Math 2321 (Multivariable Calculus) Lecture $#17$ of 38 \sim March 1, 2021

Double Integrals in Polar Coordinates

- Double Integrals in Polar Coordinates
- Triple Integrals

This material represents $\S 3.3.2 + \S 3.2.1$ from the course notes.

Polar Coordinates

Last time we briefly reviewed polar coordinates:

Definition

The polar coordinates (r, θ) of a point (x, y) satisfy $x = r \cos(\theta)$, $y = r \sin(\theta)$, for $r \ge 0$ and $0 \le \theta \le 2\pi$.

- The parameter r gives the radial distance from the origin (or "pole"), while θ measures the angle with respect to the positive x-axis.
- \bullet Some conventions allow for negative values of r . We will insist that $r > 0$ in our setup.
- Since sine and cosine are periodic, we implicitly identify angles θ that differ by an integral multiple of $2π$ radians.

.

• We have
$$
r = \sqrt{x^2 + y^2}
$$
, $\theta = \begin{cases} \tan^{-1}(y/x) & \text{for } x > 0 \\ \tan^{-1}(y/x) + \pi & \text{for } x < 0 \end{cases}$

The primary reason to use polar coordinates is that they will simplify integrals over regions that are portions of circles, because circles have simple descriptions in polar coordinates.

- Specifically, the circle $x^2 + y^2 = a^2$ in rectangular coordinates (over which it is cumbersome to set up double integrals) becomes the much simpler equation $r = a$ in polar coordinates.
- Polar coordinates are also useful in simplifying functions which involve $x^2 + y^2$ or (especially) $\sqrt{x^2 + y^2}$.
- Lines through the origin also have reasonably simple descriptions in polar: the line $y = mx$ becomes the pair of rays $\theta=\tan^{-1}(m)$ and $\theta=\tan^{-1}(m)+\pi$ when written in polar coordinates. (The two rays point in opposite directions.)

Now we can describe how to set up iterated integrals in polar coordinates.

- Suppose we want to integrate the function $f(x, y)$ on the region R: this is the double integral $\iint_R f(x, y) dA$.
- To set this up as an iterated integral in polar coordinates, we typically use the integration order $dr d\theta$, since most of the polar curves we will work with have the form $r = f(\theta)$ or θ = constant.

There are three things we must do:

- 1. Convert the limits of integration to polar coordinates.
- 2. Convert the function to polar coordinates.
- 3. Convert the area differential dA to polar coordinates.

Integration in Polar Coordinates, III

Now imagine "slicing" our region radially:

Using the radial slices, we can identify the limits of integration in polar coordinates:

- The limits for θ will be the minimum and maximum values of θ: the range of values of θ where we have slices.
- \bullet The limits for r will be the minimum and maximum value of r on any given slice, in terms of θ .
- For regions that lie between two curves $r = f_{inner}(\theta)$ and $r = f_{\text{outer}}(\theta)$, the inner curve is the lower limit and the outer curve is the upper limit.

To convert the function $f(x, y)$ to polar coordinates, we simply plug in $x = r \cos \theta$ and $y = r \sin \theta$.

The last task is to convert the area differential dA into polar coordinates.

- Your first guess is probably that $dA = dr d\theta$, in parallel to the rectangular area differential $dA = dy dx = dx dy$.
- However, this is not correct!
- To explain why, consider where the area differential comes from: it is the area of the region formed by changing the parameters x and y by small amounts δx and δy .
- The resulting shape is simply a rectangle with side lengths Δx and Δy , so we get $\Delta A = \Delta x \Delta y$.
- As Δx and Δy become small, the limit is $dA = dx dy$.

Now consider what happens if we have a radial region with radius r, and we change r by Δr and θ by $\Delta \theta$:

- \bullet The resulting shape is a radial annulus with inner radius r, outer radius $r + \Delta r$, and angle $\Delta \theta$.
- **o** The area is

$$
\Delta A = \frac{1}{2} (\Delta \theta) [(r + \Delta r)^2 - r^2] = \frac{1}{2} \Delta \theta [2r \Delta r + (\Delta r)^2] = r \Delta r \Delta \theta + \frac{1}{2} (\Delta r)^2 \Delta \theta.
$$

• As Δr and $\Delta \theta$ become small, the second term drops away, and we obtain $dA = r dr d\theta$. Note the factor of r in front!

