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Double Integrals

Double Integrals

Iterated Integrals

This material represents §3.1.1-3.1.2 from the course notes.



Another Optimization Problem, I

Example: A rectangular trash bin without a top is to be
constructed using a total of 3m2 of sheet metal. Find the
maximum possible volume for this storage bin.

Suppose the length, width, and height are l meters, w meters,
and h meters respectively.

Then the total surface area is S = lw + 2lh + 2wh square
meters and the volume is V = lwh cubic meters.

We are given lw + 2lh + 2wh = 3 and want to maximize lwh.

We can use Lagrange multipliers with f (l ,w , h) = lwh and
g(l ,w , h) = lw + 2lh + 2wh, with constraint g(l ,w , h) = 3.

We have ∇f = 〈wh, lh, lw〉 and
∇g = 〈w + 2h, l + 2h, 2l + 2w〉.
Thus, our system is wh = λ(w + 2h), lh = λ(l + 2h),
lw = λ(2l + 2w), and lw + 2lh + 2wh = 3.



Another Optimization Problem, I

Example: A rectangular trash bin without a top is to be
constructed using a total of 3m2 of sheet metal. Find the
maximum possible volume for this storage bin.

Suppose the length, width, and height are l meters, w meters,
and h meters respectively.

Then the total surface area is S = lw + 2lh + 2wh square
meters and the volume is V = lwh cubic meters.

We are given lw + 2lh + 2wh = 3 and want to maximize lwh.

We can use Lagrange multipliers with f (l ,w , h) = lwh and
g(l ,w , h) = lw + 2lh + 2wh, with constraint g(l ,w , h) = 3.

We have ∇f = 〈wh, lh, lw〉 and
∇g = 〈w + 2h, l + 2h, 2l + 2w〉.
Thus, our system is wh = λ(w + 2h), lh = λ(l + 2h),
lw = λ(2l + 2w), and lw + 2lh + 2wh = 3.



Another Optimization Problem, I

Example: A rectangular trash bin without a top is to be
constructed using a total of 3m2 of sheet metal. Find the
maximum possible volume for this storage bin.

Suppose the length, width, and height are l meters, w meters,
and h meters respectively.

Then the total surface area is S = lw + 2lh + 2wh square
meters and the volume is V = lwh cubic meters.

We are given lw + 2lh + 2wh = 3 and want to maximize lwh.

We can use Lagrange multipliers with f (l ,w , h) = lwh and
g(l ,w , h) = lw + 2lh + 2wh, with constraint g(l ,w , h) = 3.

We have ∇f = 〈wh, lh, lw〉 and
∇g = 〈w + 2h, l + 2h, 2l + 2w〉.
Thus, our system is wh = λ(w + 2h), lh = λ(l + 2h),
lw = λ(2l + 2w), and lw + 2lh + 2wh = 3.



Another Optimization Problem, II

Example: A rectangular trash bin without a top is to be
constructed using a total of 3m2 of sheet metal. Find the
maximum possible volume for this storage bin.

We have wh = λ(w + 2h), lh = λ(l + 2h), lw = λ(2l + 2w),
and lw + 2lh + 2wh = 3.

This system is a bit tricky. What we can do is solve the first
three equations for l ,w , h in terms of λ and then plug in to
the last equation.

If we divide the first equation by λwh it becomes
1

λ
=

1

h
+

2

w
.

We can do a similar thing to the other equations to obtain
1

λ
=

1

h
+

2

l
and

1

λ
=

2

w
+

2

l
.

We can then solve for l ,w , h (one method: subtract the
equations in pairs) to get h = 2λ and l = w = 4λ.



Another Optimization Problem, II

Example: A rectangular trash bin without a top is to be
constructed using a total of 3m2 of sheet metal. Find the
maximum possible volume for this storage bin.

We have wh = λ(w + 2h), lh = λ(l + 2h), lw = λ(2l + 2w),
and lw + 2lh + 2wh = 3.

This system is a bit tricky. What we can do is solve the first
three equations for l ,w , h in terms of λ and then plug in to
the last equation.
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We can then solve for l ,w , h (one method: subtract the
equations in pairs) to get h = 2λ and l = w = 4λ.



