
Math 2321 (Multivariable Calculus)

Lecture #13 of 38 ∼ February 18, 2021

Midterm #1 Review #2



Midterm 1 Exam Topics

The topics for the exam are as follows:

3D graphing, level sets

Vectors, vector operations

Dot and cross products

Lines and planes in 3-space

Curves and motion in 3-space (including T and N)

Partial derivatives

Directional derivatives and the gradient

Tangent lines and planes

Linearization

The chain rule, implicit differentiation

Critical points and their classification

This represents §1.1− 2.5.1 from the notes and WeBWorKs 1-4.



Exam Information

I have sent emails (through Canvas) to confirm your testing
window. Please verify that it is correct.

Any questions about exam logistics?



Review Problems, I

(#1e) Suppose v = 〈3, 0,−4〉 and w = 〈−1, 6, 2〉. Find the angle
between v and w.

Recall that the dot product theorem says
v ·w = ||v||||w|| cos(θ).

Therefore, the angle is

θ = cos−1(
v ·w
||v|| ||w||

) = cos−1
[ −11

5
√

41

]
≈ 1.9215 radians.
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Review Problems, II

(#4e) A particle has position r(t) = 〈3 cos(t), 5 sin(t), 4 cos(t)〉 at
time t. Find the unit tangent vector T(t).

The unit tangent vector, by definition, is T(t) =
r′(t)

||r′(t)||
.

Since r′(t) = 〈−3 sin(t), 5 cos(t),−4 sin(t)〉, we have
||r′(t)|| =

√
(−3 sin t)2 + (5 cos t)2 + (−4 sin t)2 =√

9 sin2 t + 25 cos2 t + 16 sin2 t =
√

25 sin2 t + 25 cos2 t = 5.

Thus, T(t) =
r′(t)

||r′(t)||
=
〈
− 3

5
sin(t), cos(t), −4

5
sin(t)

〉
.



Review Problems, II

(#4e) A particle has position r(t) = 〈3 cos(t), 5 sin(t), 4 cos(t)〉 at
time t. Find the unit tangent vector T(t).

The unit tangent vector, by definition, is T(t) =
r′(t)

||r′(t)||
.

Since r′(t) = 〈−3 sin(t), 5 cos(t),−4 sin(t)〉, we have
||r′(t)|| =

√
(−3 sin t)2 + (5 cos t)2 + (−4 sin t)2 =√

9 sin2 t + 25 cos2 t + 16 sin2 t =
√

25 sin2 t + 25 cos2 t = 5.

Thus, T(t) =
r′(t)

||r′(t)||
=
〈
− 3

5
sin(t), cos(t), −4

5
sin(t)

〉
.



Review Problems, III

(#7b.f) Let f (x , y , z) = x3yz2. Find the minimum and maximum
rates of change of f at the point (1, 2, 1), and the unit vector
directions in which the minimum and maximum rates occur.

The maximum rate is in the direction of ∇f and the
magnitude is ||∇f ||, while the minimum rate is the opposite
direction with the opposite sign.

As ∇f = 〈3x2yz2, x3z2, 2x3yz〉, ∇f (1, 2, 1) = 〈6, 1, 4〉.

So the maximum rate is ||∇f (1, 2, 1)|| = ||〈6, 1, 4〉|| =
√

53

in the direction of ∇f
||∇f || = 1√

53
〈6, 1, 4〉 .

The minimum rate is − ||∇f (1, 2, 1)|| = −
√

53 in the

direction of − ∇f
||∇f || = − 1√

53
〈6, 1, 4〉 .
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Review Problems, IV

(#11b) Find and classify the critical points for
f (x , y) = x4 + y2 − 8x2 + 4y .

We set fx = 0 and fy = 0 to find the critical points, then use
the second derivatives test to classify them.

We have fx = 4x3 − 16x and fy = 2y + 4.

Solving fx = 0 gives 4x3 − 16x = 0 so 4x(x2 − 4) = 0,
meaning that x = −2, 0, 2.

Likewise, fy = 0 gives 2y + 4 = 0 so that y = −2.

