
Math 2321 (Multivariable Calculus)

Lecture #16 of 38 ∼ February 25, 2021

Computing Double Integrals

Double Integrals on General Regions

Changing Order of Integration

This material represents §3.1.2-3.1.3 from the course notes.



Recall

Last time, we discussed how to find the volume underneath
z = f (x , y) above a region R in the plane.

We gave two ways of computing this volume as an iterated
integral with either integration order dy dx or dx dy .

With order dy dx we have
∫ b
a

∫ d(x)
c(x) f (x , y) dy dx .

With order dx dy we have
∫ d
c

∫ b(y)
a(y) f (x , y) dx dy .

These will always give the same value as long as f is continuous:

Theorem (Fubini’s Theorem on General Regions)

If f (x , y) is continuous on a region
R = {(x , y) : a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)} and
R = {(x , y) : c ≤ y ≤ d , h1(y) ≤ x ≤ h2(y)}, then∫∫

R
f (x , y) dA =

∫ b

a

∫ g2(x)

g1(x)
f (x , y)dy dx =

∫ d

c

∫ h2(y)

h1(y)
f (x , y)dx dy.



Computing Double Integrals, I

Here is the procedure for setting up double integrals:

1. Determine the region of integration, and sketch it.

2. Decide on an order of integration and slice up the region
according to the chosen order: vertical slices correspond to
dy dx and horizontal slices correspond to dx dy .

3. Determine the limits of integration one at a time, starting
with the outer variable. The region may need to be split into
several pieces, if the boundary curves change definition in the
middle of the region.

For R = {(x , y) : a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}, the

integral is
∫ b
a

∫ g2(x)
g1(x)

f (x , y) dy dx .

For R = {(x , y) : c ≤ y ≤ d , h1(y) ≤ x ≤ h2(y)}, the

integral is
∫ d
c

∫ h2(y)
h1(y)

f (x , y) dx dy .

4. Evaluate the integral.



Computing Double Integrals, II

Example: Set up the integral of f (x , y) = xy2 over the finite
region R between the curves y = 2x and y = x2 with

1. integration order dy dx . 2. integration order dx dy .

The curves y = 2x and y = x2 will intersect at (0, 0) and
(2, 4), so the region looks like this:



Computing Double Integrals, II

Example: Set up the integral of f (x , y) = xy2 over the finite
region R between the curves y = 2x and y = x2 with

1. integration order dy dx . 2. integration order dx dy .

The curves y = 2x and y = x2 will intersect at (0, 0) and
(2, 4), so the region looks like this:



Computing Double Integrals, III

Example: Set up the integral of f (x , y) = xy2 over the finite
region R between the curves y = 2x and y = x2

1. with integration order dy dx .

We slice up the region with vertical slices:



Computing Double Integrals, III

Example: Set up the integral of f (x , y) = xy2 over the finite
region R between the curves y = 2x and y = x2

1. with integration order dy dx .

We slice up the region with vertical slices:



Computing Double Integrals, IV

Example: Set up the integral of f (x , y) = xy2 over the finite
region R between the curves y = 2x and y = x2

1. with integration order dy dx .

The leftmost slice occurs at x = 0 while the rightmost slice
occurs for x = 2.

For any given slice, the values of y range from the lower curve
y = x2 to the upper curve y = 2x .

So, the integral is
∫ 2
0

∫ 2x
x2 xy2 dy dx .

We compute
∫ 2
0

∫ 2x
x2 xy2 dy dx =

∫ 2
0

[
1
3xy

3
] ∣∣∣2xy=x2 dx

=
∫ 2
0

[
8
3x

4 − 1
3x

7
]
dx =

[
8
15x

5 − 1
24x

8
] ∣∣2

x=0 = 8·25
15 −

28

24 =
32

5
.



Computing Double Integrals, IV

Example: Set up the integral of f (x , y) = xy2 over the finite
region R between the curves y = 2x and y = x2

1. with integration order dy dx .

The leftmost slice occurs at x = 0 while the rightmost slice
occurs for x = 2.

