Math 2321 (Multivariable Calculus) Lecture #13 of $38 \sim$ February 18, 2021

Midterm #1 Review #2

Midterm 1 Exam Topics

The topics for the exam are as follows:

- 3D graphing, level sets
- Vectors, vector operations
- Dot and cross products
- Lines and planes in 3-space
- Curves and motion in 3-space (including T and N)
- Partial derivatives
- Directional derivatives and the gradient
- Tangent lines and planes
- Linearization
- The chain rule, implicit differentiation
- Critical points and their classification

This represents $\S1.1 - 2.5.1$ from the notes and WeBWorKs 1-4.

I have sent emails (through Canvas) to confirm your testing window. Please verify that it is correct.

Any questions about exam logistics?

(#1e) Suppose $\mathbf{v} = \langle 3, 0, -4 \rangle$ and $\mathbf{w} = \langle -1, 6, 2 \rangle$. Find the angle between \mathbf{v} and \mathbf{w} .

(#1e) Suppose $\mathbf{v} = \langle 3, 0, -4 \rangle$ and $\mathbf{w} = \langle -1, 6, 2 \rangle$. Find the angle between \mathbf{v} and \mathbf{w} .

- Recall that the dot product theorem says $\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| ||\mathbf{w}|| \cos(\theta).$
- Therefore, the angle is

$$\theta = \cos^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{w}}{||\mathbf{v}|| \, ||\mathbf{w}||}\right) = \left[\cos^{-1}\left[\frac{-11}{5\sqrt{41}}\right]\right] \approx 1.9215 \text{ radians.}$$

(#4e) A particle has position $\mathbf{r}(t) = \langle 3\cos(t), 5\sin(t), 4\cos(t) \rangle$ at time t. Find the unit tangent vector $\mathbf{T}(t)$.

(#4e) A particle has position $\mathbf{r}(t) = \langle 3\cos(t), 5\sin(t), 4\cos(t) \rangle$ at time t. Find the unit tangent vector $\mathbf{T}(t)$.

• The unit tangent vector, by definition, is $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||}$.

• Since $\mathbf{r}'(t) = \langle -3\sin(t), 5\cos(t), -4\sin(t) \rangle$, we have $||\mathbf{r}'(t)|| = \sqrt{(-3\sin t)^2 + (5\cos t)^2 + (-4\sin t)^2} = \sqrt{9\sin^2 t + 25\cos^2 t + 16\sin^2 t} = \sqrt{25\sin^2 t + 25\cos^2 t} = 5.$ • Thus, $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||} = \left[\langle -\frac{3}{5}\sin(t), \cos(t), -\frac{4}{5}\sin(t) \rangle \right].$ (#7b.f) Let $f(x, y, z) = x^3yz^2$. Find the minimum and maximum rates of change of f at the point (1, 2, 1), and the unit vector directions in which the minimum and maximum rates occur.

(#7b.f) Let $f(x, y, z) = x^3yz^2$. Find the minimum and maximum rates of change of f at the point (1, 2, 1), and the unit vector directions in which the minimum and maximum rates occur.

 The maximum rate is in the direction of ∇f and the magnitude is ||∇f||, while the minimum rate is the opposite direction with the opposite sign.

• As
$$\nabla f = \langle 3x^2yz^2, x^3z^2, 2x^3yz \rangle$$
, $\nabla f(1, 2, 1) = \langle 6, 1, 4 \rangle$.

• So the maximum rate is $||\nabla f(1,2,1)|| = ||\langle 6,1,4\rangle|| = \sqrt{53}$ in the direction of $\frac{\nabla f}{||\nabla f||} = \frac{1}{\sqrt{53}} \langle 6,1,4\rangle$.

• The minimum rate is
$$-||\nabla f(1,2,1)|| = \left\lfloor -\sqrt{53} \right\rfloor$$
 in the direction of $-\frac{\nabla f}{||\nabla f||} = \left\lfloor -\frac{1}{\sqrt{53}} \langle 6, 1, 4 \rangle \right\rfloor$.

