
Math 2321 (Multivariable Calculus)

Lecture #9 of 38 ∼ February 8th, 2021

The Chain Rule + Implicit Differentiation

The Chain Rule

Implicit Differentiation

This material represents §2.3.1-2.3.2 from the course notes.



Exam Information, I

Midterm 1 is next Friday, February 19th.

The exam has the same format as if it were being given in
class, in person.

You will write your responses (either on a printout of the
exam or on blank paper) and then scan/photograph your
responses and upload them into Canvas.

There are approximately 6 pages of material, about 1/5
multiple choice and the rest free response.

I have set up a selection of various time windows for you to
take the exam. You will select one of them ahead of time and
then take the exam at that time.

Next week’s lectures (Wed Feb 17th, Thu Feb 18th) will be
devoted to review. I will go over problems from the sheet of review
problems posted on the course webpage.



Exam Information, II

I have set up a Piazza poll for you to select your exam window.

The “official” exam time limit is 65 minutes. I give you 25
extra minutes of working time, so you really have 90 minutes.
To this are added 30 minutes of turnaround time (for
downloading, printing, scanning, and uploading).

Thus, the exam windows are 120 minutes in length (180 if you
have a DRC-approved testing-time accommodation).

The Canvas assignment will disappear after your exam window
finishes. After that time, you cannot submit via Canvas.

The windows are as follows: (Friday) 10:30am-12:30pm,
1:30pm-3:30pm, 4:30pm-6:30pm, 8pm-10pm
(Saturday) 1am-3am, 4am-6am, 9am-11am.

Please make your selection by Wednesday February 17th. I will
send confirmations via Canvas notification that evening.



Exam Information, III

Some notes on the exam format:

You are allowed to use calculators / equivalent computing
technology on the exam.

You are also allowed to use notes. Normally this would not be
allowed, however it does not seem reasonable to disallow
notes when you are taking the exam remotely.

However, you must show all relevant details and identify
whenever you used a calculator to do a calculation. You are
expected to justify all calculations and show all work. Correct
answers without appropriate work may not receive full credit.

Collaboration of other kind is not allowed – all work must be
your own.



Exam Information, IV

I will post the full topics list for the exam when we get into the
review material next week, but the exam covers chapter 1 (Vectors
and 3D Geometry) and all but the very end of chapter 2 (Partial
Derivatives), up through §2.5.2, representing WeBWorKs 1-4 and
course lectures 1-11.

Any questions about exam logistics?



The Chain Rule, I

In many situations, we have functions that depend on variables
indirectly, and we often need to determine the precise nature of the
dependence of one variable on another.

To do this, we want to generalize the chain rule for functions
of several variables.

With functions of several variables, each of which is defined in
terms of other variables (for example, f (x , y) where x and y
are themselves functions of s and t), we will recover a version
of the chain rule specific to the relations between the variables
involved.



The Chain Rule, II

Recall that the chain rule for functions of one variable states that
dg

dx
=

dg

dy
· dy
dx

, if g is a function of y and y is a function of x .

Roughly speaking, you can interpret the one-variable chain
rule as follows: g depends y which in turn depends on x

Therefore, if we change x , this will cause y to change, which
will in turn cause g to change.

If we change x by ∆x , y will change by roughly ∆y ≈ dy

dx
∆x .

If we change y by ∆y , g will change by roughly ∆g ≈ dg

dy
∆y .

So now we just plug these expressions into one another to see

that ∆g ≈ dg

dy
∆y ≈ dg

dy

dy

dx
∆x , so that

∆g

∆x
≈ dg

dy

dy

dx
.

Then, taking the limit as ∆x → 0, we end up with the desired
equality.



The Chain Rule, III

The various chain rules for functions of more than one variable
have a similar form, but they will involve more terms that depend
on the relationships between the variables.

However, they all have a similar sort of form and
interpretation as the one-variable chain rule.

What we do is trace how much each of the intermediate
variables will change as a result of changing our variable of
interest, and then add up all of the total contributions.