Another Optimization Problem, II

Example: A rectangular trash bin without a top is to be
constructed using a total of 3m2 of sheet metal. Find the
maximum possible volume for this storage bin.

We have wh = λ(w + 2h), lh = λ(l + 2h), lw = λ(2l + 2w),
and lw + 2lh + 2wh = 3.

This system is a bit tricky. What we can do is solve the first
three equations for l ,w , h in terms of λ and then plug in to
the last equation.

If we divide the first equation by λwh it becomes
1

λ
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We can do a similar thing to the other equations to obtain
1

λ
=

1

h
+

2

l
and

1

λ
=

2

w
+

2

l
.

We can then solve for l ,w , h (one method: subtract the
equations in pairs) to get h = 2λ and l = w = 4λ.



Another Optimization Problem, II

Example: A rectangular trash bin without a top is to be
constructed using a total of 3m2 of sheet metal. Find the
maximum possible volume for this storage bin.

We have wh = λ(w + 2h), lh = λ(l + 2h), lw = λ(2l + 2w),
and lw + 2lh + 2wh = 3.

This system is a bit tricky. What we can do is solve the first
three equations for l ,w , h in terms of λ and then plug in to
the last equation.

If we divide the first equation by λwh it becomes
1

λ
=

1

h
+

2

w
.

We can do a similar thing to the other equations to obtain
1

λ
=

1

h
+

2

l
and

1

λ
=

2

w
+

2

l
.

We can then solve for l ,w , h (one method: subtract the
equations in pairs) to get h = 2λ and l = w = 4λ.



Another Optimization Problem, III

Example: A rectangular trash bin without a top is to be
constructed using a total of 3m2 of sheet metal. Find the
maximum possible volume for this storage bin.

We found h = 2λ and l = w = 4λ.

Then lw + 2lh + 2wh = 3 becomes 16λ2 + 16λ2 + 16λ2 = 3
so that λ2 = 1/16 so λ = ±1/4.

This yields two points: (l ,w , h) = (1, 1, 1/2), (−1,−1,−1/2).

Since l ,w , h are lengths we want the positive solution, and by
the physical setup of the problem it must correspond to the
maximum volume.

The desired maximum volume is then V = lwh =
1

2
m3 .



Overview of §3: Multiple Integration

Now that we’ve finished multivariable differentiation, we embark
on the next major topic: multivariable integration.

First, we outline the general motivation for double integrals;
namely, computing the volume underneath a surface, and
briefly mention Riemann sums.

Next, we explain how to set up and evaluate double integrals,
first on rectangles, then on more general regions, along with
other topics like changing the order of integration and double
integrals in polar coordinates.

We then discuss the same material for triple integrals, and
describe how to do general coordinate changes, along with
two 3-dimensional versions of polar coordinates: cylindrical
coordinates and spherical coordinates.

Finally, we do various applications of integration: computing
areas, volumes, average values, masses, and moments.



Double Integrals: Motivation, I

Our motivating problem for integration of one variable was to find
the area below the curve y = f (x) above an interval on the x-axis.

We now bump this up a dimension: our new goal is to find
the volume below the surface z = f (x , y) above a region R in
the xy -plane.

The idea is to write down a Riemann sum for the volume in the
following way:

First, we approximate the region R by many small rectangular
pieces.

In each piece, we draw a rectangular prism with base in the
xy -plane and upper face intersecting z = f (x , y).

Then, we take the limit over better and better approximations
of the region R, and (so we hope) the collective volume of the
rectangular prisms will fill the volume under the graph of
z = f (x , y).