Review Problems, IV

(#11b) Find and classify the critical points for $f(x, y) = x^4 + y^2 - 8x^2 + 4y$.

Review Problems, IV

(#11b) Find and classify the critical points for $f(x, y) = x^4 + y^2 - 8x^2 + 4y$.

- We set $f_x = 0$ and $f_y = 0$ to find the critical points, then use the second derivatives test to classify them.
- We have $f_x = 4x^3 16x$ and $f_y = 2y + 4$.
- Solving $f_x = 0$ gives $4x^3 16x = 0$ so $4x(x^2 4) = 0$, meaning that x = -2, 0, 2.
- Likewise, $f_y = 0$ gives 2y + 4 = 0 so that y = -2.
- We get 3 critical points: (x, y) = (-2, -2), (0, -2), (2, -2).
- We also compute $f_{xx} = 12x^2 16$, $f_{xy} = 0$, $f_{yy} = 2$, so that $D = f_{xx}f_{yy} f_{xy}^2 = (12x^2 16)(2) 0^2$.
- At (-2, -2) and (2, -2), D = 64 > 0 and $f_{xx} = 32 > 0$ so (-2, -2) and (2, -2) are local minima.
- At (0, -2), D = -32 so (0, -2) is a saddle point.

(#2g) Find an equation for the plane containing the vectors (1, 2, -1) and (2, -1, 1) and the point (1, -1, 2).

(#2g) Find an equation for the plane containing the vectors (1, 2, -1) and (2, -1, 1) and the point (1, -1, 2).

- The normal vector is orthogonal to the two given vectors, so it is given by their cross product.
- Thus, the normal vector is

$$\langle 1,2,-1\rangle \times \langle 2,-1,1\rangle = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -1 \\ 2 & -1 & 1 \end{vmatrix} = \langle 1,-3,-5\rangle.$$

- Thus, the plane's equation is x 3y 5z = d for some constant d.
- Since the plane passes through (1, -1, 2), plugging in yields d = -6.
- So the equation is x 3y 5z = -6.

(#12a) Find the min and max of $f(x, y) = x^2 - 2xy + 3y^2 - 4y$ on the triangle with vertices (0,0), (2,0), and (2,4).

Review Problems, VI

(#12a) Find the min and max of $f(x, y) = x^2 - 2xy + 3y^2 - 4y$ on the triangle with vertices (0,0), (2,0), and (2,4).

- First, critical points: $f_x = 2x 2y$, $f_y = -2x + 6y 4$ so y = x so 4x 4 = 0 so (x, y) = (1, 1). Now the boundary:
- 1. (0,0) to (2,0): parametrized by $(x, y) = (2t, 0), 0 \le t \le 1$. Then $f = 4t^2$, f' = 8t, so f' is zero at t = 0. Yields boundary-crit point (0,0) and endpoints (0,0), (2,0).
- 2. (2,0) to (2,4): parametrized by $(x, y) = (2, 4t), 0 \le t \le 1$. Then $f = 48t^2 - 32t + 4$, f' = 96t - 32, zero at t = 1/3. Yields (2,4/3) and endpoints (2,0), (2,4).
- 3. (0,0) to (2,4): parametrized by (x, y) = (2t, 4t), $0 \le t \le 1$. Then $f = 36t^2 - 16t$, f' = 72t - 16, zero at t = 2/9. Yields (4/9, 8/9) and endpoints (0, 0), (2, 4).

Point list is (1, 1), (0, 0), (2, 0), (2, 4/3), (2, 4), (4/9, 8/9). Minimum is -2 at (1, 1), maximum is 20 at (2, 4).

