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Triple Integrals

Triple Integrals in Rectangular Coordinates

Setting Up Iterated Triple Integrals

This material represents §3.2 from the course notes.



Triple Integrals, I

Last time, we briefly mentioned triple integrals. Today we will
discuss how to set up and evaluate triple integrals in rectangular
coordinates.

One way to interpret what a triple integral represents is to
think of a function f (x , y , z) as being the density of a solid
object D at a given point (x , y , z).

Then the triple integral of f (x , y , z) on the region D
represents the total mass of the solid.

We will give some other uses and interpretations of triple
integrals later. (Many of the applications are motivated by
physics / related areas, such as computing electrical or
magnetic flux.)



Iterated Integrals, II

Like with double integrals, we will write all of our triple integrals as
iterated integrals.

Computing a triple integral, once we have written it down, is
usually straightforward, much like with a double integral.

Generally, the more difficult part of the problems is setting up
the integral, which requires us to sketch the region and figure
out the proper bounds of integration.

To be fair, actually computing a triple integral can involve a
lot of algebra and it may take a while to do all the
calculations, but there is nothing conceptually harder than
what we were doing with iterated double integrals.

Once we have the iterated integral set up, however, it’s just
calculation.



Iterated Integrals, III

Example: Evaluate the integral
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Iterated Integrals, IV

Now we focus on how to set up triple integrals as iterated integrals.

To do this, we choose an order of integration, and then slice
up the region of integration accordingly to identify the
integration bounds for each variable.

However, since we have 3 variables instead of 2, we now have
3! = 6 possible integration orders.

We most commonly use the order dz dy dx , but depending on
the problem, other integration orders may be preferable.



Iterated Integrals, V

We might also worry that the value of a triple integral might
depend on the order of integration, but conveniently, we have a
version of Fubini’s theorem here that guarantees the value is
independent of the order as long as f is continuous:

Theorem (Fubini’s Theorem)

If f (x , y , z) is continuous on D =
{(x , y , z) : a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), h1(x , y) ≤ z ≤ h2(x , y)},

then

∫∫∫
D
f (x , y , z) dV =

∫ b

a

∫ g2(x)

g1(x)

∫ h2(x ,y)

h1(x ,y)
f (x , y , z) dz dy dx,

and all other orders of integration will also yield the same value.



Iterated Integrals, VI

Here is the procedure for setting up triple integrals:

1. Determine the region of integration, and sketch it.

2. Decide on an order of integration and slice up the region
according to the chosen order.

3. Determine the limits of integration one at a time, starting
with the outer variable. The region may need to be split into
several pieces, if the boundary surfaces change definition in
the middle of the region.

4. Evaluate the integral.



Iterated Integrals, VII

The difficult part is identifying the limits of integration.

The simplest method is to project the solid region into the
plane spanned by the outer and middle variables, obtaining a
region in that plane: then set up the outer and middle limits
in the same way as for a double integral on that planar region.

With the integration orders dz dy dx or dz dx dy we project
into the xy -plane, with the orders dy dz dx or dy dx dz we
project into the xz-plane, and with dx dz dy or dx dy dz we
project into the yz-plane.

Then, to find the bounds on the inner limit, we imagine
moving parallel to the direction of the inner variable until we
enter the region, and continuing until we leave the region.
The “entry” surface is the lower limit, while the “exit” surface
is the upper limit.



Iterated Integrals, VIII

Example: Find
∫∫∫

D x dV where D is the solid bounded by the
planes x = 0, y = 0, z = 0, and x + 2y + 3z = 6.

First, we sketch the region. It is a triangular pyramid (or, if
you want to be fancy, a tetrahedron) whose vertices are
(0, 0, 0), (6, 0, 0), (0, 3, 0), and (0, 0, 2):



Iterated Integrals, VIII

Example: Find
∫∫∫

D x dV where D is the solid bounded by the
planes x = 0, y = 0, z = 0, and x + 2y + 3z = 6.

First, we sketch the region. It is a triangular pyramid (or, if
you want to be fancy, a tetrahedron) whose vertices are
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Iterated Integrals, IX

Example: Find
∫∫∫

D x dV where D is the solid bounded by the
planes x = 0, y = 0, z = 0, and x + 2y + 3z = 6.

There are six possible orders of integration, and we could use
any of the six.

We will set up the integral in the order dz dy dx , which
requires us to project this solid into the xy -plane.