The Chain Rule, III

Here is the outline for finding
df

dt
for a function f (x , y) where x

and y are both functions of t:

If t changes to t + ∆t, then x changes to x + ∆x and y
changes to y + ∆y .

Then ∆f = f (x + ∆x , y + ∆y)− f (x , y) is roughly equal to
the directional derivative of f (x , y) in the direction of the
(non-unit) vector 〈∆x , ∆y〉.
We know that this directional derivative is equal to the dot

product of 〈∆x , ∆y〉 with the gradient ∇f =
〈∂f
∂x

,
∂f

∂y

〉
.

Then
∆f

∆t
≈
〈∂f
∂x

,
∂f

∂y

〉
·
〈∆x

∆t
,

∆y

∆t

〉
.

Taking the limit as ∆t → 0 yields
df

dt
=

∂f

∂x
· dx
dt

+
∂f

∂y
· dy
dt

.



The Chain Rule, IV

We obtain similar sorts of statements for other arrangements of
variable dependencies.

Rather than try to describe these one at a time, we will give a
general procedure for generating the statement of the chain
rule specific to any particular set of dependencies of variables.

As an unrelated remark, in the situation where a function f
depends on only one independent variable t, we will write
df /dt rather than ∂f /∂t because f ultimately depends on
only the single variable t, so we are actually computing a
single-variable derivative and not a partial derivative.
(In fact, this notation was already used on the previous slide.)



The Chain Rule, V

The method is to draw a “tree diagram” as follows:

1. Start with the initial function f , and draw an arrow pointing
from f to each of the variables it depends on.

2. For each variable listed, draw new arrows branching from that
variable to any other variables they depend on. Repeat the
process until all dependencies are shown in the diagram.

3. Associate each arrow from one variable to another with the

derivative
∂[top]

∂[bottom]
.

4. To write the version of the chain rule that gives the derivative
∂v1/∂v2 for any variables v1 and v2 in the diagram (where v2
depends on v1), first find all paths from v1 to v2.

5. For each path from v1 to v2, multiply all of the derivatives
that appear in each path from v1 to v2. Finally, sum the
results over all of the paths: this is ∂v1/∂v2.



The Chain Rule, VI

Example: State the chain rule that computes df
dt for the function

f (x , y , z), where each of x , y , and z is a function of the variable t.

First, we draw the tree diagram:

f
↙ ↓ ↘

x y z
↓ ↓ ↓
t t t

.

In the tree diagram, there are 3 paths from f to t: they are
f → x → t, f → y → t, and f → z → t.

The path f → x → t gives
∂f

∂x
· ∂x
∂t

, while the path f → y → t

gives
∂f

∂y
· ∂y
∂t

, and the path f → z → t gives
∂f

∂z
· ∂z
∂t

.

So, the statement is
df

dt
=

∂f

∂x
· dx
dt

+
∂f

∂y
· dy
dt

+
∂f

∂z
· dz
dt

.



The Chain Rule, VI

Example: State the chain rule that computes df
dt for the function

f (x , y , z), where each of x , y , and z is a function of the variable t.

First, we draw the tree diagram:

f
↙ ↓ ↘

x y z
↓ ↓ ↓
t t t

.

In the tree diagram, there are 3 paths from f to t: they are
f → x → t, f → y → t, and f → z → t.

The path f → x → t gives
∂f

∂x
· ∂x
∂t

, while the path f → y → t

gives
∂f

∂y
· ∂y
∂t

, and the path f → z → t gives
∂f

∂z
· ∂z
∂t

.

So, the statement is
df

dt
=

∂f

∂x
· dx
dt

+
∂f

∂y
· dy
dt

+
∂f

∂z
· dz
dt

.



The Chain Rule, VII

Example: State the chain rule that computes df
dt for the function

f (x , y , z), where each of x , y , and z is a function of the variable t.

The chain rule says
df

dt
=

∂f

∂x
· dx
dt

+
∂f

∂y
· dy
dt

+
∂f

∂z
· dz
dt

.