For any given slice, the values of y range from the lower curve
y = x2 to the upper curve y = 2x .

So, the integral is
∫ 2
0

∫ 2x
x2 xy2 dy dx .

We compute
∫ 2
0

∫ 2x
x2 xy2 dy dx =

∫ 2
0

[
1
3xy

3
] ∣∣∣2xy=x2 dx

=
∫ 2
0

[
8
3x

4 − 1
3x

7
]
dx =

[
8
15x

5 − 1
24x

8
] ∣∣2

x=0 = 8·25
15 −

28

24 =
32

5
.



Computing Double Integrals, V

Example: Set up the integral of f (x , y) = xy2 over the finite
region R between the curves y = 2x and y = x2

2. with integration order dx dy .

We slice up the region with horizontal slices:



Computing Double Integrals, V

Example: Set up the integral of f (x , y) = xy2 over the finite
region R between the curves y = 2x and y = x2

2. with integration order dx dy .

We slice up the region with horizontal slices:



Computing Double Integrals, VI

Example: Set up the integral of f (x , y) = xy2 over the finite
region R between the curves y = 2x and y = x2

2. with integration order dx dy .

The bottom slice occurs at y = 0 while the top slice occurs
for y = 4.

For any given slice, the values of x range from the left curve
y = 2x to the right curve y = x2.

Thus, the integral is
∫ 4
0

∫ √y
y/2 xy

2 dx dy .

We compute
∫ 4
0

∫ √y
y/2 xy

2 dx dy =
∫ 4
0

[
1
2x

2y2
] ∣∣∣√yx=y/2 dy =∫ 4

0

[
1
2y

3 − 1
8y

4
]
dy =

[
1
8y

4 − 1
40y

5
] ∣∣∣4y=0 = 44

8 −
45

40 =
32

5
.



Computing Double Integrals, VI

Example: Set up the integral of f (x , y) = xy2 over the finite
region R between the curves y = 2x and y = x2

2. with integration order dx dy .

The bottom slice occurs at y = 0 while the top slice occurs
for y = 4.

For any given slice, the values of x range from the left curve
y = 2x to the right curve y = x2.

Thus, the integral is
∫ 4
0

∫ √y
y/2 xy

2 dx dy .

We compute
∫ 4
0

∫ √y
y/2 xy

2 dx dy =
∫ 4
0

[
1
2x

2y2
] ∣∣∣√yx=y/2 dy =∫ 4

0

[
1
2y

3 − 1
8y

4
]
dy =

[
1
8y

4 − 1
40y

5
] ∣∣∣4y=0 = 44

8 −
45

40 =
32

5
.



Computing Double Integrals, VII

Example: Set up the integral of f (x , y) = xy on the region with
x , y ≥ 0 and x + 2y ≤ 4 with both possible integration orders.

First, we sketch the region, and then we slice it up:



Computing Double Integrals, VII

Example: Set up the integral of f (x , y) = xy on the region with
x , y ≥ 0 and x + 2y ≤ 4 with both possible integration orders.

First, we sketch the region, and then we slice it up:



Computing Double Integrals, VIII

Example: Set up the integral of f (x , y) = xy on the region with
x , y ≥ 0 and x + 2y ≤ 4 with both possible integration orders.

First, vertical slices (order dy dx):

The leftmost slice occurs at
x = 0 and the rightmost slice
occurs at x = 4.

For each slice, the bottom is
y = 0 and the top is the line
x + 2y = 4, which (since we
need y as a function of x) is
y = (4− x)/2.

Therefore, the double integral

is

∫ 4

0

∫ (4−x)/2

0
xy dy dx .



Computing Double Integrals, VIII

Example: Set up the integral of f (x , y) = xy on the region with
x , y ≥ 0 and x + 2y ≤ 4 with both possible integration orders.

First, vertical slices (order dy dx):

The leftmost slice occurs at
x = 0 and the rightmost slice
occurs at x = 4.

For each slice, the bottom is
y = 0 and the top is the line
x + 2y = 4, which (since we
need y as a function of x) is
y = (4− x)/2.