Review Problems, VII

(#9a) Suppose
$$\frac{\partial f}{\partial x}(1,5) = 9$$
, $\frac{\partial f}{\partial y}(1,5) = -3$, $\frac{\partial f}{\partial x}(2,-2) = 4$, and
 $\frac{\partial f}{\partial y}(2,-2) = 5$, where $x(s,t)$ and $y(s,t)$ are such that $x(1,5) = 2$,
 $y(1,5) = -2$, $\frac{\partial x}{\partial s}(1,5) = 3$, $\frac{\partial x}{\partial t}(1,5) = 2$, $\frac{\partial y}{\partial s}(1,5) = 4$, and
 $\frac{\partial y}{\partial t}(1,5) = -2$. Find $\frac{\partial f}{\partial s}$ at $(s,t) = (1,5)$.

Review Problems, VII

(#9a) Suppose
$$\frac{\partial f}{\partial x}(1,5) = 9$$
, $\frac{\partial f}{\partial y}(1,5) = -3$, $\frac{\partial f}{\partial x}(2,-2) = 4$, and
 $\frac{\partial f}{\partial y}(2,-2) = 5$, where $x(s,t)$ and $y(s,t)$ are such that $x(1,5) = 2$,
 $y(1,5) = -2$, $\frac{\partial x}{\partial s}(1,5) = 3$, $\frac{\partial x}{\partial t}(1,5) = 2$, $\frac{\partial y}{\partial s}(1,5) = 4$, and
 $\frac{\partial y}{\partial t}(1,5) = -2$. Find $\frac{\partial f}{\partial s}$ at $(s,t) = (1,5)$.
• We apply the chain rule

If s = 1 and t = 5 then x = 2 and y = -2. This means we want the partial derivatives of f that are evaluated at (x, y) = (2, -2) rather than (x, y) = (1, 5).
Here, ∂f/∂s = ∂f/∂x · ∂x/∂s + ∂f/∂y · ∂y/∂s = 4 · 3 + 5 · 4 = 32.

(#9b) Suppose
$$\frac{\partial f}{\partial x}(1,5) = 9$$
, $\frac{\partial f}{\partial y}(1,5) = -3$, $\frac{\partial f}{\partial x}(2,-2) = 4$, and
 $\frac{\partial f}{\partial y}(2,-2) = 5$, where $x(s,t)$ and $y(s,t)$ are such that $x(1,5) = 2$,
 $y(1,5) = -2$, $\frac{\partial x}{\partial s}(1,5) = 3$, $\frac{\partial x}{\partial t}(1,5) = 2$, $\frac{\partial y}{\partial s}(1,5) = 4$, and
 $\frac{\partial y}{\partial t}(1,5) = -2$. Find $\frac{\partial f}{\partial t}$ at $(s,t) = (1,5)$.

(#9b) Suppose
$$\frac{\partial f}{\partial x}(1,5) = 9$$
, $\frac{\partial f}{\partial y}(1,5) = -3$, $\frac{\partial f}{\partial x}(2,-2) = 4$, and
 $\frac{\partial f}{\partial y}(2,-2) = 5$, where $x(s,t)$ and $y(s,t)$ are such that $x(1,5) = 2$,
 $y(1,5) = -2$, $\frac{\partial x}{\partial s}(1,5) = 3$, $\frac{\partial x}{\partial t}(1,5) = 2$, $\frac{\partial y}{\partial s}(1,5) = 4$, and
 $\frac{\partial y}{\partial t}(1,5) = -2$. Find $\frac{\partial f}{\partial t}$ at $(s,t) = (1,5)$.
• Here, $\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t} = 4 \cdot 2 + 5 \cdot (-2) = -2$.

(#6ab) A potato is fired into the air at time t = 0s from the origin in a vacuum with initial velocity $\mathbf{v}(0) = (4\mathbf{i} + 8\mathbf{j} + 80\mathbf{k}) \text{ m/s}$. Assuming that the only force acting on the potato is the downward acceleration due to gravity of $\mathbf{a}(t) = -10\mathbf{k} \text{ m/s}^2$, find the velocity and position of the potato at time t seconds. (#6ab) A potato is fired into the air at time t = 0s from the origin in a vacuum with initial velocity $\mathbf{v}(0) = (4\mathbf{i} + 8\mathbf{j} + 80\mathbf{k}) \text{ m/s}$. Assuming that the only force acting on the potato is the downward

Assuming that the only force acting on the potato is the downward acceleration due to gravity of $\mathbf{a}(t) = -10 \mathbf{k} \, \mathrm{m/s^2}$, find the velocity and position of the potato at time t seconds.