You can interpret this statement as saying that the total
change in f is the sum of three components:

1. The change
∂f

∂x
· dx
dt

in f resulting from the change in x .

2. The change
∂f

∂y
· dy
dt

in f resulting from the change in y .

3. The change
∂f

∂z
· dz
dt

in f resulting from the change in z .



The Chain Rule, VII

Example: State the chain rule that computes
∂f

∂t
and

∂f

∂s
for the

function f (x , y), where x = x(s, t) and y = y(s, t) are both
functions of s and t.

First, we draw the tree diagram:

f
↙ ↘

x y
↙ ↓ ↓ ↘

s t s t

.

In this diagram, there are 2 paths from f to s: they are
f → x → s and f → y → s, and also two paths from f to t:
f → x → t and f → y → t.



The Chain Rule, VII

Example: State the chain rule that computes
∂f

∂t
and

∂f

∂s
for the

function f (x , y), where x = x(s, t) and y = y(s, t) are both
functions of s and t.

First, we draw the tree diagram:

f
↙ ↘

x y
↙ ↓ ↓ ↘

s t s t

.

In this diagram, there are 2 paths from f to s: they are
f → x → s and f → y → s, and also two paths from f to t:
f → x → t and f → y → t.



The Chain Rule, VIII

Example: State the chain rule that computes
∂f

∂t
and

∂f

∂s
for the

function f (x , y), where x = x(s, t) and y = y(s, t) are both
functions of s and t.

The path f → x → t gives the product
∂f

∂x
· ∂x
∂t

, while the

path f → y → t gives the product
∂f

∂y
· ∂y
∂t

.

Similarly, the path f → x → s gives the product
∂f

∂x
· ∂x
∂s

,

while f → y → s gives the product
∂f

∂y
· ∂y
∂s

.

Thus, the two statements of the chain rule here are
∂f

∂s
=

∂f

∂x
· ∂x
∂s

+
∂f

∂y
· ∂y
∂s

and
∂f

∂t
=

∂f

∂x
· ∂x
∂t

+
∂f

∂y
· ∂y
∂t

.



The Chain Rule, VIII

Example: State the chain rule that computes
∂f

∂t
and

∂f

∂s
for the

function f (x , y), where x = x(s, t) and y = y(s, t) are both
functions of s and t.

The path f → x → t gives the product
∂f

∂x
· ∂x
∂t

, while the

path f → y → t gives the product
∂f

∂y
· ∂y
∂t

.

Similarly, the path f → x → s gives the product
∂f

∂x
· ∂x
∂s

,

while f → y → s gives the product
∂f

∂y
· ∂y
∂s

.

Thus, the two statements of the chain rule here are
∂f

∂s
=

∂f

∂x
· ∂x
∂s

+
∂f

∂y
· ∂y
∂s

and
∂f

∂t
=

∂f

∂x
· ∂x
∂t

+
∂f

∂y
· ∂y
∂t

.



The Chain Rule, IX

Example: For f (x , y) = x2 + y2, with x = t2 and y = t4, find
df

dt
,

both directly and via the chain rule.

In this instance, the multivariable chain rule says that
df

dt
=

∂f

∂x
· dx
dt

+
∂f

∂y
· dy
dt

.

Computing the derivatives shows
df

dt
= (2x) · (2t) + (2y) · (4t3).

Plugging in x = t2 and y = t4 yields
df

dt
= (2t2) · (2t) + (2t4) · (4t3) = 4t3 + 8t7.

To do this directly, we would plug in x = t2 and y = t4: this

gives f (x , y) = t4 + t8, so that
df

dt
= 4t3 + 8t7.

Of course, we obtain the same answer either way!



The Chain Rule, IX

Example: For f (x , y) = x2 + y2, with x = t2 and y = t4, find
df

dt
,

both directly and via the chain rule.

In this instance, the multivariable chain rule says that
df

dt
=

∂f

∂x
· dx
dt

+
∂f

∂y
· dy
dt

.

Computing the derivatives shows
df

dt
= (2x) · (2t) + (2y) · (4t3).