We get 3 critical points: (x , y) = (−2,−2), (0,−2), (2,−2) .

We also compute fxx = 12x2 − 16, fxy = 0, fyy = 2, so that
D = fxx fyy − f 2xy = (12x2 − 16)(2)− 02.

At (−2,−2) and (2,−2), D = 64 > 0 and fxx = 32 > 0 so

(−2,−2) and (2,−2) are local minima .

At (0,−2), D = −32 so (0,−2) is a saddle point .
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Review Problems, V

(#2g) Find an equation for the plane containing the vectors
〈1, 2,−1〉 and 〈2,−1, 1〉 and the point (1,−1, 2).

The normal vector is orthogonal to the two given vectors, so it
is given by their cross product.

Thus, the normal vector is

〈1, 2,−1〉 × 〈2,−1, 1〉 =

∣∣∣∣∣∣
i j k
1 2 −1
2 −1 1

∣∣∣∣∣∣ = 〈1,−3,−5〉.

Thus, the plane’s equation is x − 3y − 5z = d for some
constant d .

Since the plane passes through (1,−1, 2), plugging in yields
d = −6.

So the equation is x − 3y − 5z = −6 .
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Review Problems, VI

(#12a) Find the min and max of f (x , y) = x2 − 2xy + 3y2 − 4y
on the triangle with vertices (0, 0), (2, 0), and (2, 4).

First, critical points: fx = 2x − 2y , fy = −2x + 6y − 4 so
y = x so 4x − 4 = 0 so (x , y) = (1, 1). Now the boundary:

1. (0, 0) to (2, 0): parametrized by (x , y) = (2t, 0), 0 ≤ t ≤ 1.
Then f = 4t2, f ′ = 8t, so f ′ is zero at t = 0.
Yields boundary-crit point (0, 0) and endpoints (0, 0), (2, 0).

2. (2, 0) to (2, 4): parametrized by (x , y) = (2, 4t), 0 ≤ t ≤ 1.
Then f = 48t2 − 32t + 4, f ′ = 96t − 32, zero at t = 1/3.
Yields (2, 4/3) and endpoints (2, 0), (2, 4).

3. (0, 0) to (2, 4): parametrized by (x , y) = (2t, 4t), 0 ≤ t ≤ 1.
Then f = 36t2 − 16t, f ′ = 72t − 16, zero at t = 2/9.
Yields (4/9, 8/9) and endpoints (0, 0), (2, 4).

Point list is (1, 1), (0, 0), (2, 0), (2, 4/3), (2, 4), (4/9, 8/9).
Minimum is −2 at (1, 1), maximum is 20 at (2, 4).
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Review Problems, VII

(#9a) Suppose
∂f

∂x
(1, 5) = 9,

∂f

∂y
(1, 5) = −3,

∂f

∂x
(2,−2) = 4, and

∂f

∂y
(2,−2) = 5, where x(s, t) and y(s, t) are such that x(1, 5) = 2,

y(1, 5) = −2,
∂x

∂s
(1, 5) = 3,

∂x

∂t
(1, 5) = 2,

∂y

∂s
(1, 5) = 4, and

∂y

∂t
(1, 5) = −2. Find

∂f

∂s
at (s, t) = (1, 5).

We apply the chain rule.

If s = 1 and t = 5 then x = 2 and y = −2. This means we
want the partial derivatives of f that are evaluated at
(x , y) = (2,−2) rather than (x , y) = (1, 5).

Here,
∂f

∂s
=
∂f

∂x
· ∂x
∂s

+
∂f

∂y
· ∂y
∂s

= 4 · 3 + 5 · 4 = 32 .
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Review Problems, IX

(#6ab) A potato is fired into the air at time t = 0s from the origin
in a vacuum with initial velocity v(0) = (4i + 8j + 80k) m/s.
Assuming that the only force acting on the potato is the downward
acceleration due to gravity of a(t) = −10km/s2 , find the velocity
and position of the potato at time t seconds.