- Since $\mathbf{v}'(t) = \mathbf{a}(t)$, taking the antiderivative of $\mathbf{a}(t)$ gives $\mathbf{v}(t)$.
- This yields $\mathbf{v}(t) = \langle C_1, C_2, C_3 10t \rangle$ m/s.
- Plugging in the initial condition $\mathbf{v}(0) = \langle 4, 8, 80 \rangle$ m/s gives $C_1 = 4$, $C_2 = 8$, $C_3 = 80$.
- Thus, $\mathbf{v}(t) = |\langle 4, 8, 80 10t \rangle \, \mathrm{m/s} |$.
- In the same way, by integrating $\mathbf{v}(t)$ and plugging in the initial condition, we obtain $\mathbf{r}(t) = \left[\langle 4t, 8t, 80t 5t^2 \rangle \mathbf{m} \right]$.

(#6cd) A potato is fired at time t = 0 s and at time t s, it has position $\mathbf{r}(t) = \langle 4t, 8t, 80t - 5t^2 \rangle$ m and velocity $\mathbf{v}(t) = \langle 4, 8, 80 - 10t \rangle$ m/s. Find the total time that the potato is in the air, and the potato's speed when it hits the ground.

(#6cd) A potato is fired at time t = 0 s and at time t s, it has position $\mathbf{r}(t) = \langle 4t, 8t, 80t - 5t^2 \rangle$ m and velocity $\mathbf{v}(t) = \langle 4, 8, 80 - 10t \rangle$ m/s. Find the total time that the potato is in the air, and the potato's speed when it hits the ground.

- The potato hits the ground when its height (i.e., its z-coordinate is 0 m).
- This occurs when $80t 5t^2 = 0$ so that t = 0 s or t = 16 s. Since it is fired at t = 0 s, it hits the ground at time t = 16 s.

• The speed is then
$$||\mathbf{r}'(16 s)|| = ||\langle 4, 8, -80 \rangle m/s|| = \sqrt{4^2 + 8^2 + (-80)^2} m/s = \sqrt{6480} m/s$$
.

Review Problems, XI

(#10f) Suppose $f(x, y) = x^3 + 3xy$. Find an equation for the tangent plane to the graph of z = f(x, y) at (x, y) = (-1, 1).

Review Problems, XI

(#10f) Suppose $f(x, y) = x^3 + 3xy$. Find an equation for the tangent plane to the graph of z = f(x, y) at (x, y) = (-1, 1).

- We rewrite the equation as x³ + 3xy z = 0 and then use the fact that for an implicit surface of the form g(x, y, z) = 0, the gradient ∇g(P) is the normal vector to the tangent plane to the surface at a point P.
- If x = -1 and y = 1, then z = f(-1, 1) = -4. So our point *P* is (-1, 1, -4).
- For $g(x, y, z) = x^3 + 3xy z$, $\nabla g = \langle 3x^2 + 3y, 3x, -1 \rangle$.
- So, $\nabla g(-1, 1, -4) = \langle 6, -3, -1 \rangle$.
- Therefore, the tangent plane has equation 6x 3y z = d for some constant d.
- Plugging in P = (-1, 1, -4) shows d = -5, so we get the equation 6x 3y z = -5.

(#10b) Suppose $f(x, y) = x^3 + 3xy$. Find the rate of change of f at (x, y) = (1, 2) in the direction toward the origin.

(#10b) Suppose $f(x, y) = x^3 + 3xy$. Find the rate of change of f at (x, y) = (1, 2) in the direction toward the origin.

