Math 2321 (Multivariable Calculus) Lecture #13 of 38 \sim February 18, 2021

Midterm $#1$ Review $#2$

Midterm 1 Exam Topics

The topics for the exam are as follows:

- 3D graphing, level sets
- Vectors, vector operations
- Dot and cross products
- Lines and planes in 3-space
- Curves and motion in 3-space (including **T** and **N**)
- **•** Partial derivatives
- **•** Directional derivatives and the gradient
- Tangent lines and planes
- **o** Linearization
- **•** The chain rule, implicit differentiation
- **•** Critical points and their classification

This represents $\S 1.1 - 2.5.1$ from the notes and WeBWorKs 1-4.

I have sent emails (through Canvas) to confirm your testing window. Please verify that it is correct.

Any questions about exam logistics?

(#1e) Suppose $\mathbf{v} = \langle 3, 0, -4 \rangle$ and $\mathbf{w} = \langle -1, 6, 2 \rangle$. Find the angle between v and w.

(#1e) Suppose $\mathbf{v} = \langle 3, 0, -4 \rangle$ and $\mathbf{w} = \langle -1, 6, 2 \rangle$. Find the angle between v and w.

- Recall that the dot product theorem says $\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| ||\mathbf{w}|| \cos(\theta).$
- Therefore, the angle is

$$
\theta = \cos^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{w}}{||\mathbf{v}|| \, ||\mathbf{w}||}\right) = \boxed{\cos^{-1}\left[\frac{-11}{5\sqrt{41}}\right]} \approx 1.9215 \text{ radians.}
$$

(#4e) A particle has position $r(t) = \langle 3 \cos(t), 5 \sin(t), 4 \cos(t) \rangle$ at time t. Find the unit tangent vector $\mathbf{T}(t)$.

(#4e) A particle has position $r(t) = \langle 3 \cos(t), 5 \sin(t), 4 \cos(t) \rangle$ at time t. Find the unit tangent vector $\mathbf{T}(t)$.

The unit tangent vector, by definition, is $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||}$ $\frac{|\mathbf{r}'(t)|}{||\mathbf{r}'(t)||}.$

Since $\mathbf{r}'(t) = \langle -3 \sin(t), 5 \cos(t), -4 \sin(t) \rangle$, we have $||\mathbf{r}'(t)|| = \sqrt{(-3 \sin t)^2 + (5 \cos t)^2 + (-4 \sin t)^2} =$ $\sqrt{9 \sin^2 t + 25 \cos^2 t + 16 \sin^2 t} = \sqrt{25 \sin^2 t + 25 \cos^2 t} = 5.$ Thus, $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||}$ $\displaystyle{\frac{|\mathbf{r}'(t)|}{||\mathbf{r}'(t)||}=\bigg|\bigg\langle -\frac{3}{5}\bigg\rangle}$ $\frac{3}{5}\sin(t),\cos(t),-\frac{4}{5}$ $\frac{4}{5}$ sin(t) $\bigg\rangle$.

(#7b.f) Let $f(x, y, z) = x^3yz^2$. Find the minimum and maximum rates of change of f at the point $(1, 2, 1)$, and the unit vector directions in which the minimum and maximum rates occur.

(#7b.f) Let $f(x, y, z) = x^3yz^2$. Find the minimum and maximum rates of change of f at the point $(1, 2, 1)$, and the unit vector directions in which the minimum and maximum rates occur.

• The maximum rate is in the direction of ∇f and the magnitude is $||\nabla f||$, while the minimum rate is the opposite direction with the opposite sign.

• As
$$
\nabla f = \langle 3x^2yz^2, x^3z^2, 2x^3yz \rangle
$$
, $\nabla f(1,2,1) = \langle 6, 1, 4 \rangle$.

So the maximum rate is $||\nabla f(1,2,1)|| = ||\langle 6, 1, 4 \rangle|| = 0$ √ 53 in the direction of $\frac{\nabla f}{\|\nabla f\|} = \left| \frac{1}{\sqrt{53}} \left\langle 6, 1, 4 \right\rangle \right|.$

• The minimum rate is
$$
-\left|\left|\sqrt{f(1,2,1)}\right|\right| = \boxed{-\sqrt{53}}
$$
 in the direction of $-\frac{\nabla f}{\left|\left|\nabla f\right|\right|} = \boxed{-\frac{1}{\sqrt{53}}\left(6,1,4\right)}$.