So, putting all of this together, to set up an iterated integral $\iint_R f(x, y) dA$ in polar coordinates, we do the following:

- 1. Draw the region R . Slice it radially and use the slices to identify the polar limits of integration.
- 2. Convert the function $f(x, y)$ to polar coordinates by setting $x = r \cos \theta$ and $y = r \sin \theta$.
- 3. Write down the polar area differential $dA = r dr d\theta$.
- 4. Evaluate the resulting integral.

<u>Example</u>: Integrate the function $f(x, y) = x^2 + y^2$ on the region R given by the interior of the unit circle $x^2+y^2\leq 1.$

<u>Example</u>: Integrate the function $f(x, y) = x^2 + y^2$ on the region R given by the interior of the unit circle $x^2+y^2\leq 1.$

- The region is defined by $r \leq 1$. Since we have no restrictions on θ , we want $0 \leq \theta \leq 2\pi$.
- Since r is always nonnegative, our limits for r are $0 \le r \le 1$.
- The function is $f(r\cos\theta, r\sin\theta) = \cos^2\theta + \sin^2\theta = 1$.
- The differential is $dA = r dr d\theta$.

<u>Example</u>: Integrate the function $f(x, y) = x^2 + y^2$ on the region R given by the interior of the unit circle $x^2+y^2\leq 1.$

- The region is defined by $r \leq 1$. Since we have no restrictions on θ , we want $0 \leq \theta \leq 2\pi$.
- Since r is always nonnegative, our limits for r are $0 \le r \le 1$.
- The function is $f(r\cos\theta, r\sin\theta) = \cos^2\theta + \sin^2\theta = 1$.
- The differential is $dA = r dr d\theta$. Then the integral is $\int^{2\pi}$ 0 \int_0^1 0 (r^2) r dr d $\theta = \int^{2\pi}$ 0 \int_0^1 0 r^3 dr d θ $=$ $\int_{0}^{2\pi}$ 0 1 $\frac{1}{4}r^4$ 1 $r=0$ $d\theta = \int^{2\pi}$ 0 1 $\frac{1}{4}d\theta=\frac{\pi}{2}$ $\frac{1}{2}$.

Integration in Polar Coordinates, IX

<u>Example</u>: Integrate the function $f(x,y) = x^2 + y^2$ on the region R given by the interior of the unit circle $x^2+y^2\leq 1.$

Integration in Polar Coordinates, IX

<u>Example</u>: Integrate the function $f(x,y) = x^2 + y^2$ on the region R given by the interior of the unit circle $x^2+y^2\leq 1.$

We could have done this problem in rectangular coordinates. Using the integration order dy dx , here is how that goes:

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} (x^2 + y^2) dy dx = \int_{-1}^{1} (x^2y + \frac{1}{3}y^3) \Big|_{y=-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dx
$$

\n
$$
= \int_{-1}^{1} 2 \left(x^2 \sqrt{1-x^2} - \frac{1}{3} (1-x^2)^{3/2} \right) dx
$$

\n
$$
= \frac{1}{6} \left[(x + 2x^3) \sqrt{1-x^2} + 3 \sin^{-1} x \right] \Big|_{x=-1}^{1}
$$

\n
$$
= \pi/2.
$$

Note that there is an integration by parts and some trigonometric substitutions (omitted!) needed to get from line 2 to line 3.

Example: Integrate $f(x, y) = x + 2y$ on the region R lying above the lines $y = x$ and $y = -x$ and inside the circle $x^2 + y^2 = 4$. This region is a quarter-disc:

- To find the limits of integration, we convert the equations for the boundary into polar coordinates and use the picture.
- The line $y = x$ gives the right boundary $\theta = \pi/4$ and the line $y = -x$ gives the left boundary $\theta = 3\pi/4$.
- The circle $x^2 + y^2 = 4$ becomes $r = 2$.
- Thus, our limits are $\pi/4 < \theta < 3\pi/4$ and $0 < r < 2$.
- The function is $f(x, y) = x + 2y = r \cos \theta + 2r \sin \theta$, while the area differential, as always, is $dA = r dr d\theta$.