Plugging in x = t2 and y = t4 yields
df

dt
= (2t2) · (2t) + (2t4) · (4t3) = 4t3 + 8t7.

To do this directly, we would plug in x = t2 and y = t4: this

gives f (x , y) = t4 + t8, so that
df

dt
= 4t3 + 8t7.

Of course, we obtain the same answer either way!



The Chain Rule, X

Example: Let f (x , y) = x2 + y2, where x = s2 + t2 and
y = s3 + t4.

1. Find
∂f

∂s
. 2. Find

∂f

∂t
.

We just need to write down and then apply the appropriate
version of the chain rule.



The Chain Rule, X

Example: Let f (x , y) = x2 + y2, where x = s2 + t2 and
y = s3 + t4.

1. Find
∂f

∂s
. 2. Find

∂f

∂t
.

We just need to write down and then apply the appropriate
version of the chain rule.



The Chain Rule, XI

Example: Let f (x , y) = x2 + y2, where x = s2 + t2 and
y = s3 + t4.

1. Find
∂f

∂s
.

By the chain rule we have
∂f

∂s
=

∂f

∂x
· ∂x
∂s

+
∂f

∂y
· ∂y
∂s

= (2x) · (2s) + (2y) · (3s2).

Plugging in x = s2 + t2 and y = s3 + t4 yields

∂f

∂s
= (2s2 + 2t2) · (2s) + (2s3 + 2t4) · (3s2)

= 4s3 + 4st2 + 6s5 + 6s2t4.



The Chain Rule, XI

Example: Let f (x , y) = x2 + y2, where x = s2 + t2 and
y = s3 + t4.

1. Find
∂f

∂s
.

By the chain rule we have
∂f

∂s
=

∂f

∂x
· ∂x
∂s

+
∂f

∂y
· ∂y
∂s

= (2x) · (2s) + (2y) · (3s2).

Plugging in x = s2 + t2 and y = s3 + t4 yields

∂f

∂s
= (2s2 + 2t2) · (2s) + (2s3 + 2t4) · (3s2)

= 4s3 + 4st2 + 6s5 + 6s2t4.



The Chain Rule, XII

Example: Let f (x , y) = x2 + y2, where x = s2 + t2 and
y = s3 + t4.

2. Find
∂f

∂t
.

By the chain rule we have
∂f

∂t
=

∂f

∂x
· ∂x
∂t

+
∂f

∂y
· ∂y
∂t

= (2x) · (2t) + (2y) · (4t3).

Plugging in x = s2 + t2 and y = s3 + t4 yields

∂f

∂s
= (2s2 + 2t2) · (2t) + (2s3 + 2t4) · (4t3)

= 4s2t + 4t3 + 8s3t3 + 8t7.



The Chain Rule, XII

Example: Let f (x , y) = x2 + y2, where x = s2 + t2 and
y = s3 + t4.

2. Find
∂f

∂t
.

By the chain rule we have
∂f

∂t
=

∂f

∂x
· ∂x
∂t

+
∂f

∂y
· ∂y
∂t

= (2x) · (2t) + (2y) · (4t3).

Plugging in x = s2 + t2 and y = s3 + t4 yields

∂f

∂s
= (2s2 + 2t2) · (2t) + (2s3 + 2t4) · (4t3)

= 4s2t + 4t3 + 8s3t3 + 8t7.



The Chain Rule, Lucky XIII

Example: Suppose x and y are functions of s and t with
x(1, 5) = 2, y(1, 5) = −2, and that f has partial derivatives below.
∂f

∂x
(1, 5) = 7

∂f

∂y
(1, 5) = −6

∂f

∂x
(2,−2) = 1

∂f

∂y
(2,−2) = −4

∂x

∂s
(1, 5) = 3

∂x

∂t
(1, 5) = 2

∂y

∂s
(1, 5) = 4

∂y

∂t
(1, 5) = −2

1. Find
∂f

∂s
at (s, t) = (1, 5). 2. Find

∂f

∂t
at (s, t) = (1, 5).