Review Problems, IV

 $(\#11b)$ Find and classify the critical points for $f(x, y) = x⁴ + y² - 8x² + 4y.$

Review Problems, IV

 $(\#11b)$ Find and classify the critical points for $f(x, y) = x⁴ + y² - 8x² + 4y.$

- We set $f_x = 0$ and $f_y = 0$ to find the critical points, then use the second derivatives test to classify them.
- We have $f_{x} = 4x^{3} 16x$ and $f_{y} = 2y + 4$.
- Solving $f_x = 0$ gives $4x^3 16x = 0$ so $4x(x^2 4) = 0$, meaning that $x = -2, 0, 2$.

• Likewise,
$$
f_y = 0
$$
 gives $2y + 4 = 0$ so that $y = -2$.

- We get 3 critical points: $(x, y) = |(-2, -2), (0, -2), (2, -2)|$.
- We also compute $f_{xx} = 12x^2 16$, $f_{xy} = 0$, $f_{yy} = 2$, so that $D = f_{xx}f_{yy} - f_{xy}^2 = (12x^2 - 16)(2) - 0^2.$

• At (-2, -2) and (2, -2),
$$
D = 64 > 0
$$
 and $f_{xx} = 32 > 0$ so
 $(-2, -2)$ and (2, -2) are local minima.

• At (0, -2),
$$
D = -32
$$
 so $(0, -2)$ is a saddle point.

 $(\#2g)$ Find an equation for the plane containing the vectors $\langle 1, 2, -1 \rangle$ and $\langle 2, -1, 1 \rangle$ and the point $(1, -1, 2)$.

 $(\#2g)$ Find an equation for the plane containing the vectors $\langle 1, 2, -1 \rangle$ and $\langle 2, -1, 1 \rangle$ and the point $(1, -1, 2)$.

- The normal vector is orthogonal to the two given vectors, so it is given by their cross product.
- Thus, the normal vector is

$$
\langle 1,2,-1\rangle\times\langle 2,-1,1\rangle=\left|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -1 \\ 2 & -1 & 1 \end{array}\right|=\langle 1,-3,-5\rangle.
$$

- Thus, the plane's equation is $x 3y 5z = d$ for some constant d.
- Since the plane passes through $(1, -1, 2)$, plugging in yields $d = -6$.
- So the equation is $|x 3y 5z = -6$.

 $(\#12{\sf a})$ Find the min and max of $f(x,y)=x^2-2xy+3y^2-4y$ on the triangle with vertices $(0, 0)$, $(2, 0)$, and $(2, 4)$.

Review Problems, VI

 $(\#12{\sf a})$ Find the min and max of $f(x,y)=x^2-2xy+3y^2-4y$ on the triangle with vertices $(0, 0)$, $(2, 0)$, and $(2, 4)$.

- First, critical points: $f_x = 2x 2y$, $f_y = -2x + 6y 4$ so $y = x$ so $4x - 4 = 0$ so $(x, y) = (1, 1)$. Now the boundary:
- 1. (0, 0) to (2, 0): parametrized by $(x, y) = (2t, 0)$, $0 \le t \le 1$. Then $f = 4t^2$, $f' = 8t$, so f' is zero at $t = 0$. Yields boundary-crit point $(0, 0)$ and endpoints $(0, 0)$, $(2, 0)$.
- 2. (2, 0) to (2, 4): parametrized by $(x, y) = (2, 4t)$, $0 \le t \le 1$. Then $f = 48t^2 - 32t + 4$, $f' = 96t - 32$, zero at $t = 1/3$. Yields $(2, 4/3)$ and endpoints $(2, 0)$, $(2, 4)$.
- 3. (0, 0) to (2, 4): parametrized by $(x, y) = (2t, 4t)$, $0 \le t \le 1$. Then $f = 36t^2 - 16t$, $f' = 72t - 16$, zero at $t = 2/9$. Yields $(4/9, 8/9)$ and endpoints $(0, 0)$, $(2, 4)$.

Point list is $(1, 1)$, $(0, 0)$, $(2, 0)$, $(2, 4/3)$, $(2, 4)$, $(4/9, 8/9)$. Minimum is -2 at $(1, 1)$, maximum is 20 at $(2, 4)$.