- This is asking for a directional derivative.
- Remember that the directional derivative of f in the direction of the unit vector \mathbf{v} is $\nabla f(P) \cdot \mathbf{v}$.
- We have $\nabla f = \left< 3x^2 + 3y, 3x \right>$ so $\nabla f(1,2) = \left< 9, 3 \right>$.
- The vector towards the origin from (1,2) is $\langle -1, -2 \rangle$, which has length $\sqrt{(-1)^2 + (-2)^2} = \sqrt{5}$.
- Thus, the unit vector towards the origin from (1,2) is $\frac{1}{\sqrt{5}}\langle -1, -2\rangle$.
- So, the rate of change is

$$\langle 9,3\rangle \cdot \frac{1}{\sqrt{5}} \langle -1,-2\rangle = -\frac{15}{\sqrt{5}} = \boxed{-3\sqrt{5}}.$$

(#2a) Find an equation for the plane parallel to x + 2y - 3z = 1 containing the point (2, -1, 2).

(#2a) Find an equation for the plane parallel to x + 2y - 3z = 1 containing the point (2, -1, 2).

- Parallel planes have the same normal vector.
- So, the normal vector for the desired plane is (1, 2, −3), meaning its equation is x + 2y − 3z = d for some d.
- Plugging in (2, -1, 2) shows that d = -6, so the equation is x + 2y 3z = -6.

Review Problems, XIV

(#11d) Find and classify the critical points for $f(x, y) = x^3 - 3xy + 3y^2$.

Review Problems, XIV

(#11d) Find and classify the critical points for $f(x, y) = x^3 - 3xy + 3y^2$.

- We have $f_x = 3x^2 3y$ and $f_y = -3x + 6y$, so we get the system $3x^2 3y = 0$ and -3x + 6y = 0.
- Solving the second equation for x gives x = 2y.
- Then plugging into the first equation yields $12y^2 3y = 0$, so that y = 0 or y = 1/4.

• If
$$y = 0$$
 then $x = 2y = 0$ while if $y = 1/4$ then $x = 2y = 1/2$.

- So there are two critical points: (x, y) = |(0, 0), (1/2, 1/4)|.
- We have $f_{xx} = 6x$, $f_{xy} = -3$, $f_{yy} = 6$, so Then $D = (6x)(6) (-3)^2$.
- At (0,0), D = -9 < 0, so (0,0) is a saddle point .

• At
$$(1/2, 1/4)$$
, $D = 9 > 0$ and $f_{xx} = 3 > 0$, so $(1/2, 1/4)$ is a local minimum.

(#7c.g) Find the linearization to $g(x, y, z) = \ln(x^2 + y^2 + z^2)$ at the point (x, y, z) = (2, 1, 1).

(#7c.g) Find the linearization to $g(x, y, z) = \ln(x^2 + y^2 + z^2)$ at the point (x, y, z) = (2, 1, 1).

- The linearization is L(x, y, z) = g(2, 1, 1)+ $g_x(2, 1, 1)(x - 2) + g_y(2, 1, 1)(y - 1) + g_z(2, 1, 1)(z - 1).$
- We have $g_x = 2x/(x^2 + y^2 + z^2)$, $g_y = 2y/(x^2 + y^2 + z^2)$, and $g_z = 2z/(x^2 + y^2 + z^2)$.
- So $g(2,1,1) = \ln 6$, $g_x(2,1,1) = 2/3$, $g_y(2,1,1) = 1/3$, and $g_z(2,1,1) = 1/3$.

• Thus,
$$L(x, y, z) = \left[\ln(6) + \frac{2}{3}(x-2) + \frac{1}{3}(y-1) + \frac{1}{3}(z-1) \right]$$

(#8b.x) Suppose that z is defined implicitly as a function of x and y by the relation $e^{x-yz} + xz = 9$. Find $\frac{\partial z}{\partial x}$.

(#8b.x) Suppose that z is defined implicitly as a function of x and y by the relation $e^{x-yz} + xz = 9$. Find $\frac{\partial z}{\partial x}$.