Double Integrals: Motivation, II

For f (x , y) = 2− x2 − y2, here are some examples of the resulting
boxes where R is the rectangle −1 ≤ x ≤ 1, −1 ≤ y ≤ 1:



Double Integrals: Motivation, III

For f (x , y) = 2− x2 − y2, here are some examples of the resulting
boxes where R is the rectangle −1 ≤ x ≤ 1, −1 ≤ y ≤ 1:



Double Integrals: Motivation, IV

For f (x , y) = 2− x2 − y2, here are some examples of the resulting
boxes where R is the rectangle −1 ≤ x ≤ 1, −1 ≤ y ≤ 1:



Double Integrals: Motivation, V

Here is the actual solid underneath f (x , y) = 2− x2 − y2 where R
is the rectangle −1 ≤ x ≤ 1, −1 ≤ y ≤ 1:



Double Integrals: Motivation, VI

Here’s a more schematic plot of the same solid region:



Riemann Sums, I

We can formalize all of these ideas using Riemann sums. Like with
integrals in one dimension, Riemann sums are unwieldy to
compute, and we will avoid using this definition.

Definition

For a region R a partition of R into n pieces is a list of disjoint
rectangles inside R, where the kth rectangle contains the point
(xk , yk), has width ∆xk , height ∆yk , and area ∆Ak = ∆yk ·∆xk .

The norm of the partition P is the largest number among the
widths and heights of all of the rectangles in P.

Then, for a continuous function f (x , y) and a partition P of the
region R, we define the Riemann sum of f (x , y) on R

corresponding to P to be RSP(f ) =
n∑

k=1

f (xk , yk) ∆Ak .



Riemann Sums, II

The idea now is that we can define the double integral of f (x , y)
on R by taking an appropriate limit of Riemann sums:

Definition

For f (x , y) a continuous function, we define the (double) integral

of f on the region R,

∫∫
R

f (x , y) dA, to be the value of L such that,

for every ε > 0, there exists a δ > 0 (depending on ε) such that for
every partition P with norm(P) < δ, we have |RSP(f )− L| < ε.

It takes some substantial effort to prove that, if f is continuous,
then this limit L actually exists. If you really want to know all the
details, you can take Math 4541 (Advanced Calculus), where they
prove all of the calculus theorems that I skip.



Riemann Sums, III

The value
∫∫
R

f (x , y) dA, roughly speaking, is the limit of the

Riemann sums of f on R, as the size of the subregions in the
partition becomes small.

Note that our geometric motivation for integration involved
finding the area under the graph of a function z = f (x , y).

As with a function of one variable, however, the definition via
Riemann sums does not require that f be nonnegative.

Accordingly, we interpret the integral of a negative function as
giving a negative volume.

Like with integrals of a single variable, double integrals have a
number of formal properties that can be deduced from the
Riemann sum definition.



Riemann Sums, IV

For C an arbitrary constant and f (x , y) and g(x , y) continuous
functions, the following properties hold:

1. Integral of constant:
∫∫

R C dA = C · Area(R).

2. Constant multiple of a function:∫∫
R C f (x , y) dA = C ·

∫∫
R f (x , y) dA.

3. Addition of functions:∫∫
R f (x , y) dA +

∫∫
R g(x , y) dA =

∫∫
R [f (x , y) + g(x , y)] dA.

4. Subtraction of functions:∫∫
R f (x , y) dA−

∫∫
R g(x , y) dA =

∫∫
R [f (x , y)− g(x , y)] dA.

5. Nonnegativity: if f (x , y) ≥ 0, then
∫∫

R f (x , y) dA ≥ 0.

If f (x , y) ≥ g(x , y), applying this property to f − g ≥ 0
shows that

∫∫
R f (x , y) dA ≥

∫∫
R g(x , y) dA.

6. Union: If R1 and R2 don’t overlap and have union R, then∫∫
R1

f (x , y) dA +
∫∫

R2
f (x , y) dA =

∫∫
R f (x , y) dA.



Iterated Integrals, I

You may have noticed that we haven’t actually computed any
double integrals yet, despite having a perfectly(?) good(ish?)
definition as a limit of Riemann sums.

The reason is that evaluating double integrals via Riemann
sums is generally quite hard, even for very simple functions.

This parallels the situation with partial derivatives: the limit
definition, while explicit, is hard to use.

You might therefore hope that we can play the same game
with integrals as we did with derivatives; namely, reduce
double integrals down to some kind of single-variable
integration problem.

I will now explain how to do this, using the principle that we
can compute volume by integrating cross-sectional area.