Review Problems, VII

$$
(\#\mathbf{9a}) \text{ Suppose } \frac{\partial f}{\partial x}(1,5) = 9, \frac{\partial f}{\partial y}(1,5) = -3, \frac{\partial f}{\partial x}(2,-2) = 4, \text{ and}
$$

$$
\frac{\partial f}{\partial y}(2,-2) = 5, \text{ where } x(s,t) \text{ and } y(s,t) \text{ are such that } x(1,5) = 2,
$$

$$
y(1,5) = -2, \frac{\partial x}{\partial s}(1,5) = 3, \frac{\partial x}{\partial t}(1,5) = 2, \frac{\partial y}{\partial s}(1,5) = 4, \text{ and}
$$

$$
\frac{\partial y}{\partial t}(1,5) = -2. \text{ Find } \frac{\partial f}{\partial s} \text{ at } (s,t) = (1,5).
$$

Review Problems, VII

$$
(\#\mathsf{9a}) \text{ Suppose } \frac{\partial f}{\partial x}(1,5) = 9, \frac{\partial f}{\partial y}(1,5) = -3, \frac{\partial f}{\partial x}(2,-2) = 4, \text{ and}
$$

\n
$$
\frac{\partial f}{\partial y}(2,-2) = 5, \text{ where } x(s,t) \text{ and } y(s,t) \text{ are such that } x(1,5) = 2,
$$

\n
$$
y(1,5) = -2, \frac{\partial x}{\partial s}(1,5) = 3, \frac{\partial x}{\partial t}(1,5) = 2, \frac{\partial y}{\partial s}(1,5) = 4, \text{ and}
$$

\n
$$
\frac{\partial y}{\partial t}(1,5) = -2. \text{ Find } \frac{\partial f}{\partial s} \text{ at } (s,t) = (1,5).
$$

• We apply the chain rule.

• If $s = 1$ and $t = 5$ then $x = 2$ and $y = -2$. This means we want the partial derivatives of f that are evaluated at $(x, y) = (2, -2)$ rather than $(x, y) = (1, 5)$. Here, $\frac{\partial f}{\partial s} = \frac{\partial f}{\partial s}$ $\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s}$ $\frac{\partial x}{\partial s} + \frac{\partial t}{\partial y}$ $\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}$ $\frac{\partial y}{\partial s} = 4 \cdot 3 + 5 \cdot 4 = 32.$

$$
(\#\text{9b}) \text{ Suppose } \frac{\partial f}{\partial x}(1,5) = 9, \frac{\partial f}{\partial y}(1,5) = -3, \frac{\partial f}{\partial x}(2,-2) = 4, \text{ and}
$$

$$
\frac{\partial f}{\partial y}(2,-2) = 5, \text{ where } x(s,t) \text{ and } y(s,t) \text{ are such that } x(1,5) = 2,
$$

$$
y(1,5) = -2, \frac{\partial x}{\partial s}(1,5) = 3, \frac{\partial x}{\partial t}(1,5) = 2, \frac{\partial y}{\partial s}(1,5) = 4, \text{ and}
$$

$$
\frac{\partial y}{\partial t}(1,5) = -2. \text{ Find } \frac{\partial f}{\partial t} \text{ at } (s,t) = (1,5).
$$

$$
(\#\text{9b}) \text{ Suppose } \frac{\partial f}{\partial x}(1,5) = 9, \frac{\partial f}{\partial y}(1,5) = -3, \frac{\partial f}{\partial x}(2,-2) = 4, \text{ and}
$$
\n
$$
\frac{\partial f}{\partial y}(2,-2) = 5, \text{ where } x(s,t) \text{ and } y(s,t) \text{ are such that } x(1,5) = 2,
$$
\n
$$
y(1,5) = -2, \frac{\partial x}{\partial s}(1,5) = 3, \frac{\partial x}{\partial t}(1,5) = 2, \frac{\partial y}{\partial s}(1,5) = 4, \text{ and}
$$
\n
$$
\frac{\partial y}{\partial t}(1,5) = -2. \text{ Find } \frac{\partial f}{\partial t} \text{ at } (s,t) = (1,5).
$$
\n• Here,
$$
\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t} = 4 \cdot 2 + 5 \cdot (-2) = -2.
$$

(#6ab) A potato is fired into the air at time $t = 0$ s from the origin in a vacuum with initial velocity $v(0) = (4i + 8j + 80k)$ m/s. Assuming that the only force acting on the potato is the downward acceleration due to gravity of $\mathbf{a}(t)=-10\mathbf{k}$ m/s 2 , find the velocity and position of the potato at time t seconds.

