

2, π/4, 3).

For (r , θ, z) = (4, π/6, 0) we have (x , y , z) = (2
√

3, 2, 0).

For (x , y , z) = (−
√

3, 1,−2) we have (r , θ, z) = (2, 5π/6,−2).



Cylindrical Coordinates, V

The parameters r and θ are essentially the same as in polar.

Explicitly, r measures the distance of a point to the z-axis.

Also, θ measures the angle (in a horizontal plane) from the
positive x-direction.

Cylindrical coordinates are useful in simplifying regions that have a
circular symmetry.

In particular, the cylinder x2 + y2 = a2 in 3-dimensional
rectangular coordinates has the much simpler equation r = a
in cylindrical.

Likewise, the cone z = a
√

x2 + y2 has the much simpler
equation z = ar .

More generally, z = f (r) is the surface of revolution obtained
by revolving the graph of z = f (x) around the z-axis.



Cylindrical Coordinates, VI

The last task for cylindrical coordinates is to compute the volume
differential dV .

For x = r cos θ, y = r sin θ, z = z , the Jacobian is

J =

∣∣∣∣∂(x , y , z)

∂(r , θ, z)

∣∣∣∣ =

∣∣∣∣∣∣
cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣ = r .

Thus the differential in cylindrical coordinates is

dV = r dz dr dθ .

Notice that this is just the polar differential dA = r dr dθ with
a dz in front of it.

We typically set up cylindrical integrals with the integration
order dz dr dθ, since typically the z-bounds are the most
complicated. But other orders are, of course, possible!



Cylindrical Coordinates, VII

Like most of our other triple integrals, the most difficult part is
setting up the integral.

When we want to set up a triple integral in cylindrical
coordinates with integration order dz dr dθ, we can project
the solid into the xy -plane (equivalently, the rθ-plane) and
then set up the r and θ limits just as in polar coordinates.

We can then find the z limits just as with triple integrals in
rectangular coordinates: the lower z limit is the equation of
the lower bounding surface, while the upper z limit is the
equation of the upper bounding surface.



Cylindrical Coordinates, VII

Example: Set up and evaluate
∫∫∫

D

√
x2 + y2 dV where D is the

region with 0 ≤ z ≤ 3 inside the cylinder x2 + y2 = 4.

We use cylindrical coordinates, since the region is a cylinder.

In cylindrical coordinates, the cylinder has equation r = 2.

There are no restrictions on θ, so we have 0 ≤ θ ≤ 2π, and we
were given 0 ≤ z ≤ 3.

Since
√

x2 + y2 = r , the function is simply f (r , θ, z) = r , and
the cylindrical differential is r dz dr dθ.

The integral is therefore∫ 2π

0

∫ 2

0

∫ 3

0
r · r dz dr dθ =

∫ 2π

0

∫ 2

0
3r2dr dθ =

∫ 2π

0
8 dθ = 16π.
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0
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∫ 2π

0
8 dθ = 16π.



Summary

We discussed general changes of coordinates.

We introduced cylindrical coordinates and how to set up triple
integrals in cylindrical coordinates.

We introduced spherical coordinates.

Next lecture: Cylindrical and spherical coordinates.