Since v′(t) = a(t), taking the antiderivative of a(t) gives v(t).

This yields v(t) = 〈C1,C2,C3 − 10t〉 m/s.

Plugging in the initial condition v(0) = 〈4, 8, 80〉 m/s gives
C1 = 4, C2 = 8, C3 = 80.

Thus, v(t) = 〈4, 8, 80− 10t〉m/s .

In the same way, by integrating v(t) and plugging in the initial

condition, we obtain r(t) =
〈
4t, 8t, 80t − 5t2

〉
m .
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Review Problems, X

(#6cd) A potato is fired at time t = 0 s and at time t s, it has
position r(t) =

〈
4t, 8t, 80t − 5t2

〉
m and velocity

v(t) = 〈4, 8, 80− 10t〉m/s. Find the total time that the potato is
in the air, and the potato’s speed when it hits the ground.

The potato hits the ground when its height (i.e., its
z-coordinate is 0 m).

This occurs when 80t − 5t2 = 0 so that t = 0 s or t = 16 s.
Since it is fired at t = 0 s, it hits the ground at time t = 16 s .

The speed is then ||r′(16 s)|| = ||〈4, 8,−80〉m/s|| =√
42 + 82 + (−80)2 m/s =

√
6480 m/s .
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Review Problems, XI

(#10f) Suppose f (x , y) = x3 + 3xy . Find an equation for the
tangent plane to the graph of z = f (x , y) at (x , y) = (−1, 1).

We rewrite the equation as x3 + 3xy − z = 0 and then use the
fact that for an implicit surface of the form g(x , y , z) = 0, the
gradient ∇g(P) is the normal vector to the tangent plane to
the surface at a point P.

If x = −1 and y = 1, then z = f (−1, 1) = −4. So our point
P is (−1, 1,−4).

For g(x , y , z) = x3 + 3xy − z , ∇g =
〈
3x2 + 3y , 3x ,−1

〉
.

So, ∇g(−1, 1,−4) = 〈6,−3,−1〉.
Therefore, the tangent plane has equation 6x − 3y − z = d
for some constant d .

Plugging in P = (−1, 1,−4) shows d = −5, so we get the
equation 6x − 3y − z = −5 .



Review Problems, XI

(#10f) Suppose f (x , y) = x3 + 3xy . Find an equation for the
tangent plane to the graph of z = f (x , y) at (x , y) = (−1, 1).

We rewrite the equation as x3 + 3xy − z = 0 and then use the
fact that for an implicit surface of the form g(x , y , z) = 0, the
gradient ∇g(P) is the normal vector to the tangent plane to
the surface at a point P.

If x = −1 and y = 1, then z = f (−1, 1) = −4. So our point
P is (−1, 1,−4).

For g(x , y , z) = x3 + 3xy − z , ∇g =
〈
3x2 + 3y , 3x ,−1

〉
.

So, ∇g(−1, 1,−4) = 〈6,−3,−1〉.
Therefore, the tangent plane has equation 6x − 3y − z = d
for some constant d .

Plugging in P = (−1, 1,−4) shows d = −5, so we get the
equation 6x − 3y − z = −5 .



Review Problems, XII

(#10b) Suppose f (x , y) = x3 + 3xy . Find the rate of change of f
at (x , y) = (1, 2) in the direction toward the origin.

This is asking for a directional derivative.

Remember that the directional derivative of f in the direction
of the unit vector v is ∇f (P) · v.

We have ∇f =
〈
3x2 + 3y , 3x

〉
so ∇f (1, 2) = 〈9, 3〉.

The vector towards the origin from (1, 2) is 〈−1,−2〉, which
has length

√
(−1)2 + (−2)2 =

√
5.

Thus, the unit vector towards the origin from (1, 2) is
1√
5
〈−1,−2〉.

So, the rate of change is

〈9, 3〉 · 1√
5
〈−1,−2〉 = − 15√

5
= −3

√
5 .
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Review Problems, XIII

(#2a) Find an equation for the plane parallel to x + 2y − 3z = 1
containing the point (2,−1, 2).

