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Lagrange Multipliers

The Method of Lagrange Multipliers

Constrained Optimization

This material represents §2.6 from the course notes.



Logistics Info

The midterm exams have been graded and the grades, along with
grading comments, are posted in Canvas.

The exams themselves along with their solutions are posted
on the course webpage.

If you have any questions about the exam grading, or if you
believe there was some kind of grading error or other issue,
please let me know during office hours, via email, or via a
private chat message in Zoom.

I have extended this week’s WeBWorK by one day, because we
won’t cover all the material until Wednesday.



Constrained Optimization, I

In the lectures before the exam review, we talked about general
optimization problems, of the general form “given a function,
maximize it on a region”.

However, many problems are not of this type, but rather of
the form “given a function, maximize it subject to some
additional constraints”.

Example: Maximize the volume V = πr2h of a cylindrical can
given that its surface area SA = 2πr2 + 2πrh is 150π cm2.

The most natural way to solve such a problem is to eliminate
the constraints (i.e., by solving for one of the variables in
terms of the others) and then reducing the problem to
something without a constraint.

Then we are left with a regular optimization problem, like the
ones we already discussed.



Constrained Optimization, II

Example: Maximize the volume V = πr2h of a cylindrical can
given that its surface area SA = 2πr2 + 2πrh is 150π cm2.

We use the surface area constraint 150π cm2 = 2πr2 + 2πrh
to solve for h in terms of r .

This gives h = 150π−2πr2
2πr = 75−r2

r .

Now we plug in to the volume formula to write it as a function
of r alone: this gives V (r) = πr2 · 75−r2r = 75πr − πr3.

Then dV /dr = 75π − 3πr2, so by (setting equal to zero) we
see the critical points occur for r = ±5.

Since we are interested in positive r , we can do a little bit
more checking to conclude that the can’s volume is indeed
maximized at the critical point.

So the radius is r = 5 cm, the height is h = 10 cm, and the
resulting maximum volume is V = 250πcm3.



Constrained Optimization, III

This technique works well enough, except that it requires us to
solve the constraint equation.

If instead we had been given even a slightly more complicated
constraint, like r3 + 2rh + 3h3 = 200 (which is quite a bit
harder to solve for r or h), we would not have been able to
solve the optimization problem.

What we are seeking instead is a method that does not
require us to solve the constraint equation.

This is what we will discuss now: how to perform a
constrained optimization without having to solve the
constraint equation (or equations).



Constrained Optimization, IV

Let’s motivate the idea using some geometry:

Suppose we have a function f (x , y) that we wish to minimize
or maximize subject to the constraint g(x , y) = c for some
constant c .

Let’s consider some explicit functions: let’s look for the
minimum and maximum values of f (x , y) = x + y subject to
the constraint x2 + y2 = 2, which is of the form g(x , y) = c
for g(x , y) = x2 + y2 and c = 2.

Now consider the level sets for the functions f and g .



Constrained Optimization, V

Here are the level sets for f (x , y) = x + y and x2 + y2 = 2:



Constrained Optimization, VI

Imagine we are walking around the level set g(x , y) = c , and
consider what the level curves of f are doing as we move around.

In general the level curves of f will cross the level set
g(x , y) = c .

But if we are at a point where f is maximized, then if we walk
around nearby that maximum, we will see only level curves of
f with a smaller value than the maximum.

The only way that this can happen is if the level curve of f is
tangent to the contour g(x , y) = c at that maximum.

Since the gradient is orthogonal to (any) tangent curve, this is
equivalent to saying that the gradient vector of f is parallel to
the gradient vector of g : in other words, that there exists a
scalar λ for which ∇f = λ∇g .



Lagrange Multipliers, I

This observation is the key to the method of Lagrange multipliers,
which allows us to solve constrained optimization problems:

Method (Lagrange Multipliers, 2 variables, 1 constraint)

To find the extreme values of f (x , y) subject to a constraint
g(x , y) = c, as long as ∇g 6= 0, it is sufficient to solve the system
of three variables x , y , λ given by ∇f = λ∇g and g(x , y) = c, and
then search among the resulting points (x , y) to find the minimum
and maximum.

The value λ is called a Lagrange multiplier, which is where
the name of the procedure comes from.

