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Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates

Triple Integrals

This material represents §3.3.2 + §3.2.1 from the course notes.



Polar Coordinates

Last time we briefly reviewed polar coordinates:

Definition

The polar coordinates (r , θ) of a point (x , y) satisfy
x = r cos(θ), y = r sin(θ), for r ≥ 0 and 0 ≤ θ ≤ 2π.

The parameter r gives the radial distance from the origin (or
“pole”), while θ measures the angle with respect to the
positive x-axis.

Some conventions allow for negative values of r . We will
insist that r ≥ 0 in our setup.

Since sine and cosine are periodic, we implicitly identify angles
θ that differ by an integral multiple of 2π radians.

We have r =
√

x2 + y2, θ =

{
tan−1(y/x) for x > 0

tan−1(y/x) + π for x < 0
.



Integration in Polar Coordinates, I

The primary reason to use polar coordinates is that they will
simplify integrals over regions that are portions of circles, because
circles have simple descriptions in polar coordinates.

Specifically, the circle x2 + y2 = a2 in rectangular coordinates
(over which it is cumbersome to set up double integrals)
becomes the much simpler equation r = a in polar
coordinates.

Polar coordinates are also useful in simplifying functions which
involve x2 + y2 or (especially)

√
x2 + y2.

Lines through the origin also have reasonably simple
descriptions in polar: the line y = mx becomes the pair of
rays θ = tan−1(m) and θ = tan−1(m) + π when written in
polar coordinates. (The two rays point in opposite directions.)



Integration in Polar Coordinates, II

Now we can describe how to set up iterated integrals in polar
coordinates.

Suppose we want to integrate the function f (x , y) on the
region R: this is the double integral

∫∫
R f (x , y)dA.

To set this up as an iterated integral in polar coordinates, we
typically use the integration order dr dθ, since most of the
polar curves we will work with have the form r = f (θ) or
θ = constant.

There are three things we must do:

1. Convert the limits of integration to polar coordinates.

2. Convert the function to polar coordinates.

3. Convert the area differential dA to polar coordinates.



Integration in Polar Coordinates, III

Now imagine “slicing” our region radially:



Integration in Polar Coordinates, IV

Using the radial slices, we can identify the limits of integration in
polar coordinates:

The limits for θ will be the minimum and maximum values of
θ: the range of values of θ where we have slices.

The limits for r will be the minimum and maximum value of r
on any given slice, in terms of θ.

For regions that lie between two curves r = finner(θ) and
r = fouter(θ), the inner curve is the lower limit and the outer
curve is the upper limit.

To convert the function f (x , y) to polar coordinates, we simply
plug in x = r cos θ and y = r sin θ.



Integration in Polar Coordinates, V

The last task is to convert the area differential dA into polar
coordinates.

Your first guess is probably that dA = dr dθ, in parallel to the
rectangular area differential dA = dy dx = dx dy .

However, this is not correct!

To explain why, consider where the area differential comes
from: it is the area of the region formed by changing the
parameters x and y by small amounts δx and δy .

The resulting shape is simply a rectangle with side lengths ∆x
and ∆y , so we get ∆A = ∆x ∆y .

As ∆x and ∆y become small, the limit is dA = dx dy .



Integration in Polar Coordinates, VI

Now consider what happens if we have a radial region with radius
r , and we change r by ∆r and θ by ∆θ:

The resulting shape is a radial annulus with inner radius r ,
outer radius r + ∆r , and angle ∆θ.

The area is

∆A =
1

2
(∆θ)[(r + ∆r)2 − r2] =

1

2
∆θ[2r∆r + (∆r)2]

= r∆r∆θ + 1
2(∆r)2∆θ.

As ∆r and ∆θ become small, the second term drops away,
and we obtain dA = r dr dθ. Note the factor of r in front!



Integration in Polar Coordinates, VII

So, putting all of this together, to set up an iterated integral∫∫
R f (x , y) dA in polar coordinates, we do the following:

1. Draw the region R. Slice it radially and use the slices to
identify the polar limits of integration.

2. Convert the function f (x , y) to polar coordinates by setting
x = r cos θ and y = r sin θ.

3. Write down the polar area differential dA = r dr dθ.

4. Evaluate the resulting integral.



Integration in Polar Coordinates, VIII

Example: Integrate the function f (x , y) = x2 + y2 on the region R
given by the interior of the unit circle x2 + y2 ≤ 1.