This problem is an application of the chain rule. We need only
write down the appropriate chain rule and then plug in the
proper values (namely, s = 1 and t = 5).

However, the notation for this problem is tricky. The variables
for f are x and y , and when s = 1 and t = 5, we have x = 2
and y = −2. So we want to use the two entries on the top
right, not the top left.



The Chain Rule, Lucky XIII

Example: Suppose x and y are functions of s and t with
x(1, 5) = 2, y(1, 5) = −2, and that f has partial derivatives below.
∂f

∂x
(1, 5) = 7

∂f

∂y
(1, 5) = −6

∂f

∂x
(2,−2) = 1

∂f

∂y
(2,−2) = −4

∂x

∂s
(1, 5) = 3

∂x

∂t
(1, 5) = 2

∂y

∂s
(1, 5) = 4

∂y

∂t
(1, 5) = −2

1. Find
∂f

∂s
at (s, t) = (1, 5). 2. Find

∂f

∂t
at (s, t) = (1, 5).

This problem is an application of the chain rule. We need only
write down the appropriate chain rule and then plug in the
proper values (namely, s = 1 and t = 5).

However, the notation for this problem is tricky. The variables
for f are x and y , and when s = 1 and t = 5, we have x = 2
and y = −2. So we want to use the two entries on the top
right, not the top left.



The Chain Rule, XIV

Example: Suppose x and y are functions of s and t with
x(1, 5) = 2, y(1, 5) = −2, and that f has partial derivatives below.
∂f

∂x
(1, 5) = 7

∂f

∂y
(1, 5) = −6

∂f

∂x
(2,−2) = 1

∂f

∂y
(2,−2) = −4

∂x

∂s
(1, 5) = 3

∂x

∂t
(1, 5) = 2

∂y

∂s
(1, 5) = 4

∂y

∂t
(1, 5) = −2

1. Find
∂f

∂s
at (s, t) = (1, 5).

By the chain rule,
∂f

∂s
=

∂f

∂x
· ∂x
∂s

+
∂f

∂y
· ∂y
∂s

.

Setting (s, t) = (1, 5) and noting that x(1, 5) = 2,

y(1, 5) = −2 yields
∂f

∂s
(1, 5) = 1 · 3 + (−4) · 4 = −13.



The Chain Rule, XIV

Example: Suppose x and y are functions of s and t with
x(1, 5) = 2, y(1, 5) = −2, and that f has partial derivatives below.
∂f

∂x
(1, 5) = 7

∂f

∂y
(1, 5) = −6

∂f

∂x
(2,−2) = 1

∂f

∂y
(2,−2) = −4

∂x

∂s
(1, 5) = 3

∂x

∂t
(1, 5) = 2

∂y

∂s
(1, 5) = 4

∂y

∂t
(1, 5) = −2

1. Find
∂f

∂s
at (s, t) = (1, 5).

By the chain rule,
∂f

∂s
=

∂f

∂x
· ∂x
∂s

+
∂f

∂y
· ∂y
∂s

.

Setting (s, t) = (1, 5) and noting that x(1, 5) = 2,

y(1, 5) = −2 yields
∂f

∂s
(1, 5) = 1 · 3 + (−4) · 4 = −13.



The Chain Rule, XV

Example: Suppose x and y are functions of s and t with
x(1, 5) = 2, y(1, 5) = −2, and that f has partial derivatives below.
∂f

∂x
(1, 5) = 7

∂f

∂y
(1, 5) = −6

∂f

∂x
(2,−2) = 1

∂f

∂y
(2,−2) = −4

∂x

∂s
(1, 5) = 3

∂x

∂t
(1, 5) = 2

∂y

∂s
(1, 5) = 4

∂y

∂t
(1, 5) = −2

2. Find
∂f

∂t
at (s, t) = (1, 5).

By the chain rule,
∂f

∂t
=

∂f

∂x
· ∂x
∂t

+
∂f

∂y
· ∂y
∂t

.