(#6ab) A potato is fired into the air at time $t = 0$ s from the origin in a vacuum with initial velocity $v(0) = (4i + 8j + 80k)$ m/s.

Assuming that the only force acting on the potato is the downward acceleration due to gravity of $\mathbf{a}(t)=-10\mathbf{k}$ m/s 2 , find the velocity and position of the potato at time t seconds.

- Since $\mathbf{v}'(t) = \mathbf{a}(t)$, taking the antiderivative of $\mathbf{a}(t)$ gives $\mathbf{v}(t)$.
- This yields $\mathbf{v}(t) = \langle C_1, C_2, C_3 10t \rangle$ m/s.
- Plugging in the initial condition $v(0) = \langle 4, 8, 80 \rangle$ m/s gives $C_1 = 4$, $C_2 = 8$, $C_3 = 80$.
- Thus, $\mathbf{v}(t) = \sqrt{\langle 4, 8, 80 10t \rangle \, \text{m/s}}$.
- In the same way, by integrating $v(t)$ and plugging in the initial condition, we obtain $\mathbf{r}(t) = \left| \langle 4t, 8t, 80t - 5t^2 \rangle \right|$ m $\left| \right|$.

(#6cd) A potato is fired at time $t = 0$ s and at time t s, it has position $\mathbf{r}(t)=\left\langle 4t,\,8t,\,80t-5t^{2}\right\rangle$ m and velocity $v(t) = \langle 4, 8, 80 - 10t \rangle$ m/s. Find the total time that the potato is in the air, and the potato's speed when it hits the ground.

(#6cd) A potato is fired at time $t = 0$ s and at time ts, it has position $\mathbf{r}(t)=\left\langle 4t,\,8t,\,80t-5t^{2}\right\rangle$ m and velocity $v(t) = \langle 4, 8, 80 - 10t \rangle$ m/s. Find the total time that the potato is in the air, and the potato's speed when it hits the ground.

- The potato hits the ground when its height (i.e., its z-coordinate is 0 m).
- This occurs when $80t 5t^2 = 0$ so that $t = 0$ s or $t = 16$ s. Since it is fired at $t = 0$ s, it hits the ground at time $t = 16$ s.

• The speed is then
$$
||\mathbf{r}'(16 \text{ s})|| = ||\langle 4, 8, -80 \rangle \text{ m/s}|| = \sqrt{4^2 + 8^2 + (-80)^2} \text{ m/s} = \sqrt{6480} \text{ m/s}.
$$

 $(\#10\mathsf{f})$ Suppose $f(x,y)=x^3+3xy$. Find an equation for the tangent plane to the graph of $z = f(x, y)$ at $(x, y) = (-1, 1)$.

Review Problems, XI

 $(\#10\mathsf{f})$ Suppose $f(x,y)=x^3+3xy$. Find an equation for the tangent plane to the graph of $z = f(x, y)$ at $(x, y) = (-1, 1)$.

- We rewrite the equation as $x^3+3xy-z=0$ and then use the fact that for an implicit surface of the form $g(x, y, z) = 0$, the gradient $\nabla g(P)$ is the normal vector to the tangent plane to the surface at a point P.
- If $x = -1$ and $y = 1$, then $z = f(-1, 1) = -4$. So our point P is $(-1, 1, -4)$.
- For $g(x, y, z) = x^3 + 3xy z$, $\nabla g = \langle 3x^2 + 3y, 3x, -1 \rangle$.
- So, $\nabla g(-1, 1, -4) = \langle 6, -3, -1 \rangle$.
- Therefore, the tangent plane has equation $6x 3y z = d$ for some constant d.
- Plugging in $P = (-1, 1, -4)$ shows $d = -5$, so we get the equation $\boxed{6x - 3y - z = -5}$.

 $(\#10\mathsf{b})$ Suppose $f(\mathsf{x},\mathsf{y})=\mathsf{x}^3+3\mathsf{x}\mathsf{y}$. Find the rate of change of t at $(x, y) = (1, 2)$ in the direction toward the origin.

 $(\#10\mathsf{b})$ Suppose $f(\mathsf{x},\mathsf{y})=\mathsf{x}^3+3\mathsf{x}\mathsf{y}$. Find the rate of change of t at $(x, y) = (1, 2)$ in the direction toward the origin.