Iterated Integrals, II

To motivate the idea, first suppose the region R is the rectangle
with a ≤ x ≤ b, c ≤ y ≤ d , usually written as [a, b]× [c , d ] for
short, and our function is f (x , y).

Imagine taking the solid volume and slicing it into thin pieces
perpendicular to the x-axis from x = a to x = b.

Then the volume is given by the integral
∫ b
a A(x) dx , where

A(x) is the cross-sectional area at a given x-coordinate.



Iterated Integrals, III

Here is a picture of the surface z = 2− x2 − y2 from earlier:



Iterated Integrals, III

Here is a typical cross-section of the surface, taken at x = x0:



Iterated Integrals, IV

Now look at the cross-section:

The area A(x0) of this cross-section is simply the area under
the curve z = f (x0, y) between y = c and y = d .

That area is
∫ d
c f (x0, y) dy , where here we are thinking of x0

as a constant independent of y .



Iterated Integrals, V

Putting this together shows that the volume under z = f (x , y)
above the region R = [a, b]× [c , d ] is given by the iterated integral∫ b

a

[∫ d

c
f (x , y) dy

]
dx .

In this integral, we integrate first (on the inside) with respect
to the variable y , and then second (on the outside) with
respect to the variable x .

We will usually write iterated integrals without the brackets:∫ b
a

∫ d
c f (x , y) dy dx .

Note that there are two limits of integration, and they are
paired with the two variables “inside out”: the inner limits
[c , d ] are paired with the inner differential dy , and the outer
limits [a, b] are paired with the outer differential dx .



Iterated Integrals, VI

Example: Calculate

∫ 1

0

∫ 3

0
x2y2 dy dx .

We evaluate the integrals, starting with the inner integral.

To evaluate the inner integral, we take the antiderivative of
x2y2 with respect to y , and then evaluate from y = 0 to
y = 3. This gives us a function just of x , which we then
integrate from x = 0 to x = 1:∫ 1

0

∫ 3

0
x2y2 dy dx =

∫ 1

0

[∫ 3

0
x2y2 dy

]
dx =

∫ 1

0

[
x2 1

3
y3

] ∣∣∣3
y=0

dx

=

∫ 1

0
(9x2 − 0) dx = 3x3

∣∣∣1
x=0

= 3.



Iterated Integrals, VI

Example: Calculate

∫ 1

0

∫ 3

0
x2y2 dy dx .

We evaluate the integrals, starting with the inner integral.

To evaluate the inner integral, we take the antiderivative of
x2y2 with respect to y , and then evaluate from y = 0 to
y = 3. This gives us a function just of x , which we then
integrate from x = 0 to x = 1:∫ 1

0

∫ 3

0
x2y2 dy dx =

∫ 1

0

[∫ 3

0
x2y2 dy

]
dx =

∫ 1

0

[
x2 1

3
y3

] ∣∣∣3
y=0

dx

=

∫ 1

0
(9x2 − 0) dx = 3x3

∣∣∣1
x=0

= 3.



Iterated Integrals, VII

Example: Find the volume under the surface z = 2− x2 − y2 that
lies above the region −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.

The volume is given by the iterated integral∫ 1
−1

∫ 1
−1

(
2− x2 − y2

)
dy dx .

To evaluate the inner integral
∫ 1
−1

(
2− x2 − y2

)
dy , we view

x as constant and take the antiderivative (with respect to y):∫ 1

−1

(
2− x2 − y2

)
dy =

[
2y − x2y − 1

3
y3

] ∣∣∣1
y=−1

=

(
2− x2 − 1

3

)
−
(
−2 + x2 +

1

3

)
=

10

3
− 2x2.

Now we can evaluate the outer integral:∫ 1

−1

(
10

3
− 2x2

)
dx =

[
10

3
x − 2

3
x3

] ∣∣∣1
x=−1

=
8

3
−
(
−8

3

)
=

16

3
.



Iterated Integrals, VII

Example: Find the volume under the surface z = 2− x2 − y2 that
lies above the region −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.

The volume is given by the iterated integral∫ 1
−1

∫ 1
−1

(
2− x2 − y2

)
dy dx .