The region is defined by r ≤ 1. Since we have no restrictions
on θ, we want 0 ≤ θ ≤ 2π.

Since r is always nonnegative, our limits for r are 0 ≤ r ≤ 1.

The function is f (r cos θ, r sin θ) = cos2 θ + sin2 θ = 1.

The differential is dA = r dr dθ.

Then the integral is

∫ 2π

0

∫ 1

0
(r2)r dr dθ =

∫ 2π

0

∫ 1

0
r3 dr dθ

=

∫ 2π

0

1

4
r4
∣∣∣∣1
r=0

dθ =

∫ 2π

0

1

4
dθ =

π

2
.



Integration in Polar Coordinates, VIII

Example: Integrate the function f (x , y) = x2 + y2 on the region R
given by the interior of the unit circle x2 + y2 ≤ 1.

The region is defined by r ≤ 1. Since we have no restrictions
on θ, we want 0 ≤ θ ≤ 2π.

Since r is always nonnegative, our limits for r are 0 ≤ r ≤ 1.

The function is f (r cos θ, r sin θ) = cos2 θ + sin2 θ = 1.

The differential is dA = r dr dθ.

Then the integral is

∫ 2π

0

∫ 1

0
(r2)r dr dθ =

∫ 2π

0

∫ 1

0
r3 dr dθ

=

∫ 2π

0

1

4
r4
∣∣∣∣1
r=0

dθ =

∫ 2π

0

1

4
dθ =

π

2
.



Integration in Polar Coordinates, VIII

Example: Integrate the function f (x , y) = x2 + y2 on the region R
given by the interior of the unit circle x2 + y2 ≤ 1.

The region is defined by r ≤ 1. Since we have no restrictions
on θ, we want 0 ≤ θ ≤ 2π.

Since r is always nonnegative, our limits for r are 0 ≤ r ≤ 1.

The function is f (r cos θ, r sin θ) = cos2 θ + sin2 θ = 1.

The differential is dA = r dr dθ.

Then the integral is

∫ 2π

0

∫ 1

0
(r2)r dr dθ =

∫ 2π

0

∫ 1

0
r3 dr dθ

=

∫ 2π

0

1

4
r4
∣∣∣∣1
r=0

dθ =

∫ 2π

0

1

4
dθ =

π

2
.



Integration in Polar Coordinates, IX

Example: Integrate the function f (x , y) = x2 + y2 on the region R
given by the interior of the unit circle x2 + y2 ≤ 1.

We could have done this problem in rectangular coordinates.
Using the integration order dy dx , here is how that goes:∫ 1

−1

∫ √1−x2
−
√
1−x2

(x2 + y2) dy dx =

∫ 1

−1
(x2y + 1

3y3)
∣∣√1−x2
y=−

√
1−x2 dx

=

∫ 1

−1
2
(

x2
√

1− x2 − 1
3(1− x2)3/2

)
dx

= 1
6

[
(x + 2x3)

√
1− x2 + 3 sin−1 x

]∣∣∣1
x=−1

= π/2.

Note that there is an integration by parts and some trigonometric
substitutions (omitted!) needed to get from line 2 to line 3.



Integration in Polar Coordinates, IX

Example: Integrate the function f (x , y) = x2 + y2 on the region R
given by the interior of the unit circle x2 + y2 ≤ 1.

We could have done this problem in rectangular coordinates.
Using the integration order dy dx , here is how that goes:∫ 1

−1

∫ √1−x2
−
√
1−x2

(x2 + y2) dy dx =

∫ 1

−1
(x2y + 1

3y3)
∣∣√1−x2
y=−

√
1−x2 dx

=

∫ 1

−1
2
(

x2
√

1− x2 − 1
3(1− x2)3/2

)
dx

= 1
6

[
(x + 2x3)

√
1− x2 + 3 sin−1 x

]∣∣∣1
x=−1

= π/2.

Note that there is an integration by parts and some trigonometric
substitutions (omitted!) needed to get from line 2 to line 3.



Integration in Polar Coordinates, X

Example: Integrate f (x , y) = x + 2y on the region R lying above
the lines y = x and y = −x and inside the circle x2 + y2 = 4.