- This is asking for a directional derivative.
- **•** Remember that the directional derivative of f in the direction of the unit vector **v** is $\nabla f(P) \cdot \mathbf{v}$.
- We have $\nabla f = \big\langle 3x^2 + 3y, 3x \big\rangle$ so $\nabla f(1,2) = \langle 9, 3 \rangle.$
- The vector towards the origin from $(1, 2)$ is $\langle -1, -2 \rangle$, which has length $\sqrt{(-1)^2 + (-2)^2} = \sqrt{5}$.
- \bullet Thus, the unit vector towards the origin from $(1, 2)$ is $\frac{1}{\sqrt{2}}$ $\frac{1}{5}\langle -1,-2\rangle.$
- So, the rate of change is

$$
\langle 9, 3 \rangle \cdot \frac{1}{\sqrt{5}} \langle -1, -2 \rangle = -\frac{15}{\sqrt{5}} = \boxed{-3\sqrt{5}}.
$$

(#2a) Find an equation for the plane parallel to $x + 2y - 3z = 1$ containing the point $(2, -1, 2)$.

(#2a) Find an equation for the plane parallel to $x + 2y - 3z = 1$ containing the point $(2, -1, 2)$.

- **•** Parallel planes have the same normal vector.
- So, the normal vector for the desired plane is $\langle 1, 2, -3 \rangle$, meaning its equation is $x + 2y - 3z = d$ for some d.
- Plugging in $(2, -1, 2)$ shows that $d = -6$, so the equation is $x + 2y - 3z = -6$.

Review Problems, XIV

 $($ #11d) Find and classify the critical points for $f(x, y) = x^3 - 3xy + 3y^2$.

Review Problems, XIV

 $(\#11d)$ Find and classify the critical points for $f(x, y) = x^3 - 3xy + 3y^2$.

- We have $f_{\sf x} = 3{\sf x}^2-3{\sf y}$ and $f_{\sf y} = -3{\sf x}+6{\sf y},$ so we get the system $3x^2 - 3y = 0$ and $-3x + 6y = 0$.
- Solving the second equation for x gives $x = 2y$.
- Then plugging into the first equation yields $12y^2-3y=0$, so that $y = 0$ or $y = 1/4$.

• If
$$
y = 0
$$
 then $x = 2y = 0$ while if $y = 1/4$ then $x = 2y = 1/2$.

- \bullet So there are two critical points: $(x, y) = |(0, 0), (1/2, 1/4)|$.
- We have $f_{xx} = 6x$, $f_{xy} = -3$, $f_{yy} = 6$, so Then $D = (6x)(6) - (-3)^2$.
- At $(0, 0)$, $D = -9 < 0$, so $(0, 0)$ is a saddle point

• At (1/2, 1/4),
$$
D = 9 > 0
$$
 and $f_{xx} = 3 > 0$, so
\n(1/2, 1/4) is a local minimum.

 $(\#7c.g)$ Find the linearization to $g(x,y,z) = \ln(x^2 + y^2 + z^2)$ at the point $(x, y, z) = (2, 1, 1)$.

 $(\#7c.g)$ Find the linearization to $g(x,y,z) = \ln(x^2 + y^2 + z^2)$ at the point $(x, y, z) = (2, 1, 1)$.

- The linearization is $L(x, y, z) = g(2, 1, 1)$ $+ g_x(2, 1, 1)(x - 2) + g_y(2, 1, 1)(y - 1) + g_z(2, 1, 1)(z - 1).$
- We have $g_x = 2x/(x^2 + y^2 + z^2)$, $g_y = 2y/(x^2 + y^2 + z^2)$, and $g_z = 2z/(x^2 + y^2 + z^2)$.
- So $g(2,1,1) = \ln 6$, $g_x(2,1,1) = 2/3$, $g_y(2,1,1) = 1/3$, and $g_{z}(2,1,1)=1/3.$

• Thus,
$$
L(x, y, z) = \left\lfloor \ln(6) + \frac{2}{3}(x - 2) + \frac{1}{3}(y - 1) + \frac{1}{3}(z - 1) \right\rfloor
$$
.

($#8b.x$) Suppose that z is defined implicitly as a function of x and y by the relation $e^{x-yz} + xz = 9$. Find $\frac{\partial z}{\partial x}$.