To evaluate the inner integral
∫ 1
−1

(
2− x2 − y2

)
dy , we view

x as constant and take the antiderivative (with respect to y):∫ 1

−1

(
2− x2 − y2

)
dy =

[
2y − x2y − 1

3
y3

] ∣∣∣1
y=−1

=
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2− x2 − 1

3

)
−
(
−2 + x2 +

1

3

)
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10

3
− 2x2.

Now we can evaluate the outer integral:∫ 1

−1

(
10

3
− 2x2

)
dx =

[
10

3
x − 2

3
x3

] ∣∣∣1
x=−1

=
8

3
−
(
−8

3

)
=

16

3
.



Iterated Integrals, VII

Example: Find the volume under the surface z = 2− x2 − y2 that
lies above the region −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.

The volume is given by the iterated integral∫ 1
−1

∫ 1
−1

(
2− x2 − y2

)
dy dx .

To evaluate the inner integral
∫ 1
−1

(
2− x2 − y2

)
dy , we view

x as constant and take the antiderivative (with respect to y):∫ 1

−1

(
2− x2 − y2

)
dy =

[
2y − x2y − 1

3
y3

] ∣∣∣1
y=−1

=

(
2− x2 − 1

3

)
−
(
−2 + x2 +

1

3

)
=

10

3
− 2x2.

Now we can evaluate the outer integral:∫ 1

−1

(
10

3
− 2x2

)
dx =

[
10

3
x − 2

3
x3

] ∣∣∣1
x=−1

=
8

3
−
(
−8

3

)
=

16

3
.



Iterated Integrals, VIII

We could also have sliced perpendicular to the y -axis:



Iterated Integrals, IX

We can go through the same logic as before to compute the
volume by slicing perpendicular to the y -axis:

Explicitly, the volume is the integral
∫ d
c A(y) dy , where A(y)

is the cross-sectional area at a given y -coordinate.

This cross-sectional area is given by the integral
A(y) =

∫ b
a f (x , y) dx .

Thus, the volume should be given by the iterated integral∫ d

c

∫ b

a
f (x , y) dx dy .

We can see this integral is in “the other order” (integration
order dx dy rather than dy dx) from our previous integral∫ b

a

∫ d

c
f (x , y) dy dx .



Iterated Integrals, X

Example: Find the volume under the surface z = 2− x2 − y2 that
lies above the region −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.

The volume is given by
∫ 1
−1

∫ 1
−1

(
2− x2 − y2

)
dx dy .

To evaluate the inner integral
∫ 1
−1

(
2− x2 − y2

)
dx , we view

y as constant and take the antiderivative (with respect to x):∫ 1

−1

(
2− x2 − y2

)
dx =

[
2x − 1

3
x3 − xy2

] ∣∣∣1
x=−1

=

(
2− 1

3
− y2

)
−
(
−2 +

1

3
+ y2

)
=

10

3
− 2y2.

Now we can evaluate the outer integral:∫ 1

−1

(
10

3
− 2y2

)
dy =

[
10

3
y − 2

3
y3

] ∣∣∣1
y=−1

=
8

3
−
(
−8

3

)
=

16

3
.

Note that we got the same value as before.



Iterated Integrals, X

Example: Find the volume under the surface z = 2− x2 − y2 that
lies above the region −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.

The volume is given by
∫ 1
−1

∫ 1
−1

(
2− x2 − y2

)
dx dy .

To evaluate the inner integral
∫ 1
−1

(
2− x2 − y2

)
dx , we view

y as constant and take the antiderivative (with respect to x):∫ 1

−1

(
2− x2 − y2

)
dx =

[
2x − 1

3
x3 − xy2

] ∣∣∣1
x=−1

=

(
2− 1

3
− y2

)
−
(
−2 +

1

3
+ y2

)
=

10

3
− 2y2.

Now we can evaluate the outer integral:∫ 1

−1

(
10

3
− 2y2

)
dy =

[
10

3
y − 2

3
y3

] ∣∣∣1
y=−1

=
8

3
−
(
−8

3

)
=

16

3
.

Note that we got the same value as before.