• So the integral is
$$
\int_{\pi/4}^{3\pi/4} \int_0^2 (r \cos \theta + 2r \sin \theta) \cdot r \, dr \, d\theta.
$$

• Now we just have to evaluate the integral:

$$
\int_{\pi/4}^{3\pi/4} \int_0^2 (r \cos \theta + 2r \sin \theta) \cdot r \, dr \, d\theta = \int_{\pi/4}^{3\pi/4} (\cos \theta + 2 \sin \theta) \cdot \frac{1}{3} r^3 \Big|_{r=0}^2 \, d\theta
$$

$$
= \int_{\pi/4}^{3\pi/4} \frac{8}{3} (\cos \theta + 2 \sin \theta) \, d\theta
$$

$$
= \frac{8}{3} (-\sin \theta + 2 \cos \theta) \Big|_{\theta=\pi/4}^{3\pi/4} = \frac{8\sqrt{2}}{3}.
$$

We can also convert integrals that have been set up in rectangular coordinates to polar coordinates.

- Of course, usually we only want to do this when the integral will be easier to evaluate in polar coordinates.
- An iterated integral will be easier to evaluate in polar coordinates when the region and function both have reasonably nice descriptions in polar.
- Some obvious signs suggesting polar coordinates are if the function involves $\sqrt{x^2 + y^2}$ terms, or if the region turns out to be a portion of a circle.

Integration in Polar Coordinates, XIV

Example: Evaluate
$$
\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \sqrt{x^2 + y^2} dy dx
$$
.

Example: Evaluate
$$
\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \sqrt{x^2 + y^2} \, dy \, dx.
$$

- Here, the function involves $\sqrt{x^2 + y^2}$ (in fact, that *is* the function!) and the region is the interior of the circle $x^2 + y^2 = 4$, so we will switch to polar coordinates.
- In polar coordinates, the bounds are $0 \le \theta \le 2\pi$ and $0\leq r\leq 2$, with function $f(x,y)=\sqrt{x^{2}+y^{2}}=r$ and differential $dA = r dr d\theta$.

• So, in polar, the integral is
\n
$$
\int_0^{2\pi} \int_0^2 r \cdot r \, dr \, d\theta = \int_0^{2\pi} \int_0^2 r^2 \, dr \, d\theta = \int_0^{2\pi} \frac{8}{3} d\theta = \frac{16\pi}{3}.
$$

Integration in Polar Coordinates, XV

Example: Evaluate the integral
$$
\int_0^1 \int_0^{\sqrt{1-x^2}} e^{\sqrt{x^2+y^2}} dy dx
$$
.

Integration in Polar Coordinates, XV

Example: Evaluate the integral
$$
\int_0^1 \int_0^{\sqrt{1-x^2}} e^{\sqrt{x^2+y^2}} dy dx
$$
.

- As before we have various signs (from both the function and the region) suggesting that we should try polar coordinates.
- In polar coordinates, the bounds are $0 \leq \theta \leq \pi/2$ and $0\leq r\leq 1$, with function $f(x,y)=e^{\sqrt{x^2+y^2}}=e^r$ and differential $dA = r dr d\theta$.
- So, in polar, the integral is $\int^{\pi/2}$ 0 \int_0^1 0 $e^r \cdot r$ dr d $\theta =$ $\int_0^{\pi/2}$ 0 $[r e^r - e^r]$ $\int_{r=0}^{1} d\theta =$ $\int_0^{\pi/2}$ 0 $1 d\theta = \pi/2.$

Integration in Polar Coordinates, XVI

As an application of integration in polar coordinates, we can evaluate the famous Gaussian integral $I = \int_{-\infty}^{\infty} e^{-x^2} dx$.

- This integral is quite difficult to compute because the function e^{-x^2} does not have an elementary antiderivative. Even using a Taylor series approach (i.e., writing e^{-x^2} as a power series in x) does not work, because the integral is improper.
- This integral is fundamental in statistics, since $p(x) = e^{-x^2}$ arises (after a change of variables) as the probability density function of the Gaussian normal distribution.
- **•** The normal distribution describes the distributions of quantities arising as the sum of independent small variations, such as human heights, errors in measurements, exam grades, and many other physical phenomena.
- To learn more, take Math 3081 (Probability and Statistics)! (Unrelated fun fact: I'm teaching it in summer 2.)