This
region is a quarter-disc:



Integration in Polar Coordinates, X

Example: Integrate f (x , y) = x + 2y on the region R lying above
the lines y = x and y = −x and inside the circle x2 + y2 = 4. This
region is a quarter-disc:



Integration in Polar Coordinates, XI

Example: Integrate f (x , y) = x + 2y on the region R lying above
the lines y = x and y = −x and inside the circle x2 + y2 = 4.

To find the limits of integration, we convert the equations for
the boundary into polar coordinates and use the picture.

The line y = x gives the right boundary θ = π/4 and the line
y = −x gives the left boundary θ = 3π/4.

The circle x2 + y2 = 4 becomes r = 2.

Thus, our limits are π/4 ≤ θ ≤ 3π/4 and 0 ≤ r ≤ 2.

The function is f (x , y) = x + 2y = r cos θ + 2r sin θ, while the
area differential, as always, is dA = r dr dθ.

So the integral is

∫ 3π/4

π/4

∫ 2

0
(r cos θ + 2r sin θ) · r dr dθ.



Integration in Polar Coordinates, XI

Example: Integrate f (x , y) = x + 2y on the region R lying above
the lines y = x and y = −x and inside the circle x2 + y2 = 4.

To find the limits of integration, we convert the equations for
the boundary into polar coordinates and use the picture.

The line y = x gives the right boundary θ = π/4 and the line
y = −x gives the left boundary θ = 3π/4.

The circle x2 + y2 = 4 becomes r = 2.

Thus, our limits are π/4 ≤ θ ≤ 3π/4 and 0 ≤ r ≤ 2.

The function is f (x , y) = x + 2y = r cos θ + 2r sin θ, while the
area differential, as always, is dA = r dr dθ.

So the integral is

∫ 3π/4

π/4

∫ 2

0
(r cos θ + 2r sin θ) · r dr dθ.



Integration in Polar Coordinates, XII

Example: Integrate f (x , y) = x + 2y on the region R lying above
the lines y = x and y = −x and inside the circle x2 + y2 = 4.

Now we just have to evaluate the integral:∫ 3π/4

π/4

∫ 2

0
(r cos θ + 2r sin θ) · r dr dθ =

∫ 3π/4

π/4
(cos θ + 2 sin θ) · 1

3
r3
∣∣2
r=0

dθ

=

∫ 3π/4

π/4

8

3
(cos θ + 2 sin θ) dθ

=
8

3
(− sin θ + 2 cos θ)

∣∣3π/4
θ=π/4

=
8
√

2

3
.



Integration in Polar Coordinates, XII

Example: Integrate f (x , y) = x + 2y on the region R lying above
the lines y = x and y = −x and inside the circle x2 + y2 = 4.

Now we just have to evaluate the integral:∫ 3π/4

π/4

∫ 2

0
(r cos θ + 2r sin θ) · r dr dθ =

∫ 3π/4

π/4
(cos θ + 2 sin θ) · 1

3
r3
∣∣2
r=0

dθ

=

∫ 3π/4

π/4

8

3
(cos θ + 2 sin θ) dθ

=
8

3
(− sin θ + 2 cos θ)

∣∣3π/4
θ=π/4

=
8
√

2

3
.



Integration in Polar Coordinates, XIII

We can also convert integrals that have been set up in rectangular
coordinates to polar coordinates.

Of course, usually we only want to do this when the integral
will be easier to evaluate in polar coordinates.

An iterated integral will be easier to evaluate in polar
coordinates when the region and function both have
reasonably nice descriptions in polar.

Some obvious signs suggesting polar coordinates are if the
function involves

√
x2 + y2 terms, or if the region turns out

to be a portion of a circle.



Integration in Polar Coordinates, XIV

Example: Evaluate

∫ 2

−2

∫ √4−x2
−
√
4−x2

√
x2 + y2 dy dx .

Here, the function involves
√

x2 + y2 (in fact, that is the
function!) and the region is the interior of the circle
x2 + y2 = 4, so we will switch to polar coordinates.

In polar coordinates, the bounds are 0 ≤ θ ≤ 2π and
0 ≤ r ≤ 2, with function f (x , y) =

√
x2 + y2 = r and

differential dA = r dr dθ.

So, in polar, the integral is∫ 2π

0

∫ 2

0
r · r dr dθ =

∫ 2π

0

∫ 2

0
r2 dr dθ =

∫ 2π

0

8

3
dθ =

16π

3
.