Iterated Integrals, XI

We have now three ways to interpret “the integral of a function on
the rectangle [a, b]× [c , d ]”:

1. As an integral
∫∫

R f (x , y) dA via Riemann sums.

2. As an iterated integral
∫ b
a

∫ d
c f (x , y) dy dx .

3. As an iterated integral
∫ d
c

∫ b
a f (x , y) dx dy .

We would hope that these definitions all agree. It turns out that as
long as the function is continuous on the entire region, they do:

Theorem (Fubini’s Theorem)

If f (x , y) is continuous on the rectangle R = [a, b]× [c , d ], then∫∫
R f (x , y) dA =

∫ b
a

∫ d
c f (x , y) dy dx =

∫ d
c

∫ b
a f (x , y) dx dy.



Iterated Integrals, XII

Example: Set up and evaluate I =
∫∫

R x2y dA, where R is the
region {(x , y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 3}

1. using the integration order dy dx .

2. using the integration order dx dy .

We’ve been given the inequalities for the region, so we just
need to write down the appropriate iterated integral and then
evaluate it.



Iterated Integrals, XII

Example: Set up and evaluate I =
∫∫

R x2y dA, where R is the
region {(x , y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 3}

1. using the integration order dy dx .

2. using the integration order dx dy .

We’ve been given the inequalities for the region, so we just
need to write down the appropriate iterated integral and then
evaluate it.



Iterated Integrals, XIII

Example: Set up and evaluate I =
∫∫

R x2y dA, where R is the
region {(x , y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 3}

1. using the integration order dy dx .

For the order dy dx , we have I =
∫ 2
0

∫ 3
0 x2y dy dx .

To evaluate the inner integral, we take the antiderivative of
x2y with respect to y , yielding 1

2x2y2, and then plug in to
evaluate the outer integral. Explicitly:

I =

∫ 2

0

[∫ 3

0
x2y dy

]
dx

=

∫ 2

0

[
1

2
x2y2

] ∣∣∣3
y=0

dx

=

∫ 2

0

9

2
x2 dx =

3

2
x3

∣∣∣∣2
x=0

= 12.



Iterated Integrals, XIII

Example: Set up and evaluate I =
∫∫

R x2y dA, where R is the
region {(x , y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 3}

1. using the integration order dy dx .

For the order dy dx , we have I =
∫ 2
0

∫ 3
0 x2y dy dx .

To evaluate the inner integral, we take the antiderivative of
x2y with respect to y , yielding 1

2x2y2, and then plug in to
evaluate the outer integral. Explicitly:

I =

∫ 2

0

[∫ 3

0
x2y dy

]
dx

=

∫ 2

0

[
1

2
x2y2

] ∣∣∣3
y=0

dx

=

∫ 2

0

9

2
x2 dx =

3

2
x3

∣∣∣∣2
x=0

= 12.



Iterated Integrals, XIV

Example: Set up and evaluate I =
∫∫

R x2y dA, where R is the
region {(x , y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 3}.

2. using the integration order dx dy .

For the order dx dy we have I =
∫ 3
0

∫ 2
0 x2y dx dy .

To evaluate the inner integral, we take the antiderivative of
x2y with respect to x , yielding 1

3x3y , and plug in like before:

I =

∫ 3

0

[∫ 2

0
x2y dx

]
dy

=

∫ 3

0

[
1

3
x3y

] ∣∣∣2
x=0

dy

=

∫ 3

0

8

3
y dy =

4

3
y2

∣∣∣∣3
y=0

= 12.
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3
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Iterated Integrals, XV

We can also deal with the more general situation where the region
R is not a rectangle.

The principle is very similar to what we were just doing: we
will again write down an appropriate iterated integral, but now
the inner limits will be functions of the outer variable.

Once we have actually written down the iterated integral, we
can evaluate it just like before.

On the next slide is an example of the kind of result we will
get.



Iterated Integrals, XVI

Example: Calculate

∫ 2

0

∫ 2x

x2
xy2 dy dx .

We evaluate the integrals, starting with the inner integral, just
like before.