• By implicit differentiation, we have

$$\frac{\partial z}{\partial x} = -\frac{f_x}{f_z} = \boxed{-\frac{e^{x-yz} + z}{-ye^{x-yz} + x}}$$

(#1d) If $\mathbf{w} = \langle -1, 6, 2 \rangle$, find a vector of length 4 in the same direction as \mathbf{w} .

(#1d) If $\mathbf{w} = \langle -1, 6, 2 \rangle$, find a vector of length 4 in the same direction as \mathbf{w} .

- Note that $||\mathbf{w}|| = \sqrt{(-1)^2 + 6^2 + 2^2} = \sqrt{41}.$
- A unit vector in the same direction as \mathbf{w} is $\frac{\mathbf{w}}{||\mathbf{w}||}$.
- Scaling this vector by 4 yields the desired vector: explicitly, it

is
$$4\frac{\mathbf{w}}{||\mathbf{w}||} = \left\lfloor \left\langle \frac{-4}{\sqrt{41}}, \frac{24}{\sqrt{41}}, \frac{8}{\sqrt{41}} \right\rangle \right\rfloor$$

(#2c) Find a parametrization for the line parallel to $\langle x, y, z \rangle = \langle 1 - 2t, 3 + 2t, 2 + 5t \rangle$ containing the point (1,1,1).

(#2c) Find a parametrization for the line parallel to

 $\langle x, y, z \rangle = \langle 1 - 2t, 3 + 2t, 2 + 5t \rangle$ containing the point (1, 1, 1).

- We need the direction vector for the new line. We can find it by noting that parallel lines have the same direction vector.
- Since the direction vector for the given line is $\mathbf{v} = \langle -2, 2, 5 \rangle$, that is also the direction vector for the new line.
- Since the new line passes through P = (1, 1, 1), its parametrization is given by $\langle x, y, z \rangle = P + t\mathbf{v} = \langle 1, 1, 1 \rangle + t \langle -2, 2, 5 \rangle$.
- Explicitly, this is $\langle x, y, z \rangle = \langle 1 2t, 1 + 2t, 1 + 5t \rangle$.

(#10c) Find the unit vector direction in which $f(x, y) = x^3 + 3xy$ is decreasing the fastest at (x, y) = (2, 0).

(#10c) Find the unit vector direction in which $f(x, y) = x^3 + 3xy$ is decreasing the fastest at (x, y) = (2, 0).

- This direction is the unit vector pointing in the opposite direction of the gradient vector ∇f(P).
- Since $\nabla f = \langle 3x^2 + 3y, 3x \rangle$ we have $\nabla f(P) = \langle 12, 6 \rangle$, with length $||\nabla f(P)|| = \sqrt{12^2 + 6^2} = 6\sqrt{5}$.
- The desired unit vector is then given by

$$-\frac{\nabla f(P)}{||\nabla f(P)||} = \left\langle -\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \right\rangle.$$

(#1b) Find the minimum and maximum values of f(x, y) = x + yon the circular region $x^2 + y^2 \le 4$. (#1b) Find the minimum and maximum values of f(x, y) = x + yon the circular region $x^2 + y^2 \le 4$.

- First, f has no critical points, since $f_x = 1$ and $f_y = 1$.
- For the boundary, we could parametrize it using $x = 2 \cos t$, $y = 2 \sin t$ for $0 \le t \le 2\pi$.
- Then $f = 2\cos t + 2\sin t$, so $f' = -2\sin t + 2\cos t$ which is zero when $\sin t = \cos t$, yielding $t = \pi/4$, $5\pi/4$ so $(x, y) = (\sqrt{2}, \sqrt{2}), (-\sqrt{2}, -\sqrt{2}).$
- So, we see that the min is $-2\sqrt{2}$ at $(-\sqrt{2}, -\sqrt{2})$ and the max is $2\sqrt{2}$ at $(\sqrt{2}, \sqrt{2})$.