Integration in Polar Coordinates, XIV

Example: Evaluate

∫ 2

−2

∫ √4−x2
−
√
4−x2

√
x2 + y2 dy dx .

Here, the function involves
√

x2 + y2 (in fact, that is the
function!) and the region is the interior of the circle
x2 + y2 = 4, so we will switch to polar coordinates.

In polar coordinates, the bounds are 0 ≤ θ ≤ 2π and
0 ≤ r ≤ 2, with function f (x , y) =

√
x2 + y2 = r and

differential dA = r dr dθ.

So, in polar, the integral is∫ 2π

0

∫ 2

0
r · r dr dθ =

∫ 2π

0

∫ 2

0
r2 dr dθ =

∫ 2π

0

8

3
dθ =

16π

3
.



Integration in Polar Coordinates, XV

Example: Evaluate the integral

∫ 1

0

∫ √1−x2
0

e
√

x2+y2
dy dx .

As before we have various signs (from both the function and
the region) suggesting that we should try polar coordinates.

In polar coordinates, the bounds are 0 ≤ θ ≤ π/2 and

0 ≤ r ≤ 1, with function f (x , y) = e
√

x2+y2
= er and

differential dA = r dr dθ.

So, in polar, the integral is

∫ π/2

0

∫ 1

0
er · r dr dθ =∫ π/2

0
[r er − er ]

∣∣1
r=0

dθ =

∫ π/2

0
1 dθ = π/2.



Integration in Polar Coordinates, XV

Example: Evaluate the integral

∫ 1

0

∫ √1−x2
0

e
√

x2+y2
dy dx .

As before we have various signs (from both the function and
the region) suggesting that we should try polar coordinates.

In polar coordinates, the bounds are 0 ≤ θ ≤ π/2 and

0 ≤ r ≤ 1, with function f (x , y) = e
√

x2+y2
= er and

differential dA = r dr dθ.

So, in polar, the integral is

∫ π/2

0

∫ 1

0
er · r dr dθ =∫ π/2

0
[r er − er ]

∣∣1
r=0

dθ =

∫ π/2

0
1 dθ = π/2.



Integration in Polar Coordinates, XVI

As an application of integration in polar coordinates, we can
evaluate the famous Gaussian integral I =

∫∞
−∞ e−x

2
dx .

This integral is quite difficult to compute because the function
e−x

2
does not have an elementary antiderivative. Even using a

Taylor series approach (i.e., writing e−x
2

as a power series in
x) does not work, because the integral is improper.

This integral is fundamental in statistics, since p(x) = e−x
2

arises (after a change of variables) as the probability density
function of the Gaussian normal distribution.

The normal distribution describes the distributions of
quantities arising as the sum of independent small variations,
such as human heights, errors in measurements, exam grades,
and many other physical phenomena.

To learn more, take Math 3081 (Probability and Statistics)!
(Unrelated fun fact: I’m teaching it in summer 2.)



Integration in Polar Coordinates, XVII

Here is how to compute I =
∫∞
−∞ e−x

2
dx :

First, we can also write I =
∫∞
−∞ e−y

2
dy . Multiplying gives

I 2 =
[∫∞
−∞ e−x

2
dx
] [∫∞

−∞ e−y
2

dy
]

=
∫∞
−∞

∫∞
−∞ e−(x

2+y2) dy dx .

Now convert to polar coordinates: the region for this last
integral is the entire plane, with integration bounds
0 ≤ θ ≤ 2π and 0 ≤ r <∞.

The function is e−(x
2+y2) = e−r

2
, and of course dA = r dr dθ.

Thus, in polar coordinates we see I 2 =
∫ 2π
0

∫∞
0 e−r

2
r dr dθ.

We can evaluate the polar integral using a substitution u = r2

to see I 2 =

∫ 2π

0

[
1

2
e−r

2

]∣∣∣∣∞
r=0

dθ =

∫ 2π

0

1

2
dθ = π.

Therefore, since I > 0, we deduce that I =
√
π.



Integration in Polar Coordinates, XVIII

Example: Find the volume underneath the graph of
z = 16− x2 − y2 that lies above the xy -plane.

This volume is given as a double integral∫∫
R(16− x2 − y2) dA where R is the region in the plane

where the surface z = 16− x2 − y2 lies above the xy -plane.