Parallel planes have the same normal vector.

So, the normal vector for the desired plane is 〈1, 2,−3〉,
meaning its equation is x + 2y − 3z = d for some d .

Plugging in (2,−1, 2) shows that d = −6, so the equation is
x + 2y − 3z = −6 .
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Review Problems, XIV

(#11d) Find and classify the critical points for
f (x , y) = x3 − 3xy + 3y2.

We have fx = 3x2 − 3y and fy = −3x + 6y , so we get the
system 3x2 − 3y = 0 and −3x + 6y = 0.

Solving the second equation for x gives x = 2y .

Then plugging into the first equation yields 12y2 − 3y = 0, so
that y = 0 or y = 1/4.

If y = 0 then x = 2y = 0 while if y = 1/4 then x = 2y = 1/2.

So there are two critical points: (x , y) = (0, 0), (1/2, 1/4) .

We have fxx = 6x , fxy = −3, fyy = 6, so Then
D = (6x)(6)− (−3)2.

At (0, 0), D = −9 < 0, so (0, 0) is a saddle point .

At (1/2, 1/4), D = 9 > 0 and fxx = 3 > 0, so

(1/2, 1/4) is a local minimum .
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Review Problems, XV

(#7c.g) Find the linearization to g(x , y , z) = ln(x2 + y2 + z2) at
the point (x , y , z) = (2, 1, 1).

The linearization is L(x , y , z) = g(2, 1, 1)
+ gx(2, 1, 1)(x − 2) + gy (2, 1, 1)(y − 1) + gz(2, 1, 1)(z − 1).

We have gx = 2x/(x2 + y2 + z2), gy = 2y/(x2 + y2 + z2),
and gz = 2z/(x2 + y2 + z2).

So g(2, 1, 1) = ln 6, gx(2, 1, 1) = 2/3, gy (2, 1, 1) = 1/3, and
gz(2, 1, 1) = 1/3.

Thus, L(x , y , z) = ln(6) +
2

3
(x − 2) +

1

3
(y − 1) +

1

3
(z − 1) .
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Review Problems, XVI

(#8b.x) Suppose that z is defined implicitly as a function of x and

y by the relation ex−yz + xz = 9. Find
∂z

∂x
.

By implicit differentiation, we have

∂z

∂x
= − fx

fz
= − ex−yz + z

−yex−yz + x
.
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Review Problems, XVII

(#1d) If w = 〈−1, 6, 2〉, find a vector of length 4 in the same
direction as w.

Note that ||w|| =
√

(−1)2 + 62 + 22 =
√

41.

A unit vector in the same direction as w is
w

||w||
.

Scaling this vector by 4 yields the desired vector: explicitly, it

is 4
w

||w||
=
〈 −4√

41
,

24√
41
,

8√
41

〉
.
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Review Problems, XVIII

(#2c) Find a parametrization for the line parallel to
〈x , y , z〉 = 〈1− 2t, 3 + 2t, 2 + 5t〉 containing the point (1, 1, 1).

We need the direction vector for the new line. We can find it
by noting that parallel lines have the same direction vector.

Since the direction vector for the given line is v = 〈−2, 2, 5〉,
that is also the direction vector for the new line.

Since the new line passes through P = (1, 1, 1), its
parametrization is given by
〈x , y , z〉 = P + tv = 〈1, 1, 1〉+ t〈−2, 2, 5〉.
Explicitly, this is 〈x , y , z〉 = 〈1− 2t, 1 + 2t, 1 + 5t〉 .
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Review Problems, XIX

(#10c) Find the unit vector direction in which f (x , y) = x3 + 3xy
is decreasing the fastest at (x , y) = (2, 0).

This direction is the unit vector pointing in the opposite
direction of the gradient vector ∇f (P).

Since ∇f = 〈3x2 + 3y , 3x〉 we have ∇f (P) = 〈12, 6〉, with
length ||∇f (P)|| =

√
122 + 62 = 6

√
5.