Setting (s, t) = (1, 5) and noting that x(1, 5) = 2,

y(1, 5) = −2 yields
∂f

∂t
(1, 5) = 1 · 2 + (−4) · (−2) = 10.



The Chain Rule, XV

Example: Suppose x and y are functions of s and t with
x(1, 5) = 2, y(1, 5) = −2, and that f has partial derivatives below.
∂f

∂x
(1, 5) = 7

∂f

∂y
(1, 5) = −6

∂f

∂x
(2,−2) = 1

∂f

∂y
(2,−2) = −4

∂x

∂s
(1, 5) = 3

∂x

∂t
(1, 5) = 2

∂y

∂s
(1, 5) = 4

∂y

∂t
(1, 5) = −2

2. Find
∂f

∂t
at (s, t) = (1, 5).

By the chain rule,
∂f

∂t
=

∂f

∂x
· ∂x
∂t

+
∂f

∂y
· ∂y
∂t

.

Setting (s, t) = (1, 5) and noting that x(1, 5) = 2,

y(1, 5) = −2 yields
∂f

∂t
(1, 5) = 1 · 2 + (−4) · (−2) = 10.



The Chain Rule, XVI

Example: Suppose f (x , y , z) is a function of x , y , z , where z is a
function of x and t, and x and y are also both functions of t.

1. State the chain rule for finding
df

dt
.

We just need to write down and then apply the
appropriate version of the chain rule.
Drawing the tree diagram yields paths f → x → t,
f → y → t, f → z → x → t, and f → z → t.
Thus, the statement is
df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

∂z

∂x

dx

dt
+

∂f

∂z

∂z

∂t
.

2. Try it for f (x , y , z) = x2 + y3 + z4, x = t2, y = t3, z = x2t.

df /dt = (2x)(2t) + (3y2)(3t2) + (4z3)(2xt)(2t) + (4z3)(x2).



The Chain Rule, XVI

Example: Suppose f (x , y , z) is a function of x , y , z , where z is a
function of x and t, and x and y are also both functions of t.

1. State the chain rule for finding
df

dt
.

We just need to write down and then apply the
appropriate version of the chain rule.
Drawing the tree diagram yields paths f → x → t,
f → y → t, f → z → x → t, and f → z → t.
Thus, the statement is
df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

∂z

∂x

dx

dt
+

∂f

∂z

∂z

∂t
.

2. Try it for f (x , y , z) = x2 + y3 + z4, x = t2, y = t3, z = x2t.

df /dt = (2x)(2t) + (3y2)(3t2) + (4z3)(2xt)(2t) + (4z3)(x2).



The Chain Rule, XVI

Example: Suppose f (x , y , z) is a function of x , y , z , where z is a
function of x and t, and x and y are also both functions of t.

1. State the chain rule for finding
df

dt
.

We just need to write down and then apply the
appropriate version of the chain rule.
Drawing the tree diagram yields paths f → x → t,
f → y → t, f → z → x → t, and f → z → t.
Thus, the statement is
df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

∂z

∂x

dx

dt
+

∂f

∂z

∂z

∂t
.

2. Try it for f (x , y , z) = x2 + y3 + z4, x = t2, y = t3, z = x2t.

df /dt = (2x)(2t) + (3y2)(3t2) + (4z3)(2xt)(2t) + (4z3)(x2).



The Chain Rule, XVII

Amusingly, we can actually derive the other differentiation rules
using the (multivariable) chain rule!

To obtain the product rule, let P(f , g) = fg , where f and g
are both functions of x .

Then the chain rule says
dP

dx
=

∂P

∂f
· df
dx

+
∂P

∂g
· dg
dx

= g · df
dx

+ f · dg
dx

.

If we rewrite this expression using single-variable notation, it
reads as the more familiar (fg)′ = f ′g + fg ′, which is, indeed,
the product rule.

Likewise, if we set Q(f , g) = f /g where f and g are both
functions of x , then applying the chain rule gives
dQ

dx
=

∂Q

∂f
· df
dx

+
∂Q

∂g
· dg
dx

=
1

g
· df
dx
− f

g2
· dg
dx

=
f ′g − fg ′

g2
;

this is the quotient rule.