Therefore, the double integral

is

∫ 4

0

∫ (4−x)/2

0
xy dy dx .



Computing Double Integrals, VIII

Example: Set up the integral of f (x , y) = xy on the region with
x , y ≥ 0 and x + 2y ≤ 4 with both possible integration orders.

First, vertical slices (order dy dx):

The leftmost slice occurs at
x = 0 and the rightmost slice
occurs at x = 4.

For each slice, the bottom is
y = 0 and the top is the line
x + 2y = 4, which (since we
need y as a function of x) is
y = (4− x)/2.

Therefore, the double integral

is

∫ 4

0

∫ (4−x)/2

0
xy dy dx .



Computing Double Integrals, IX

Example: Set up the integral of f (x , y) = xy on the region with
x , y ≥ 0 and x + 2y ≤ 4 with both possible integration orders.

Second, horizontal slices (order dx dy):

The bottom slice occurs at
y = 0 and the top slice
occurs at y = 2.

For each slice, the left curve
is x = 0 and the right curve is
the line x + 2y = 1, which
(since we need x as a
function of y) is x = 1− 2y .

Therefore, the double integral

is

∫ 2

0

∫ 4−2y

0
xy dx dy .



Computing Double Integrals, IX

Example: Set up the integral of f (x , y) = xy on the region with
x , y ≥ 0 and x + 2y ≤ 4 with both possible integration orders.

Second, horizontal slices (order dx dy):

The bottom slice occurs at
y = 0 and the top slice
occurs at y = 2.

For each slice, the left curve
is x = 0 and the right curve is
the line x + 2y = 1, which
(since we need x as a
function of y) is x = 1− 2y .

Therefore, the double integral

is

∫ 2

0

∫ 4−2y

0
xy dx dy .



Computing Double Integrals, IX

Example: Set up the integral of f (x , y) = xy on the region with
x , y ≥ 0 and x + 2y ≤ 4 with both possible integration orders.

Second, horizontal slices (order dx dy):

The bottom slice occurs at
y = 0 and the top slice
occurs at y = 2.

For each slice, the left curve
is x = 0 and the right curve is
the line x + 2y = 1, which
(since we need x as a
function of y) is x = 1− 2y .

Therefore, the double integral

is

∫ 2

0

∫ 4−2y

0
xy dx dy .



Computing Double Integrals, X

If the equation for one of the boundary curves changes in the
middle of the region, we must split the region into pieces,
corresponding to the different functions that make up the
boundary curve.



Integrals on General Regions, XIV

Example: Set up an iterated integral for
∫∫

R x2y dA on the
triangular region R with vertices (0, 0), (3, 0), and (2, 4).

The equations of the two lines are y = 2x and 4x + y = 12.



Integrals on General Regions, XIV

Example: Set up an iterated integral for
∫∫

R x2y dA on the
triangular region R with vertices (0, 0), (3, 0), and (2, 4).

The equations of the two lines are y = 2x and 4x + y = 12.



Computing Double Integrals, XI

Example: Set up an iterated integral for
∫∫

R x2y dA on the
triangular region R with vertices (0, 0), (3, 0), and (2, 4).

First, vertical slices (order dy dx):

Although the vertical slices go
from x = 0 to x = 3, the
identity of the top curve
changes from y = 2x to
4x + y = 12 when x = 2.

So, we need to split the
region into two pieces, one
from 0 ≤ x ≤ 2 and the other
from 2 ≤ x ≤ 3.



Computing Double Integrals, XI

Example: Set up an iterated integral for
∫∫

R x2y dA on the
triangular region R with vertices (0, 0), (3, 0), and (2, 4).

First, vertical slices (order dy dx):

Although the vertical slices go
from x = 0 to x = 3, the
identity of the top curve
changes from y = 2x to
4x + y = 12 when x = 2.

So, we need to split the
region into two pieces, one
from 0 ≤ x ≤ 2 and the other
from 2 ≤ x ≤ 3.



Computing Double Integrals, XI

Example: Set up an iterated integral for
∫∫

R x2y dA on the
triangular region R with vertices (0, 0), (3, 0), and (2, 4).