The desired unit vector is then given by

− ∇f (P)

||∇f (P)||
=

〈
− 2√

5
,− 1√

5

〉
.
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Review Problems, XX

(#1b) Find the minimum and maximum values of f (x , y) = x + y
on the circular region x2 + y2 ≤ 4.

First, f has no critical points, since fx = 1 and fy = 1.

For the boundary, we could parametrize it using x = 2 cos t,
y = 2 sin t for 0 ≤ t ≤ 2π.

Then f = 2 cos t + 2 sin t, so f ′ = −2 sin t + 2 cos t which is
zero when sin t = cos t, yielding t = π/4, 5π/4 so
(x , y) = (

√
2,
√

2), (−
√

2,−
√

2).

So, we see that the min is −2
√

2 at (−
√

2,−
√

2) and the
max is 2

√
2 at (

√
2,
√

2).



Review Problems, XX

(#1b) Find the minimum and maximum values of f (x , y) = x + y
on the circular region x2 + y2 ≤ 4.

First, f has no critical points, since fx = 1 and fy = 1.

For the boundary, we could parametrize it using x = 2 cos t,
y = 2 sin t for 0 ≤ t ≤ 2π.

Then f = 2 cos t + 2 sin t, so f ′ = −2 sin t + 2 cos t which is
zero when sin t = cos t, yielding t = π/4, 5π/4 so
(x , y) = (

√
2,
√

2), (−
√

2,−
√

2).

So, we see that the min is −2
√

2 at (−
√

2,−
√

2) and the
max is 2

√
2 at (

√
2,
√

2).



Review Problems, XXI

(#2f) Find a parametrization for the intersection of the planes
x + y + 2z = 4 and 2x − y − z = 5.

We need the normal vector (which is perpendicular to the
direction vectors of the two lines) and a point the plane passes
through (which we can find by trial and error).

The direction vector is orthogonal to 〈1, 1, 2〉 and 〈2,−1,−1〉,
so is given by cross product 〈1, 1, 2〉 × 〈2,−1, 1〉 = 〈1, 5,−3〉.
To find a point in the plane we try picking a value for one
coordinate.

Setting z = 0 gives x + y = 4 and 2x − y = 5 which eventually
yields x = 3, y = 1: thus a point in both planes is (3, 1, 0).

We get a parametrization 〈x , y , z〉 = 〈3 + t, 1 + 5t, −3t〉 .
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Review Problems, XXII

(#7a.g) Find the rate of change of g(x , y , z) = ln(x2 + y2 + z2) in
the direction of v = 〈2,−1, 2〉 at the point (1, 1, 1).

The directional derivative is the dot product ∇g(P) ·w of the
gradient ∇g(P) with the unit direction vector w.

Note that ∇g = 1
x2+y2+z2

〈2x , 2y , 2z〉.

So, ∇g(1, 1, 1) = 1
3 〈2, 2, 2〉.

Also, ||v|| =
√

22 + (−1)2 + 22 = 3.

So the unit direction vector is w =
v

||v||
=

1

3
〈2,−1, 2〉.

The directional derivative is thus

∇g(P) ·w =
1

3
〈2, 2, 2〉 · 1

3
〈2,−1, 2〉 =

2

3
.
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Review Problems, XXIII

(#4f) A particle has position r(t) = 〈3 cos(t), 5 sin(t), 4 cos(t)〉 at
time t. Find the unit normal vector N(t).

(Earlier we found T(t) =
〈
− 3

5
sin(t), cos(t), −4

5
sin(t)

〉
.)

The unit normal vector, by definition, is N(t) =
T′(t)

||T′(t)||
.

Since T′(t) =
〈
− 3

5
cos(t), − sin(t), −4

5
cos(t)

〉
, we have

||T′(t)|| =
√

(9/25) cos2 t + sin2 t + (16/25) cos2 t =√
sin2 t + cos2 t = 1.

So N(t) =
T′(t)

||T′(t)||
=
〈
− 3

5
cos(t), − sin(t), −4

5
cos(t)

〉
.
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Summary

We did more review problems for midterm 1.

Next lecture: Lagrange multipliers.