If we view the region from the top down, we can see that this
projection will be a triangle.



Iterated Integrals, X

Example: Find
∫∫∫

D x dV where D is the solid bounded by the
planes x = 0, y = 0, z = 0, and x + 2y + 3z = 6.

Here is the projection into the xy -plane, cut into vertical slices:

Since we are in the plane
z = 0, the diagonal line has
equation x + 2y = 6.

The slices start at x = 0
and end at x = 6.

The bottom curve of each
slice is y = 0 while the top
curve is y = (6− x)/2.

These give us the x and y
limits of integration.



Iterated Integrals, XI

Example: Find
∫∫∫

D x dV where D is the solid bounded by the
planes x = 0, y = 0, z = 0, and x + 2y + 3z = 6.

For the z-limits, we need the 3-dimensional picture of the solid.

For fixed x and y , as we
move in the direction of
increasing z , we enter the
solid through the xy -plane
z = 0 and exit the solid
through the tilted plane
z = (6− x − 2y)/3.

Thus, the bounds on z are
0 ≤ z ≤ (6− x − 2y)/3.



Iterated Integrals, XII

Example: Find
∫∫∫

D x dV where D is the tetrahedron bounded by
the planes x = 0, y = 0, z = 0, and x + 2y + 3z = 6.

Putting all this together shows that the integral is∫ 6

0

∫ (6−x)/2

0

∫ (6−x−2y)/3

0
x dz dy dx

=

∫ 6

0

∫ (6−x)/2

0
[xz ]

∣∣(6−x−2y)/3
z=0

dy dx

=

∫ 6

0

∫ (6−x)/2

0

[
2x − 1

3x
2 − 2

3xy
]
dy dx

=

∫ 6

0

[
2xy − 1

3x
2y − 1

3xy
2
] ∣∣(6−x)/2

y=0
dx

=

∫ 6

0

[
x(6− x)− 1

6x
2(6− x)− 1

12x(6− x)2
]
dx

=

∫ 6

0

[
3x − x2 + 1

12x
3
]
dx =

[
3
2x

2 − 1
3x

3 + 1
48x

4
] ∣∣6

x=0
= 9.



Iterated Integrals, XII

Example: Find
∫∫∫

D x dV where D is the tetrahedron bounded by
the planes x = 0, y = 0, z = 0, and x + 2y + 3z = 6.

Putting all this together shows that the integral is∫ 6

0

∫ (6−x)/2

0

∫ (6−x−2y)/3

0
x dz dy dx

=

∫ 6

0

∫ (6−x)/2

0
[xz ]

∣∣(6−x−2y)/3
z=0

dy dx

=

∫ 6

0

∫ (6−x)/2

0

[
2x − 1

3x
2 − 2

3xy
]
dy dx

=

∫ 6

0

[
2xy − 1

3x
2y − 1

3xy
2
] ∣∣(6−x)/2

y=0
dx

=

∫ 6

0

[
x(6− x)− 1

6x
2(6− x)− 1

12x(6− x)2
]
dx

=

∫ 6

0

[
3x − x2 + 1

12x
3
]
dx =

[
3
2x

2 − 1
3x

3 + 1
48x

4
] ∣∣6

x=0
= 9.



Iterated Integrals, XIII

Example: Set up an iterated integral for
∫∫∫

D x2 dV , where D is
the “triangular wedge” bounded by the planes x = 0, x = 1,
z = x , z = 2x , y = 0, and y = 1.



Iterated Integrals, XIII

Example: Set up an iterated integral for
∫∫∫
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the “triangular wedge” bounded by the planes x = 0, x = 1,
z = x , z = 2x , y = 0, and y = 1.



Iterated Integrals, XIV

Example: Set up an iterated integral for
∫∫∫

D x2 dV , where D is
the “triangular wedge” bounded by the planes x = 0, x = 1,
z = x , z = 2x , y = 0, and y = 1.

Note here that both x and y are bounded by constants.

So if we project into the xy -plane, we can describe the solid
very easily, since the plane region is a rectangle.

We have 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, so those are our outer
limits of integration.

Looking at the solid, we can see that for specific x and y , the
lower limit for z is z = x and the upper limit is z = 2x .

So we get the integral

∫ 1

0

∫ 1

0

∫ 2x

x
x2 dz dy dx .
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Iterated Integrals, XV

Example: Set up an iterated integral for each of the following:

1.
∫∫∫

D z dV on the region D below the graph of z = 1− x2,
above the xy -plane, with 0 ≤ y ≤ 3.