When we compute the inner integral, the limits will be in
terms of x (just plug them in like normal). The result is then
a function of x , at which point we evaluate the outer integral:∫ 2

0

∫ 2x

x2
xy2 dy dx =

∫ 2

0

1

3
xy3

∣∣∣∣2x
y=x2

dx =

∫ 2

0

[
8

3
x4 − 1

3
x7

]
dx

=

[
8

15
x5 − 1

24
x8

]∣∣∣∣2
x=0

=
32

5
.
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Iterated Integrals, XVII

Suppose that the region R is defined by the inequalities a ≤ x ≤ b,
c(x) ≤ y ≤ d(x).

This represents the region above the curve y = c(x) and
below the curve y = d(x), between x = a and x = b.

As before, the volume under z = f (x , y) above the region R

in the xy -plane is given by the integral
∫ b
a A(x) dx , where

A(x) is the cross-sectional area at a given x-coordinate.

The area A(x0) of each cross section will be the area under
the curve z = f (x0, y) between y = c(x0) and y = d(x0),

which is
∫ d(x0)
c(x0)

f (x0, y) dy . (Here, again, we are thinking of x0
as a constant independent of y .)

So, the volume is
∫ b
a

[∫ d(x)
c(x) f (x , y) dy

]
dx , where now the

“inner limits” depend on x .



Iterated Integrals, XVIII

Example: Find the volume under the surface z = 6− x2 − y2 that
lies above the region 0 ≤ x ≤ 1, x ≤ y ≤ 2x .

The volume is
∫ 1
0

∫ 2x
x

(
6− x2 − y2

)
dy dx .

To evaluate the inner integral
∫ 2x
x

(
6− x2 − y2

)
dy , we take

the antiderivative with respect to y :∫ 2x

x

(
6− x2 − y2

)
dy =

[
6y − x2y − 1

3
y3

] ∣∣∣2x
y=x

=

(
12x − 2x3 − 8

3
x3

)
−
(

6x − x3 − 1

3
x3

)
= 6x − 10

3
x3.

Now we can evaluate the outer integral:∫ 1

0

(
6x − 10

3
x3

)
dx =

[
3x2 − 5

6
x4

] ∣∣∣1
x=0

=
13

6
.
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Iterated Integrals, XIX

Just like with rectangular regions, we could also slice using
horizontal slices (perpendicular to the y -axis), which will give an
iterated integral with integration order dx dy .

Explicitly, if the region R is defined by the inequalities
c ≤ y ≤ d , a(x) ≤ x ≤ b(x), then the resulting iterated

integral will be
∫ d
c

∫ b(x)
a(x) f (x , y) dx dy .



Iterated Integrals, XX

Example: Evaluate
∫∫

R ex+2y dA, where R is the region
{(x , y) : 0 ≤ x ≤ y , 0 ≤ y ≤ ln(3)}.

Since the x-inequalities depend on y , the order dx dy is
easiest.

The resulting iterated integral is
∫ ln(3)
0

∫ y
0 ex+2y dx dy .

Now we just evaluate:∫ ln(3)

0

[∫ y

0
ex+2y dx

]
dy =

∫ ln(3)

0

[
ex+2y

] ∣∣∣y
x=0

dy

=

∫ ln(3)

0

[
e3y − e2y

]
dy

=

(
1

3
e3y − 1

2
e2y
) ∣∣∣ln(3)

y=0
=

14

3
.
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Iterated Integrals, XXI

As with rectangles, we have a version of Fubini’s theorem that
ensures the value of the integral does not depend on the method
we use to compute it:

Theorem (Fubini’s Theorem on General Regions)

If f (x , y) is continuous on a region
R = {(x , y) : a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)} and
R = {(x , y) : c ≤ y ≤ d , h1(y) ≤ x ≤ h2(y)}, then∫∫

R
f (x , y) dA =

∫ b

a

∫ g2(x)

g1(x)
f (x , y)dy dx =

∫ d

c

∫ h2(y)

h1(y)
f (x , y)dx dy.

We will do lots more examples next time.



Summary

We did a few more optimization examples.

We introduced double integrals in rectangular coordinates.

Next lecture: Computing double integrals, order of integration.