If one defines the “Lagrange function” to be
L(x , y , λ) = f (x , y)− λ · [g(x , y)− c], the result above says
that the minimum and maximum of f (x , y) subject to
g(x , y) = c must occur at critical points of L.



Lagrange Multipliers, II

Proof:

Let r(t) = 〈x(t), y(t)〉 be a parametrization of the level curve
g(x , y) = c passing through an extreme point of f at t = 0.

Applying the chain rule to f and g yields
∂f
∂t = ∂f

∂x x ′(t) + ∂f
∂y y ′(t) = ∇f · r′(t) and

∂g
∂t = ∂g

∂x x ′(t) + ∂g
∂y y ′(t) = ∇g · r′(t).

Since g is a constant function on the level set g(x , y) = c , we
have ∂g/∂t = 0 for all t.

Also, since f has a local extreme point at t = 0, we have
∂f /∂t = 0 at t = 0.

So at t = 0 we have ∇f (0) · r′(0) = 0 and ∇g(0) · r′(0) = 0,
so both ∇f (0) and ∇g(0) are orthogonal to r′(0) 6= 0.

Since we are in the plane, ∇f (0) and ∇g(0) must be parallel.

We are also restricted to the curve g(x , y) = c , so this
equation holds as well.



Lagrange Multipliers, III

Example: Find the minimum and maximum values of
f (x , y) = x + y subject to the constraint x2 + y2 = 2.

We use Lagrange multipliers: we have f (x , y) = x + y and
g(x , y) = x2 + y2, so ∇f = 〈1, 1〉 and ∇g = 〈2x , 2y〉.
Our system is ∇f = λ∇g and g(x , y) = c : in other words,
〈1, 1〉 = λ〈2x , 2y〉 and x2 + y2 = 2.

Thus we have the system 1 = 2xλ, 1 = 2yλ, and x2 + y2 = 2.

Solving the first two equations gives x = 1
2λ and y = 1

2λ .
Then plugging in to the third equation yields(

1
2λ

)2
+
(

1
2λ

)2
= 2, so that 1

2λ2
= 2.

This yields λ2 = 1/4 hence λ = ±1/2.

Thus, we obtain the two points (x , y) = (1, 1) and (−1,−1).

Since f (1, 1) = 2 and f (−1,−1) = −2, the minimum is −2
and the maximum is 2.
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Lagrange Multipliers, III
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Lagrange Multipliers, IV

Example: Find the minimum and maximum values of
f (x , y) = x + y subject to the constraint x2 + y2 = 2.

Compare to the picture:



Lagrange Multipliers, IV
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Lagrange Multipliers, V

Example: Find the minimum and maximum values of
f (x , y) = 2x + 3y subject to the constraint x2 + 4y2 = 100.

We use Lagrange multipliers: we have g = x2 + 4y2, so
∇f = 〈2, 3〉 and ∇g = 〈2x , 8y〉.
Thus we get 2 = 2xλ, 3 = 8yλ, and x2 + 4y2 = 100.

Solving the first two equations gives x =
1

λ
and y =

3

8λ
.

Then plugging in to the third equation yields(
1

λ

)2

+ 4

(
3

8λ

)2

= 100, so that
1

λ2
+

9

16λ2
= 100.

Multiplying both sides by 16λ2 yields 25 = 100(16λ2), so that
λ2 = 1/64 hence λ = ±1/8.

Thus, we obtain the two points (x , y) = (8, 3) and (−8,−3).

Since f (8, 3) = 25 and f (−8,−3) = −25, the maximum is
f (8, 3) = 25 and the minimum is f (−8,−3) = −25.



Lagrange Multipliers, V
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Lagrange Multipliers, V
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Lagrange Multipliers, VI

Example: Maximize the volume V = πr2h of a cylindrical can
given that its surface area SA = 2πr2 + 2πrh is 150π cm2.

We use Lagrange multipliers.

We have f (r , h) = πr2h and g(r , h) = 2πr2 + 2πrh, so
∇f =

〈
2πrh, πr2

〉
and ∇g = 〈4πr + 2πh, 2πr〉.

This gives the the system 2πrh = (4πr + 2πh)λ,
πr2 = (2πr)λ, and 2πr2 + 2πrh = 150π.