First, vertical slices (order dy dx):

Although the vertical slices go
from x = 0 to x = 3, the
identity of the top curve
changes from y = 2x to
4x + y = 12 when x = 2.

So, we need to split the
region into two pieces, one
from 0 ≤ x ≤ 2 and the other
from 2 ≤ x ≤ 3.



Computing Double Integrals, XII

Example: Set up an iterated integral for
∫∫

R x2y dA on the
triangular region R with vertices (0, 0), (3, 0), and (2, 4).

First, vertical slices (order dy dx):

For 0 ≤ x ≤ 2 the bottom
curve is y = 0 and the top
curve is y = 2x . This gives∫ 2

0

∫ 2x

0
x2y dy dx .

For 2 ≤ x ≤ 3 the bottom
curve is y = 0 and the top
curve is y = 12− 4x . This

gives

∫ 3

2

∫ 12−4x

0
x2y dy dx .

The integral we want is then the sum of these two integrals.



Computing Double Integrals, XIII

Example: Set up an iterated integral for
∫∫

R x2y dA on the
triangular region R with vertices (0, 0), (3, 0), and (2, 4).

Now we do horizontal slices (order dx dy):

The slices go from y = 0 to
y = 4.

The left curve is x = y/2 and
the right curve is
x = (12− y)/4 throughout
the region.

Thus, the desired integral is∫ 4

0

∫ (12−y)/4

y/2
x2y dx dy .



Computing Double Integrals, XIII

Example: Set up an iterated integral for
∫∫

R x2y dA on the
triangular region R with vertices (0, 0), (3, 0), and (2, 4).

Now we do horizontal slices (order dx dy):

The slices go from y = 0 to
y = 4.

The left curve is x = y/2 and
the right curve is
x = (12− y)/4 throughout
the region.

Thus, the desired integral is∫ 4

0

∫ (12−y)/4

y/2
x2y dx dy .



Computing Double Integrals, XIII

Example: Set up an iterated integral for
∫∫

R x2y dA on the
triangular region R with vertices (0, 0), (3, 0), and (2, 4).

Now we do horizontal slices (order dx dy):

The slices go from y = 0 to
y = 4.

The left curve is x = y/2 and
the right curve is
x = (12− y)/4 throughout
the region.

Thus, the desired integral is∫ 4

0

∫ (12−y)/4

y/2
x2y dx dy .



Changing Order of Integration, I

Although Fubini’s Theorem guarantees that integrating in either
order will yield the same result, it can happen that one order of
integration is easier to evaluate than the other.

In such situations, reversing the order of integration can be
useful.

To do this, we sketch the region, and then slice it up in the
opposite direction.

This may require splitting the region into multiple pieces,
depending on the boundary curves.



Changing Order of Integration, II

Example: Reverse the order of integration for

∫ 1

0

∫ y

y2

xy dx dy .

The region is defined by 0 ≤ y ≤ 1 and y2 ≤ x ≤ y , and the
current order of integration has horizontal slices:



Changing Order of Integration, II

Example: Reverse the order of integration for

∫ 1

0

∫ y

y2

xy dx dy .

The region is defined by 0 ≤ y ≤ 1 and y2 ≤ x ≤ y , and the
current order of integration has horizontal slices:



Changing Order of Integration, III

Example: Reverse the order of integration for

∫ 1

0

∫ y

y2

xy dx dy .

To reverse the order of integration, we want to slice up the
region perpendicular to the x-axis so that it has vertical slices:

The slices go from x = 0 to
x = 1.

The top curve is y =
√
x

and the bottom curve is
y = x .

Thus, the new integral is∫ 1

0

∫ √x
x

xy dy dx .



Changing Order of Integration, III

Example: Reverse the order of integration for

∫ 1

0

∫ y

y2

xy dx dy .

To reverse the order of integration, we want to slice up the
region perpendicular to the x-axis so that it has vertical slices:

The slices go from x = 0 to
x = 1.

The top curve is y =
√
x

and the bottom curve is
y = x .