($#8b.x$) Suppose that z is defined implicitly as a function of x and y by the relation $e^{x-yz} + xz = 9$. Find $\frac{\partial z}{\partial x}$.

.

• By implicit differentiation, we have

$$
\frac{\partial z}{\partial x} = -\frac{f_x}{f_z} = \boxed{-\frac{e^{x - yz} + z}{-ye^{x - yz} + x}}
$$

(#1d) If $w = \langle -1, 6, 2 \rangle$, find a vector of length 4 in the same direction as w.

(#1d) If $\mathbf{w} = \langle -1, 6, 2 \rangle$, find a vector of length 4 in the same direction as w.

• Note that
$$
||\mathbf{w}|| = \sqrt{(-1)^2 + 6^2 + 2^2} = \sqrt{41}
$$
.

A unit vector in the same direction as **w** is $\frac{w}{||w||}$.

Scaling this vector by 4 yields the desired vector: explicitly, it

is
$$
4 \frac{\mathbf{w}}{\|\mathbf{w}\|} = \left| \left\langle \frac{-4}{\sqrt{41}}, \frac{24}{\sqrt{41}}, \frac{8}{\sqrt{41}} \right\rangle \right|
$$
.

 $(\#2c)$ Find a parametrization for the line parallel to $\langle x, y, z \rangle = \langle 1 - 2t, 3 + 2t, 2 + 5t \rangle$ containing the point $(1, 1, 1)$. $(\#2c)$ Find a parametrization for the line parallel to $\langle x, y, z \rangle = \langle 1 - 2t, 3 + 2t, 2 + 5t \rangle$ containing the point $(1, 1, 1)$.

- We need the direction vector for the new line. We can find it by noting that parallel lines have the same direction vector.
- Since the direction vector for the given line is $\mathbf{v} = \langle -2, 2, 5 \rangle$, that is also the direction vector for the new line.
- Since the new line passes through $P = (1, 1, 1)$, its parametrization is given by $\langle x, y, z \rangle = P + t\mathbf{v} = \langle 1, 1, 1 \rangle + t\langle -2, 2, 5 \rangle.$
- Explicitly, this is $\left\langle x, y, z \right\rangle = \left\langle \overline{1 2t, 1 + 2t, 1 + 5t} \right\rangle$.

(#10c) Find the unit vector direction in which $f(x, y) = x^3 + 3xy$ is decreasing the fastest at $(x, y) = (2, 0)$.

(#10c) Find the unit vector direction in which $f(x, y) = x^3 + 3xy$ is decreasing the fastest at $(x, y) = (2, 0)$.

- This direction is the unit vector pointing in the opposite direction of the gradient vector $\nabla f(P)$.
- Since $\nabla f = \langle 3x^2 + 3y, 3x \rangle$ we have $\nabla f(P) = \langle 12, 6 \rangle$, with Since $\forall t = (3x + 3y, 3x)$ we have \forall
length $||\nabla f(P)|| = \sqrt{12^2 + 6^2} = 6\sqrt{5}$.
- The desired unit vector is then given by

$$
-\frac{\nabla f(P)}{||\nabla f(P)||} = \left| \left\langle -\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \right\rangle \right|.
$$

(#1b) Find the minimum and maximum values of $f(x, y) = x + y$ on the circular region $x^2 + y^2 \leq 4$.

(#1b) Find the minimum and maximum values of $f(x, y) = x + y$ on the circular region $x^2 + y^2 \leq 4$.

- First, f has no critical points, since $f_x = 1$ and $f_y = 1$.
- For the boundary, we could parametrize it using $x = 2 \cos t$, $y = 2 \sin t$ for $0 \le t \le 2\pi$.
- Then $f = 2 \cos t + 2 \sin t$, so $f' = -2 \sin t + 2 \cos t$ which is zero when $\sin t = \cos t$, yielding $t = \pi/4$, $5\pi/4$ so $(z, y) = (\sqrt{2}, \sqrt{2}), (-\sqrt{2}, -\sqrt{2}).$ √ √ √
- So, we see that the min is -2 2 at (− 2, − min is $-2\sqrt{2}$ at $(-\sqrt{2}, -\sqrt{2})$ and the $\frac{1}{2}$ oo, we see that the min is 2√2 at (√2, √2).

 $(\#2f)$ Find a parametrization for the intersection of the planes $x + y + 2z = 4$ and $2x - y - z = 5$.

 $(\#2f)$ Find a parametrization for the intersection of the planes $x + y + 2z = 4$ and $2x - y - z = 5$.