Integration in Polar Coordinates, XVII

Here is how to compute $I = \int_{-\infty}^{\infty} e^{-x^2} dx$:

- First, we can also write $I = \int_{-\infty}^{\infty} e^{-y^2} dy$. Multiplying gives $I^2 = \left[\int_{-\infty}^{\infty} e^{-x^2} dx\right] \left[\int_{-\infty}^{\infty} e^{-y^2} dy\right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} dy dx.$
- Now convert to polar coordinates: the region for this last integral is the entire plane, with integration bounds $0 \leq \theta \leq 2\pi$ and $0 \leq r \leq \infty$.
- The function is $e^{-(x^2+y^2)} = e^{-r^2}$, and of course $dA = r dr d\theta$.
- Thus, in polar coordinates we see $I^2 = \int_0^{2\pi} \int_0^{\infty} e^{-r^2} r dr d\theta$.
- We can evaluate the polar integral using a substitution $u = r^2$ to see $I^2 = \int^{2\pi}$ 0 $\lceil 1 \rceil$ $\frac{1}{2}e^{-r^2}\right\|$ ∞ $r=0$ $d\theta = \int^{2\pi}$ 0 1 $\frac{1}{2}d\theta = \pi.$
- Therefore, since $I > 0$, we deduce that $I = \sqrt{\pi}$.

- This volume is given as a double integral $\iint_R (16 - x^2 - y^2) dA$ where R is the region in the plane where the surface $z = 16 - x^2 - y^2$ lies above the xy-plane.
- The region R is where $16-x^2-y^2\geq 0$, which is to say, where $x^2 + y^2 \le 16$.
- Since this is the interior of a circle, this integral will be easiest to set up in polar coordinates.

Integration in Polar Coordinates, XIX

Integration in Polar Coordinates, XIX

- The region R, in polar, is $0 \le \theta \le 2\pi$ and $0 \le r \le 4$.
- The function is $f(x, y) = 16 x^2 y^2 = 16 r^2$, and as always the polar area differential is $dA = r dr d\theta$.
- Thus, the volume integral is

$$
\int_0^{2\pi} \int_0^4 (16 - r^2) r \, dr \, d\theta = \int_0^{2\pi} \int_0^4 (16r - r^3) dr \, d\theta
$$

$$
= \int_0^{2\pi} (8r^2 - \frac{1}{4}r^4)|_{r=0}^4
$$

$$
= \int_0^{2\pi} 64 d\theta = 128\pi.
$$

Integration in Polar Coordinates, XX

<u>Example</u>: Evaluate the double integral \int R x^2 $\frac{1}{x^2+y^2}$ dA where R is the region $2\leq x^2+y^2\leq 3$ where $x>0.$

Integration in Polar Coordinates, XX

<u>Example</u>: Evaluate the double integral \int R x^2 $\frac{1}{x^2+y^2}$ dA where R is the region $2\leq x^2+y^2\leq 3$ where $x>0.$

- The region R , in polar, is the right half of the annulus
, between the circles $r = \sqrt{2}$ and $r = \sqrt{3}$.
- The portion with $x > 0$ corresponds to $-\pi/2 \le \theta \le \pi/2$. (Here it is convenient to use negative θ to avoid splitting the region into 2 pieces.)

\n- The function is
$$
\frac{x^2}{x^2 + y^2} = \frac{r^2 \cos^2 \theta}{r^2} = \cos^2 \theta
$$
, and $dA = r \, dr \, d\theta$.
\n- We get $\int_{-\pi/2}^{\pi/2} \int_{\sqrt{2}}^{\sqrt{3}} \cos^2 \theta \cdot r \, dr \, d\theta = \int_{-\pi/2}^{\pi/2} \cos^2 \theta = \frac{\pi}{2}$.
\n

For the last week, we have been discussing double integrals. Now we bump our discussion into 3 dimensions with triple integrals.

- Like with double integrals, we outline the fundamental definition using Riemann sums.
- Then (next time) we will discuss how to set up and evaluate triple integrals as iterated integrals.
- After that, we will explain how to do general coordinate changes, and then talk about two very useful 3-dimensional generalizations of polar coordinates: cylindrical coordinates and spherical coordinates.

So, now we want to integrate functions $f(x, y, z)$ over regions in 3-space instead of functions $f(x, y)$ over regions in the plane.

- \bullet For clarity, we will use D to denote solid regions in 3-space, and reserve R for regions in the plane.
- The motivating problem for integration in three variables is somewhat less clear, however.
- For single integrals we wanted to find the area under a curve $y = f(x)$, and for double integrals we wanted to find the volume under a surface $z = f(x, y)$.
- **•** For triple integrals, it is somewhat harder to envision what happens when we move up by 1 dimension: we would then be finding "the 4-dimensional volume under a 3-dimensional hypersurface" (whatever that means!).

One way to interpret what a triple integral represents is to think of a function $f(x, y, z)$ as being the density of a solid object D at a given point (x, y, z) .