Thus, the new integral is∫ 1

0

∫ √x
x

xy dy dx .



Changing Order of Integration, IV

Example: Evaluate the integral

∫ π

0

∫ π

x

sin(y)

y
dy dx by reversing

the order of integration.

It is not possible to evaluate the inner integral as written since
sin(y)

y does not have an elementary antiderivative.
The region is defined by 0 ≤ x ≤ x and x ≤ y ≤ π, and the
current order of integration has vertical slices:



Changing Order of Integration, IV

Example: Evaluate the integral

∫ π

0

∫ π

x

sin(y)

y
dy dx by reversing

the order of integration.

It is not possible to evaluate the inner integral as written since
sin(y)

y does not have an elementary antiderivative.
The region is defined by 0 ≤ x ≤ x and x ≤ y ≤ π, and the
current order of integration has vertical slices:



Changing Order of Integration, V

Example: Evaluate the integral

∫ π

0

∫ π

x

sin(y)

y
dy dx by reversing

the order of integration.

With horizontal slices, we obtain the following:

The slices go from y = 0 to
y = π.

The left curve is x = 0 and
the right curve is x = y .

The new integral is∫ π

0

∫ y

0

sin(y)

y
dx dy

=

∫ π

0
sin(y) dy = 2.



Changing Order of Integration, V

Example: Evaluate the integral

∫ π

0

∫ π

x

sin(y)

y
dy dx by reversing

the order of integration.

With horizontal slices, we obtain the following:

The slices go from y = 0 to
y = π.

The left curve is x = 0 and
the right curve is x = y .

The new integral is∫ π

0

∫ y

0

sin(y)

y
dx dy

=

∫ π

0
sin(y) dy = 2.



Changing Order of Integration, V

Example: Evaluate the integral

∫ π

0

∫ π

x

sin(y)

y
dy dx by reversing

the order of integration.

With horizontal slices, we obtain the following:

The slices go from y = 0 to
y = π.

The left curve is x = 0 and
the right curve is x = y .

The new integral is∫ π

0

∫ y

0

sin(y)

y
dx dy

=

∫ π

0
sin(y) dy = 2.



Polar Coordinates, I

To lead into the next lecture (double integrals in polar
coordinates), we will spend the last few minutes with a quick
review of polar coordinates.

Polar coordinates are perhaps (probably? maybe?) familiar to
you already, as they are often discussed in precalculus and
single-variable calculus.

Double integrals in polar coordinates are similar to double
integrals in rectangular coordinates: the only difference is that
we will now set up iterated integrals using the polar
coordinate variables r and θ rather than the rectangular
coordinates x and y .



Polar Coordinates, II

So, a brief review of polar coordinates:

Definition

The polar coordinates (r , θ) of a point (x , y) satisfy
x = r cos(θ), y = r sin(θ), for r ≥ 0 and 0 ≤ θ ≤ 2π.

The parameter r gives the radial distance from the origin (or
“pole”), while θ measures the angle with respect to the
positive x-axis.

Some conventions allow for negative values of r . We will
insist that r ≥ 0 in our setup.

Since sine and cosine are periodic, we implicitly identify angles
θ that differ by an integral multiple of 2π radians.

We have r =
√
x2 + y2, θ =

{
tan−1(y/x) for x > 0

tan−1(y/x) + π for x < 0
.



Polar Coordinates, III

Example: Perform the following coordinate conversions:

1. Find polar coordinates for (x , y) = (1, 1).

2. Find rectangular coordinates for (r , θ) = (4, π/6).

3. Find polar coordinates for (x , y) = (−
√

3, 1).

4. Find rectangular coordinates for (r , θ) = (2.8, 0.7).

5. Find polar coordinates for (x , y) = (−6.0,−1.1).

For (x , y) = (1, 1) we have (r , θ) = (
√

2, π/4).

For (r , θ) = (4, π/6) we have (x , y) = (2
√

3, 2).

For (x , y) = (−
√

3, 1) we have (r , θ) = (2, 5π/6).