For dz dy dx , we project
into the xy -plane. This
gives the rectangle
−1 ≤ x ≤ 1, 0 ≤ y ≤ 3.

Then the lower z-limit is
z = 0 and the upper z-limit
is z = 1− x2.

Thus, our triple integral is∫ 1

−1

∫ 3

0

∫ 1−x2

0
z dz dy dx .
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Iterated Integrals, XVI

Example: Set up an iterated integral for each of the following:

1.
∫∫∫

D z dV on the region D below the graph of z = 1− x2,
above the xy -plane, with 0 ≤ y ≤ 3.

We could also use other
orders. For dy dz dx we
project into the xz-plane.

The limits are −1 ≤ x ≤ 1,
0 ≤ z ≤ 1− x2, and
0 ≤ y ≤ 3.

Our triple integral is∫ 1
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∫ 3
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z dy dz dx .



Iterated Integrals, XVI

Example: Set up an iterated integral for each of the following:
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Iterated Integrals, XVII

Example: Set up an iterated integral for each of the following:

1.
∫∫∫

D z dV on the region D below the graph of z = 1− x2,
above the xy -plane, with 0 ≤ y ≤ 3.

For dx dy dz we project
into the yz-plane.

The limits are −1 ≤ z ≤ 1,
−1 ≤ y ≤ 1.

For x , we enter the solid
through x = −

√
1− z and

leave through x =
√

1− z .

Our triple integral is∫ 1

−1

∫ 1
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−
√
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z dx dy dz .



Iterated Integrals, XVII
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Iterated Integrals, XVIII

Example: Set up an iterated integral for each of the following:

2. The integral of y3 on the region in the first octant bounded
by the coordinate planes and the surface x2 + y + z = 4.

For dz dy dx , we project
into the xy -plane.

The region lies below the
curve x2 + y = 4. This
gives limits 0 ≤ x ≤ 2 and
0 ≤ y ≤ 4− x2.

Then the z-limits are z = 0
and z = 4− x2 − y .

Thus, our triple integral is∫ 2

0

∫ 4−x2

0

∫ 4−x2−y

0
y3 dz dy dx .
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Iterated Integrals, XIX

Example: Set up an iterated integral for each of the following:

3.
∫∫∫

D xyz dV where D is the region with −1 ≤ x ≤ 1,
x ≤ y ≤ 1, above z = x , and below z = y + 2.

For dz dy dx , we project
into the xy -plane.

The region has −1 ≤ x ≤ 1
and x ≤ y ≤ 1, so these
are our x and y limits.

The bottom surface is
z = x and the top surface
is z = y + 2.

Thus, our triple integral is∫ 1

−1

∫ 1

x

∫ y+2

x
xyz dz dy dx .
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Miscellany, I

These problems involving setting up triple integrals can often be
very tricky, because we have to have a good idea of how the
surfaces intersect with each other.

It is very easy, if we don’t draw an accurate picture, to get
some of the integration limits wrong. (That’s why having an
accurate computer-plotted graph is so important.)

We can also change the order in a triple integral.

This is essentially the same procedure as with double
integrals, except we have to draw the region in 3 dimensions
rather than 2 dimensions.

We’ve done enough triple integral setups today that I won’t
do any of these. But they are very much like the procedures
we were previously using.

In fact, there exist computational algorithms that can do both of
these things for us!



Miscellany, II

The procedure is known as cylindrical algebraic decomposition.

A cylindrical algebraic decompostion converts a description of
a region in space bounded by polynomial inequalities (such as
x2 ≤ y + z or x2 + y2 + z2 < 4) to a union of regions
a ≤ x ≤ b, c(x) ≤ y ≤ d(x), e(x , y) ≤ z ≤ f (x , y).

These are precisely the types of regions we need to use in
order to set up an iterated triple integral.

For example, applying this algorithm to the region defined by
the inequalities x2 + y2 < 1, x2 + z2 < 1, y2 + z2 < 1, and
0 < x < y < z shows that it consists of a single piece defined
by 0 < x < 1√

2
, x < y < 1√

2
, and y < z <

√
1− y2.

As a final remark, we will note that a cylindrical decomposition can
be computed with any variable order, so we could even use it to
change the order of integration.



Summary

We discussed triple integrals in rectangular coordinates.

Next lecture: More triple integrals, changes of coordinates in
double and triple integrals.