The region R is where 16− x2 − y2 ≥ 0, which is to say,
where x2 + y2 ≤ 16.

Since this is the interior of a circle, this integral will be easiest
to set up in polar coordinates.



Integration in Polar Coordinates, XVIII

Example: Find the volume underneath the graph of
z = 16− x2 − y2 that lies above the xy -plane.

This volume is given as a double integral∫∫
R(16− x2 − y2) dA where R is the region in the plane

where the surface z = 16− x2 − y2 lies above the xy -plane.

The region R is where 16− x2 − y2 ≥ 0, which is to say,
where x2 + y2 ≤ 16.

Since this is the interior of a circle, this integral will be easiest
to set up in polar coordinates.



Integration in Polar Coordinates, XIX

Example: Find the volume underneath the graph of
z = 16− x2 − y2 that lies above the xy -plane.

The region R, in polar, is 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 4.

The function is f (x , y) = 16− x2 − y2 = 16− r2, and as
always the polar area differential is dA = r dr dθ.

Thus, the volume integral is∫ 2π

0

∫ 4

0
(16− r2)r dr dθ =

∫ 2π

0

∫ 4

0
(16r − r3)dr dθ

=

∫ 2π

0
(8r2 − 1

4 r4)
∣∣4
r=0

=

∫ 2π

0
64dθ = 128π.



Integration in Polar Coordinates, XIX

Example: Find the volume underneath the graph of
z = 16− x2 − y2 that lies above the xy -plane.

The region R, in polar, is 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 4.

The function is f (x , y) = 16− x2 − y2 = 16− r2, and as
always the polar area differential is dA = r dr dθ.

Thus, the volume integral is∫ 2π

0

∫ 4

0
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0
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=

∫ 2π

0
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4 r4)
∣∣4
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=

∫ 2π

0
64dθ = 128π.



Integration in Polar Coordinates, XX

Example: Evaluate the double integral

∫∫
R

x2

x2 + y2
dA where R is

the region 2 ≤ x2 + y2 ≤ 3 where x > 0.

The region R, in polar, is the right half of the annulus
between the circles r =

√
2 and r =

√
3.

The portion with x > 0 corresponds to −π/2 ≤ θ ≤ π/2.
(Here it is convenient to use negative θ to avoid splitting the
region into 2 pieces.)

The function is
x2

x2 + y2
=

r2 cos2 θ

r2
= cos2 θ, and

dA = r dr dθ.

We get

∫ π/2

−π/2

∫ √3
√
2

cos2 θ · r dr dθ =

∫ π/2

−π/2
cos2 θ =

π

2
.



Integration in Polar Coordinates, XX

Example: Evaluate the double integral

∫∫
R

x2

x2 + y2
dA where R is

the region 2 ≤ x2 + y2 ≤ 3 where x > 0.

The region R, in polar, is the right half of the annulus
between the circles r =

√
2 and r =

√
3.

The portion with x > 0 corresponds to −π/2 ≤ θ ≤ π/2.
(Here it is convenient to use negative θ to avoid splitting the
region into 2 pieces.)

The function is
x2

x2 + y2
=

r2 cos2 θ

r2
= cos2 θ, and

dA = r dr dθ.

We get

∫ π/2

−π/2

∫ √3
√
2

cos2 θ · r dr dθ =

∫ π/2

−π/2
cos2 θ =

π

2
.



Triple Integrals, I

For the last week, we have been discussing double integrals. Now
we bump our discussion into 3 dimensions with triple integrals.

Like with double integrals, we outline the fundamental
definition using Riemann sums.

Then (next time) we will discuss how to set up and evaluate
triple integrals as iterated integrals.

After that, we will explain how to do general coordinate
changes, and then talk about two very useful 3-dimensional
generalizations of polar coordinates: cylindrical coordinates
and spherical coordinates.



Triple Integrals, II

So, now we want to integrate functions f (x , y , z) over regions in
3-space instead of functions f (x , y) over regions in the plane.

For clarity, we will use D to denote solid regions in 3-space,
and reserve R for regions in the plane.

The motivating problem for integration in three variables is
somewhat less clear, however.

For single integrals we wanted to find the area under a curve
y = f (x), and for double integrals we wanted to find the
volume under a surface z = f (x , y).