For (r , θ) = (2.8, 0.7) we have (x , y) ≈ (2.1416, 1.8038).

For (x , y) = (−6.7,−2.2) we have (r , θ) ≈ (6.1, 3.4588).



Polar Coordinates, III

Example: Perform the following coordinate conversions:

1. Find polar coordinates for (x , y) = (1, 1).

2. Find rectangular coordinates for (r , θ) = (4, π/6).

3. Find polar coordinates for (x , y) = (−
√

3, 1).

4. Find rectangular coordinates for (r , θ) = (2.8, 0.7).

5. Find polar coordinates for (x , y) = (−6.0,−1.1).

For (x , y) = (1, 1) we have (r , θ) = (
√

2, π/4).

For (r , θ) = (4, π/6) we have (x , y) = (2
√

3, 2).

For (x , y) = (−
√

3, 1) we have (r , θ) = (2, 5π/6).

For (r , θ) = (2.8, 0.7) we have (x , y) ≈ (2.1416, 1.8038).

For (x , y) = (−6.7,−2.2) we have (r , θ) ≈ (6.1, 3.4588).



Polar Coordinates, IV

The primary reason to use polar coordinates is that they will
simplify integrals over regions that are portions of circles, because
circles have simple descriptions in polar coordinates.

Specifically, the circle x2 + y2 = a2 in rectangular coordinates
(over which it is cumbersome to set up double integrals)
becomes the much simpler equation r = a in polar
coordinates.

Polar coordinates are also useful in simplifying functions which
involve x2 + y2 or (especially)

√
x2 + y2.

Lines through the origin also have reasonably simple
descriptions in polar: the line y = mx becomes the pair of
rays θ = tan−1(m) and θ = tan−1(m) + π when written in
polar coordinates. (The two rays point in opposite directions.)



Polar Coordinates, V

Example: Describe the following curves in polar coordinates:

1. Find a polar equation for the circle x2 + y2 = 4.

2. Find a polar equation for x2 + y2 = 4x .

3. Find a rectangular equation for θ = π/4.

To convert from rectangular to polar we just put in
x = r cos θ and y = r sin θ.

So x2 + y2 = 4 becomes r2 cos2 θ + r2 sin2 θ = 4, which
simplifies to r2 = 4 so that r = 2.

Also, x2 + y2 = 4x becomes r2 cos2 θ + r2 sin2 θ = 4r cos θ so
that r2 = 4r cos θ so that r = 4 cos θ.

The polar equation θ = π/4 becomes the ray y = x , x > 0.



Polar Coordinates, V

Example: Describe the following curves in polar coordinates:

1. Find a polar equation for the circle x2 + y2 = 4.

2. Find a polar equation for x2 + y2 = 4x .

3. Find a rectangular equation for θ = π/4.

To convert from rectangular to polar we just put in
x = r cos θ and y = r sin θ.

So x2 + y2 = 4 becomes r2 cos2 θ + r2 sin2 θ = 4, which
simplifies to r2 = 4 so that r = 2.

Also, x2 + y2 = 4x becomes r2 cos2 θ + r2 sin2 θ = 4r cos θ so
that r2 = 4r cos θ so that r = 4 cos θ.

The polar equation θ = π/4 becomes the ray y = x , x > 0.



Polar Coordinates, VI

To illustrate why we will want to use polar coordinates, consider
this double integral:∫ 2

−2

∫ √4−x2
−
√
4−x2

√
x2 + y2 dy dx .

It is possible to evaluate this integral directly, as written, but
it is very messy and would take up this entire slide.

Notice that the region of integration is defined by
−2 ≤ x ≤ 2, −

√
4− x2 ≤ y ≤

√
4− x2, which (if we draw it)

we can recognize as the interior of the circle x2 + y2 = 4.

If we could set up this integral using polar coordinates, the
region would have a much simpler description (it is
0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2), as would the function (it is just r).
We will talk about how to do this next time.



Summary

We discussed double integrals on general regions.

We discussed how to change the order of integration in a double
integral.

We quickly reviewed polar coordinates.

Next lecture: Double integrals in polar coordinates.