(#2f) Find a parametrization for the intersection of the planes x + y + 2z = 4 and 2x - y - z = 5.

(#2f) Find a parametrization for the intersection of the planes x + y + 2z = 4 and 2x - y - z = 5.

- We need the normal vector (which is perpendicular to the direction vectors of the two lines) and a point the plane passes through (which we can find by trial and error).
- The direction vector is orthogonal to $\langle 1, 1, 2 \rangle$ and $\langle 2, -1, -1 \rangle$, so is given by cross product $\langle 1, 1, 2 \rangle \times \langle 2, -1, 1 \rangle = \langle 1, 5, -3 \rangle$.
- To find a point in the plane we try picking a value for one coordinate.
- Setting z = 0 gives x + y = 4 and 2x y = 5 which eventually yields x = 3, y = 1: thus a point in both planes is (3, 1, 0).

• We get a parametrization $\langle x, y, z
angle = \langle 3 + t, 1 + 5t, -3t
angle$.

(#7a.g) Find the rate of change of $g(x, y, z) = \ln(x^2 + y^2 + z^2)$ in the direction of $\mathbf{v} = \langle 2, -1, 2 \rangle$ at the point (1, 1, 1).

(#7a.g) Find the rate of change of $g(x, y, z) = \ln(x^2 + y^2 + z^2)$ in the direction of $\mathbf{v} = \langle 2, -1, 2 \rangle$ at the point (1, 1, 1).

- The directional derivative is the dot product ∇g(P) · w of the gradient ∇g(P) with the unit direction vector w.
- Note that $\nabla g = \frac{1}{x^2 + y^2 + z^2} \langle 2x, 2y, 2z \rangle$.

• So,
$$\nabla g(1,1,1) = \frac{1}{3} \langle 2,2,2 \rangle$$
.

• Also,
$$||\mathbf{v}|| = \sqrt{2^2 + (-1)^2 + 2^2} = 3.$$

- So the unit direction vector is $\mathbf{w} = \frac{\mathbf{v}}{||\mathbf{v}||} = \frac{1}{3} \langle 2, -1, 2 \rangle.$
- The directional derivative is thus $\nabla g(P) \cdot \mathbf{w} = \frac{1}{3} \langle 2, 2, 2 \rangle \cdot \frac{1}{3} \langle 2, -1, 2 \rangle = \frac{2}{3}.$

(#4f) A particle has position $\mathbf{r}(t) = \langle 3\cos(t), 5\sin(t), 4\cos(t) \rangle$ at time *t*. Find the unit normal vector $\mathbf{N}(t)$. (Earlier we found $\mathbf{T}(t) = \langle -\frac{3}{5}\sin(t), \cos(t), -\frac{4}{5}\sin(t) \rangle$.)

(#4f) A particle has position $\mathbf{r}(t) = \langle 3\cos(t), 5\sin(t), 4\cos(t) \rangle$ at time t. Find the unit normal vector $\mathbf{N}(t)$. (Earlier we found $\mathbf{T}(t) = \left\langle -\frac{3}{5}\sin(t), \cos(t), -\frac{4}{5}\sin(t) \right\rangle$.) • The unit normal vector, by definition, is $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{||\mathbf{T}'(t)||}$. • Since $\mathbf{T}'(t) = \left\langle -\frac{3}{5}\cos(t), -\sin(t), -\frac{4}{5}\cos(t) \right\rangle$, we have $||\mathbf{T}'(t)|| = \sqrt{(9/25)\cos^2 t + \sin^2 t + (16/25)\cos^2 t} =$ $\sqrt{\sin^2 t} + \cos^2 t = 1.$ • So $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{||\mathbf{T}'(t)||} = \left| \left\langle -\frac{3}{5}\cos(t), -\sin(t), -\frac{4}{5}\cos(t) \right\rangle \right|.$

We did more review problems for midterm 1.

Next lecture: Lagrange multipliers.