Cancelling all of the π factors gives the simpler system
2rh = (4r + 2h)λ, r2 = 2rλ, 2r2 + 2rh = 150.

We can also cancel some factors of 2 to get the system
rh = (2r + h)λ, r2 = 2rλ, r2 + rh = 75.



Lagrange Multipliers, VI
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Lagrange Multipliers, VII

Example: Maximize the volume V = πr2h of a cylindrical can
given that its surface area SA = 2πr2 + 2πrh is 150π cm2.

We have 2rh = (4r + 2h)λ, r2 = 2rλ, 2r2 + 2rh = 150.

Solving the second equation yields r = 0 or λ = r/2, but
r = 0 doesn’t work in the third equation. So λ = r/2.

Plugging into the first equation yields 2rh = (4r + 2h) · r/2,
and cancelling r yields 2h = 2r + h, so that h = 2r .

Finally, plugging in h = 2r to the third equation yields
2r2 + 4r2 = 150, so that r2 = 25 and r = ±5.

The two candidate points are (r , h) = (5, 10) and (−5,−10).

We only want positive values, so the only point left is (5, 10),
which by the physical setup of the problem must be the max.

Therefore, the maximum volume is f (5, 10) = 250πcm3.



Lagrange Multipliers, VII
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Lagrange Multipliers, VIII

Example: Maximize the volume V = πr2h of a cylindrical can
given that its surface area SA = 2πr2 + 2πrh is 150π cm2.

The calculations we did here indicate that the cylindrical can
with the maximum volume for a fixed surface area has h = 2r :
in other words, the height equals the diameter.

Of course, in actual fabrication, the material used to construct
the can (i.e., the surface area) is not the only consideration
for the shape.

You can decide for yourself whether most cylindrical
containers are actually shaped this way. (Soda cans are
generally not: why not?)



Lagrange Multipliers, IX

We can also use Lagrange multipliers as a component of solving
optimization-on-a-region problems.

Specifically, if the boundary of the region can be described as
an implicit curve or surface, we can use Lagrange multipliers
to identify any potential boundary-critical points.

This method can often yield easier calculations than the
method we discussed last week that required giving a
parametrization of the boundary.



Lagrange Multipliers, X

Example: Find the absolute minimum and maximum of
f (x , y) = x2 − y2 on the closed disc x2 + y2 ≤ 4.

First, we find the critical points: we have fx = 2x and
fy = −2y . Clearly both are zero only at (x , y) = (0, 0), so
(0, 0) is the only critical point.

Next, we analyze the boundary of the region. The boundary is
the circle x2 + y2 = 4, which we can view as the constraint
g(x , y) = 4 where g(x , y) = x2 + y2.

Now we use Lagrange multipliers to analyze the behavior on
the boundary: we have ∇f = 〈2x ,−2y〉 and ∇g = 〈2x , 2y〉,
yielding the system 2x = 2xλ, −2y = 2yλ, and x2 + y2 = 4.



Lagrange Multipliers, X
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Lagrange Multipliers, XI

Example: Find the absolute minimum and maximum of
f (x , y) = x2 − y2 on the closed disc x2 + y2 ≤ 4.

We have the system 2x = 2xλ, −2y = 2yλ, and x2 + y2 = 4.

The first equation yields x = 0 or λ = 1. If x = 0 then the
third equation yields y2 = 4 so that y = ±2, and then the
second equation is satisfied for λ = −1: this yields two points
(x , y) = (0, 2) and (0,−2).

Otherwise, if λ = 1 then the second equation yields y = 0,
and then the third equation gives x2 = 4 so that x = ±2: this
yields two points (x , y) = (2, 0) and (−2, 0).

Our full list of points to analyze is (0, 0), (2, 0), (0, 2),
(−2, 0), and (0,−2). We have f (0, 0) = 0, f (2, 0) = 4,
f (0, 2) = −4, f (−2, 0) = 4, and f (0,−2) = −4.

Thus, the maximum is 4 occurring at (±2, 0) and the
minimum is −4 occurring at (0,±2).
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Lagrange Multipliers, XI
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Lagrange Multipliers, XII

We can also use Lagrange multipliers for systems with more than 2
variables.