- Then the triple integral of $f(x, y, z)$ on the region D represents the total mass of the solid.
- We will give some other uses and interpretations of triple integrals later. (Many of the applications are motivated by physics / related areas, such as computing electrical or magnetic flux.)

Riemann Sums, I

We formalize things using Riemann sums.

Definition

For a region D in 3-space, a partition of D into n pieces is a list of disjoint rectangular boxes inside D, where the kth rectangle contains the point (x_k, y_k, z_k) , has length Δx_k , width Δy_k , height Δz_k , and volume $\Delta V_k = \Delta z_k \cdot \Delta v_k \cdot \Delta x_k$.

The norm of the partition P is the largest number among the dimensions of all of the boxes in P.

Then, for a continous function $f(x, y, z)$ and a partition P of the region D, we define the Riemann sum of $f(x, y, z)$ on D

corresponding to P to be $RS_P(f) = \sum_{k=1}^{n} f(x_k, y_k, z_k) \Delta V_k$. $k=1$

Riemann Sums, II

The idea now is that we can define the triple integral of $f(x, y, z)$ on D by taking an appropriate limit of Riemann sums:

Definition

For $f(x, y, z)$ a continuous function, we define the (triple) integral of f on the region R, $\int\!\!\int\!\!\int\! f(x,y,z)\,dV$, to be the value of L such that, for every $\epsilon > 0$, there exists a $\delta > 0$ (depending on ϵ) such that for every partition P with $norm(P) < \delta$, we have $|RS_P(f) - L| < \epsilon$.

This is essentially the same definition that we had for double integrals. The value $\iiint_D f(x,y,z)\,dV$, roughly speaking, is the limit of the Riemann sums of f on D , as the size of the subregions in the partition becomes small.

Riemann Sums, III

For C an arbitrary constant and $f(x, y, z)$ and $g(x, y, z)$ continuous functions, the following properties hold:

- 1. Integral of constant: $\iiint_D C dV = C \cdot \text{Volume}(D)$.
- 2. Constant multiple of a function: $\iiint_D C f(x, y, z) dV = C \cdot \iiint_D f(x, y, z) dV.$
- 3. Addition of functions:

$$
\iiint_D f(x,y,z) dV + \iiint_D g(x,y,z) dV =
$$

$$
\iiint_D [f(x,y,z) + g(x,y,z)] dV.
$$

- 4. Subtraction of functions: $\iiint_D f(x, y, z) dV - \iiint_D g(x, y, z) dV =$ $\iiint_D [f(x, y, z) - g(x, y, z)] dV.$
- 5. Nonnegativity: if $f(x, y, z) \ge 0$, then $\iiint_D f(x, y, z) dV \ge 0$.
- 6. Union: If D_1 and D_2 don't overlap and have union D, $\iiint_{D_1} f(x, y, z) dV + \iiint_{D_2} f(x, y, z) dV = \iiint_D f(x, y, z) dV.$

Like with double integrals, we will write all of our triple integrals as iterated integrals.

- Computing a triple integral, once we have written it down, is usually straightforward, much like with a double integral.
- Generally, the more difficult part of the problems is setting up the integral, which requires us to sketch the region and figure out the proper bounds of integration.
- To be fair, actully computing a triple integral can involve a lot of algebra and it may take a while to do all the calculations, but there is nothing conceptually harder than what we were doing with iterated double integrals.
- Once we have the iterated integral set up, however, it's just calculation.

To finish today, let's work through the evaluation of an iterated triple integral.

Iterated Triple Integrals, II

Example: Evaluate the integral
$$
\int_0^1 \int_0^2 \int_1^3 4xz \, dz \, dy \, dx
$$
.

Iterated Triple Integrals, II

<u>Example</u>: Evaluate the integral \int^{1} 0 \int^{2} 0 \int_0^3 1 4xz dz dy dx.

We just work one step at a time, starting from the inside:

$$
\int_0^1 \int_0^2 \int_1^3 4xz \, dz \, dy \, dx = \int_0^1 \int_0^2 (2xz^2) \Big|_{z=1}^3 \, dy \, dx
$$

=
$$
\int_0^1 \int_0^2 16x \, dy \, dx
$$

=
$$
\int_0^1 (16xy) \Big|_{y=0}^2 \, dx
$$

=
$$
\int_0^1 32x \, dx
$$

=
$$
(16x^2) \Big|_{x=0}^1 = 16.
$$

We discussed double integrals in polar coordinates. We introduced triple integrals.

Next lecture: Iterated triple integrals.