- We need the normal vector (which is perpendicular to the direction vectors of the two lines) and a point the plane passes through (which we can find by trial and error).
- The direction vector is orthogonal to $\langle 1, 1, 2 \rangle$ and $\langle 2, -1, -1 \rangle$, so is given by cross product $\langle 1, 1, 2 \rangle \times \langle 2, -1, 1 \rangle = \langle 1, 5, -3 \rangle$.
- To find a point in the plane we try picking a value for one coordinate.
- Setting $z = 0$ gives $x + y = 4$ and $2x y = 5$ which eventually yields $x = 3$, $y = 1$: thus a point in both planes is $(3, 1, 0)$.

 \bullet We get a parametrization $\big| \langle x, y, z \rangle = \langle 3 + t, 1 + 5t, -3t \rangle \big|$.

 $(\#7{\sf a.g})$ Find the rate of change of $g(x,y,z) = \ln(x^2 + y^2 + z^2)$ in the direction of $\mathbf{v} = \langle 2, -1, 2 \rangle$ at the point $(1, 1, 1)$.

 $(\#7{\sf a.g})$ Find the rate of change of $g(x,y,z) = \ln(x^2 + y^2 + z^2)$ in the direction of $\mathbf{v} = \langle 2, -1, 2 \rangle$ at the point $(1, 1, 1)$.

- The directional derivative is the dot product $\nabla g(P) \cdot \mathbf{w}$ of the gradient $\nabla g(P)$ with the unit direction vector w.
- Note that $\nabla g = \frac{1}{\sqrt{2} + \sqrt{2}}$ $\frac{1}{x^2+y^2+z^2}$ $\langle 2x, 2y, 2z \rangle$.

• So,
$$
\nabla g(1,1,1) = \frac{1}{3} \langle 2, 2, 2 \rangle
$$
.

• Also,
$$
||\mathbf{v}|| = \sqrt{2^2 + (-1)^2 + 2^2} = 3.
$$

- So the unit direction vector is $\mathsf{w}=\dfrac{\mathsf{v}}{||\mathsf{v}||}=\dfrac{1}{3}$ $\frac{1}{3}\langle 2,-1,2\rangle.$
- The directional derivative is thus $\nabla g(P) \cdot \mathbf{w} = \frac{1}{2}$ $\frac{1}{3}\left\langle 2,2,2\right\rangle \cdot \frac{1}{3}\left\langle 2,-1,2\right\rangle =\bigg|\frac{2}{3}\bigg|$ $\frac{1}{3}$

(#4f) A particle has position $\mathbf{r}(t) = \langle 3 \cos(t), 5 \sin(t), 4 \cos(t) \rangle$ at time t. Find the unit normal vector $N(t)$. (Earlier we found $\mathbf{T}(t) = \left\langle \ - \ \frac{3}{5} \right\rangle$ $\frac{3}{5}\sin(t),\cos(t),-\frac{4}{5}$ $\frac{4}{5}\sin(t)\bigg\rangle.$)

(#4f) A particle has position $\mathbf{r}(t) = \langle 3 \cos(t), 5 \sin(t), 4 \cos(t) \rangle$ at time t. Find the unit normal vector $N(t)$. (Earlier we found $\mathbf{T}(t) = \left\langle \ - \ \frac{3}{5} \right\rangle$ $\frac{3}{5}\sin(t),\cos(t),-\frac{4}{5}$ $\frac{4}{5}\sin(t)\bigg\rangle.$) The unit normal vector, by definition, is $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{||\mathbf{T}'(t)||}$. Since $\mathbf{T}'(t) = \left\langle -\frac{3}{5} \right\rangle$ $\frac{3}{5}\cos(t), -\sin(t), -\frac{4}{5}$ $\frac{4}{5}\cos(t)\Big\rangle$, we have $||{\bf T}'(t)|| = \sqrt{(9/25)\cos^2 t + \sin^2 t + (16/25)\cos^2 t} =$ $\sqrt{\sin^2 t + \cos^2 t} = 1.$ So $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|} = \sqrt{\left(-\frac{3}{5}\right)}$ $\frac{3}{5}\cos(t), -\sin(t), -\frac{4}{5}$ $\frac{4}{5}\cos(t)\Big\rangle$.

We did more review problems for midterm 1.

Next lecture: Lagrange multipliers.