Method (Lagrange Multipliers, 3 variables, 1 constraint)

To find the extreme values of f (x , y , z) subject to a constraint
g(x , y , z) = c, it is sufficient to solve the system of four variables
x , y , z , λ given by ∇f = λ∇g and g(x , y , z) = c, and then search
among the resulting points (x , y , z) to find the minimum and
maximum.

The only change is that we have more variables floating around.

The intuition behind the method is the same as before; namely,
that the (tangent planes to the) level sets for f and g must be
parallel if f has a local extreme point, which means that the
gradients must also be parallel.



Lagrange Multipliers, XIII

Example: Find the minimum and maximum values of
f (x , y , z) = x + 2y + 2z subject to the constraint x2 + y2 + z2 = 9.

We have g = x2 + y2 + z2, so ∇f = 〈1, 2, 2〉 and
∇g = 〈2x , 2y , 2z〉.
Thus we have the system 1 = 2xλ, 2 = 2yλ, 2 = 2zλ, and
x2 + y2 + z2 = 9.

The first three equations give x = 1
2λ , y = 1

λ , z = 1
λ .

Then the last equation becomes [ 1
2λ ]2 + [ 1λ ]2 + [ 1λ ]2 = 9, so

that 9
4λ2

= 9 and thus λ = ±1/2.

This gives two points (x , y , z) = (1, 2, 2) and (−1,−2,−2).

Since f (1, 2, 2) = 9 and f (−1,−2,−2) = −9, the maximum is
f (1, 2, 2) = 9 and the minimum is f (−1,−2,−2) = −9.
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Lagrange Multipliers, XIV

Example: Find the minimum and maximum values of
f (x , y , z) = x + 2y + 2z subject to the constraint x2 + y2 + z2 = 9.

You might be interested to know that there actually is a way
to solve this problem using vectors, using no calculus at all!

The idea is to consider vectors v = 〈x , y , z〉 and w = 〈1, 2, 2〉.

Then we want to maximize f = v ·w subject to the condition
||v||2 = 9, which is to say, ||v|| = 3.

But by the dot product theorem,
v ·w = ||v||||w|| cos(θ) = (3)(3) cos(θ).

So, the maximum is 9 (with cos θ = 1) and the minimum is
−9 (with cos θ = −1).
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f (x , y , z) = x + 2y + 2z subject to the constraint x2 + y2 + z2 = 9.

You might be interested to know that there actually is a way
to solve this problem using vectors, using no calculus at all!

The idea is to consider vectors v = 〈x , y , z〉 and w = 〈1, 2, 2〉.
Then we want to maximize f = v ·w subject to the condition
||v||2 = 9, which is to say, ||v|| = 3.

But by the dot product theorem,
v ·w = ||v||||w|| cos(θ) = (3)(3) cos(θ).

So, the maximum is 9 (with cos θ = 1) and the minimum is
−9 (with cos θ = −1).



Lagrange Multipliers, XV

Example: Find the absolute minimum and maximum of
f (x , y , z) = x2 + yz on the interior of the ellipsoid
18x2 + 4y2 + 9z2 ≤ 72.

First, we find the critical points: we have fx = 36x , fy = z ,
fz = y . Clearly all three are zero only at (x , y , z) = (0, 0, 0),
so (0,0,0) is the only critical point.

Next, we analyze the boundary of the region. The boundary is
the ellipsoid 18x2 + 4y2 + 9z2 = 72, which we can view as the
constraint g(x , y , z) = 72 for g(x , y , z) = 18x2 + 4y2 + 9z2.

Now we use Lagrange multipliers: we have ∇f = 〈2x , z , y〉
and ∇g = 〈36x , 8y , 18z〉, yielding the system 2x = 36xλ,
z = 8yλ, y = 18zλ, and x2 + 4y2 + 9z2 = 72.



Lagrange Multipliers, XV

Example: Find the absolute minimum and maximum of
f (x , y , z) = x2 + yz on the interior of the ellipsoid
18x2 + 4y2 + 9z2 ≤ 72.

First, we find the critical points: we have fx = 36x , fy = z ,
fz = y . Clearly all three are zero only at (x , y , z) = (0, 0, 0),
so (0,0,0) is the only critical point.

Next, we analyze the boundary of the region. The boundary is
the ellipsoid 18x2 + 4y2 + 9z2 = 72, which we can view as the
constraint g(x , y , z) = 72 for g(x , y , z) = 18x2 + 4y2 + 9z2.