For triple integrals, it is somewhat harder to envision what
happens when we move up by 1 dimension: we would then be
finding “the 4-dimensional volume under a 3-dimensional
hypersurface” (whatever that means!).



Triple Integrals, III

One way to interpret what a triple integral represents is to think of
a function f (x , y , z) as being the density of a solid object D at a
given point (x , y , z).

Then the triple integral of f (x , y , z) on the region D
represents the total mass of the solid.

We will give some other uses and interpretations of triple
integrals later. (Many of the applications are motivated by
physics / related areas, such as computing electrical or
magnetic flux.)



Riemann Sums, I

We formalize things using Riemann sums.

Definition

For a region D in 3-space, a partition of D into n pieces is a list of
disjoint rectangular boxes inside D, where the kth rectangle
contains the point (xk , yk , zk), has length ∆xk , width ∆yk , height
∆zk , and volume ∆Vk = ∆zk ·∆yk ·∆xk .

The norm of the partition P is the largest number among the
dimensions of all of the boxes in P.

Then, for a continous function f (x , y , z) and a partition P of the
region D, we define the Riemann sum of f (x , y , z) on D

corresponding to P to be RSP(f ) =
n∑

k=1

f (xk , yk , zk) ∆Vk .



Riemann Sums, II

The idea now is that we can define the triple integral of f (x , y , z)
on D by taking an appropriate limit of Riemann sums:

Definition

For f (x , y , z) a continuous function, we define the (triple) integral

of f on the region R,

∫∫∫
D

f (x , y , z) dV , to be the value of L such

that, for every ε > 0, there exists a δ > 0 (depending on ε) such
that for every partition P with norm(P) < δ, we have
|RSP(f )− L| < ε.

This is essentially the same definition that we had for double
integrals. The value

∫∫∫
D f (x , y , z) dV , roughly speaking, is the

limit of the Riemann sums of f on D, as the size of the subregions
in the partition becomes small.



Riemann Sums, III

For C an arbitrary constant and f (x , y , z) and g(x , y , z)
continuous functions, the following properties hold:

1. Integral of constant:
∫∫∫

D C dV = C · Volume(D).

2. Constant multiple of a function:∫∫∫
D C f (x , y , z) dV = C ·

∫∫∫
D f (x , y , z) dV .

3. Addition of functions:∫∫∫
D f (x , y , z) dV +

∫∫∫
D g(x , y , z) dV =∫∫∫

D [f (x , y , z) + g(x , y , z)] dV .

4. Subtraction of functions:∫∫∫
D f (x , y , z) dV −

∫∫∫
D g(x , y , z) dV =∫∫∫

D [f (x , y , z)− g(x , y , z)] dV .

5. Nonnegativity: if f (x , y , z) ≥ 0, then
∫∫∫

D f (x , y , z) dV ≥ 0.

6. Union: If D1 and D2 don’t overlap and have union D,∫∫∫
D1

f (x , y , z) dV +
∫∫∫

D2
f (x , y , z) dV =

∫∫∫
D f (x , y , z) dV .



Iterated Triple Integrals, I

Like with double integrals, we will write all of our triple integrals as
iterated integrals.

Computing a triple integral, once we have written it down, is
usually straightforward, much like with a double integral.

Generally, the more difficult part of the problems is setting up
the integral, which requires us to sketch the region and figure
out the proper bounds of integration.

To be fair, actully computing a triple integral can involve a lot
of algebra and it may take a while to do all the calculations,
but there is nothing conceptually harder than what we were
doing with iterated double integrals.

Once we have the iterated integral set up, however, it’s just
calculation.

To finish today, let’s work through the evaluation of an iterated
triple integral.



Iterated Triple Integrals, II

Example: Evaluate the integral

∫ 1

0

∫ 2

0

∫ 3

1
4xz dz dy dx .

We just work one step at a time, starting from the inside:∫ 1

0

∫ 2

0

∫ 3

1
4xz dz dy dx =

∫ 1

0

∫ 2

0

(
2xz2

)∣∣3
z=1

dy dx

=

∫ 1

0

∫ 2

0
16x dy dx

=

∫ 1

0
(16xy)|2y=0 dx

=

∫ 1

0
32x dx

= (16x2)
∣∣1
x=0

= 16.
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∣∣1
x=0

= 16.



Summary

We discussed double integrals in polar coordinates.

We introduced triple integrals.

Next lecture: Iterated triple integrals.