Now we use Lagrange multipliers: we have ∇f = 〈2x , z , y〉
and ∇g = 〈36x , 8y , 18z〉, yielding the system 2x = 36xλ,
z = 8yλ, y = 18zλ, and x2 + 4y2 + 9z2 = 72.



Lagrange Multipliers, XVI

Example: Find the absolute minimum and maximum of
f (x , y , z) = x2 + yz on the interior of the ellipsoid
18x2 + 4y2 + 9z2 ≤ 72.

We have 2x = 36xλ, z = 8yλ, y = 18zλ,
18x2 + 4y2 + 9z2 = 72.
Plugging the second equation into the third yields y = 144λ2y
so that y = 0 or λ2 = 1/144.
If y = 0 then the second equation would give z = 0, and then
the fourth equation would become 18x2 = 72 so that x = ±2.
We obtain two points: (x , y , z) = (2, 0, 0) and (−2, 0, 0).
Otherwise, y 6= 0 and so λ2 = 1/144. Then, because λ 6= 1,
the first equation requires x = 0. The system then reduces to
z = ±2

3y and 4y2 + 9z2 = 72, so plugging in yields
4y2 + 4y2 = 72 and thus y2 = 9 so that y = ±3.
We obtain four points: (x , y , z) = (0, 3, 2), (0, 3,−2),
(0,−3, 2), and (0,−3,−2).



Lagrange Multipliers, XVI

Example: Find the absolute minimum and maximum of
f (x , y , z) = x2 + yz on the interior of the ellipsoid
18x2 + 4y2 + 9z2 ≤ 72.

We have 2x = 36xλ, z = 8yλ, y = 18zλ,
18x2 + 4y2 + 9z2 = 72.
Plugging the second equation into the third yields y = 144λ2y
so that y = 0 or λ2 = 1/144.
If y = 0 then the second equation would give z = 0, and then
the fourth equation would become 18x2 = 72 so that x = ±2.
We obtain two points: (x , y , z) = (2, 0, 0) and (−2, 0, 0).
Otherwise, y 6= 0 and so λ2 = 1/144. Then, because λ 6= 1,
the first equation requires x = 0. The system then reduces to
z = ±2

3y and 4y2 + 9z2 = 72, so plugging in yields
4y2 + 4y2 = 72 and thus y2 = 9 so that y = ±3.
We obtain four points: (x , y , z) = (0, 3, 2), (0, 3,−2),
(0,−3, 2), and (0,−3,−2).



Lagrange Multipliers, XVII

Example: Find the absolute minimum and maximum of
f (x , y , z) = x2 + yz on the interior of the ellipsoid
18x2 + 4y2 + 9z2 ≤ 72.

Our full list of points to analyze is (0, 0, 0), (2, 0, 0),
(−2, 0, 0), (0, 3, 2), (0, 3,−2), (0,−3, 2), and (0,−3,−2).

We have f (0, 0, 0) = 0, f (±2, 0, 0) = 4,
f (0, 3, 2) = f (0,−3,−2) = 6, f (0, 3,−2) = f (0,−3, 2) = −6.

So, the maximum is 6, occurring at (0, 3, 2) and (0,−3,−2),
while the minimum is −6, occurring at (0, 3,−2) and
(0,−3, 2).



Lagrange Multipliers, XVIII [FOR FUN ONLY]

For completeness we also mention that there is an analogous
procedure for a problem with two constraints:

Method (Lagrange Multipliers, 3 variables, 2 constraints)

To find the extreme values of f (x , y , z) subject to a pair of
constraints g(x , y , z) = c and h(x , y , z) = d, it is sufficient to
solve the system of five variables x , y , z , λ, µ given by
∇f = λ∇g + µ∇h, g(x , y , z) = c, and h(x , y , z) = d, and then
search among the resulting triples (x , y , z) to find the minimum
and maximum.

The method also works with more than three variables, and has a
natural generalization to more than two constraints. (It is fairly
rare to encounter systems with more than two constraints.)

We won’t do an example of this method since such problems tend
to be very long.



Summary

We discussed constrained optimization and the method of
Lagrange multipliers.

We discussed a number of examples of Lagrange multipliers
problems.

Next lecture: Double integrals.