Implicit Differentiation, I

Using the chain rule for several variables, we can give an
alternative way to solve problems involving implicit differentiation
from calculus of a single variable.

A typical example is as follows: if y is defined implicitly by
x3y2 + sin(2xy) = 7, find the derivative y ′ = dy/dx .

To solve this problem one differentiates both sides with
respect to x , using the chain rule to differentiate any terms
involving y , and then solves for y ′.

This yields 3x2y2 + x3(2yy ′) + (2y + 2xy ′) cos(2xy) = 0, so

that y ′ = −3x2y2 + 2y cos(2xy)

2x3y + 2x cos(2xy)
.

Although there is nothing conceptually difficult about this
problem, it is often very easy to make algebra mistakes.

However, implicit differentiation is actually very simple and
straightforward if we use partial derivatives.



Implicit Differentiation, II

Here is how to do implicit differentiation with partial derivatives:

Theorem (Implicit Differentiation)

Given an implicit relation f (x , y) = c, the implicit single-variable

derivative
dy

dx
= y ′(x) is given by

dy

dx
= −∂f /∂x

∂f /∂y
= − fx

fy
.

The key idea behind this formula is to invoke the multivariable
chain rule on the implicit relation f (x , y) = c , where we think of y
as being a function of x .



Implicit Differentiation, III

Proof:

Apply the chain rule to the function f (x , y) = c , where y is
also a function of x .

The tree diagram is

f
↙ ↓

x y
↓
x

, so there are two paths from

f to x : f → x giving
∂f

∂x
, and f → y → x giving

∂f

∂y
· dy
dx

.

Thus, the chain rule says
df

dx
=

∂f

∂x
+

∂f

∂y
· dy
dx

.

However, because f (x , y) = c is a constant function, we have
df

dx
= 0. Thus,

∂f

∂x
+

∂f

∂y
· dy
dx

= 0, and so
dy

dx
= −∂f /∂x

∂f /∂y
.



Implicit Differentiation, IV

Example: If y is defined implicitly by x3y2 + sin(2xy) = 7, find the
derivative y ′ = dy/dx .

This is the relation f (x , y) = 7 for f (x , y) = x3y2 + sin(2xy).

We have fx = 3x2y2 + 2y cos(2xy) and
fy = 2x3y + 2x cos(2xy).

So, the formula gives y ′ =
dy

dx
= −3x2y2 + 2y cos(2xy)

2x3y + 2x cos(2xy)
.

Note that this agrees with the implicit differentiation
calculation I did a few slides ago. (You can decide for yourself
which one seems easier!)



Implicit Differentiation, IV

Example: If y is defined implicitly by x3y2 + sin(2xy) = 7, find the
derivative y ′ = dy/dx .

This is the relation f (x , y) = 7 for f (x , y) = x3y2 + sin(2xy).

We have fx = 3x2y2 + 2y cos(2xy) and
fy = 2x3y + 2x cos(2xy).

So, the formula gives y ′ =
dy

dx
= −3x2y2 + 2y cos(2xy)

2x3y + 2x cos(2xy)
.

Note that this agrees with the implicit differentiation
calculation I did a few slides ago. (You can decide for yourself
which one seems easier!)



Implicit Differentiation, V

Example: Find y ′, if y2x3 + y ex = 2.

This is the relation f (x , y) = 2, where f (x , y) = y2x3 + y ex .

We have fx = 3y2x2 + y ex , and fy = 2yx3 + ex , so the

formula gives y ′ =
dy

dx
= − fx

fy
= −3y2x2 + y ex

2yx3 + ex
.

If you want to check this by doing the implicit differentiation
directly, here is the calculation:

We have
d

dx

[
y2x3 + y ex

]
= 0.

Differentiating the left-hand side yields(
2yy ′x3 + 3y2x2

)
+ (y ′ ex + y ex) = 0.

Rearranging yields
(
2yx3 + ex

)
y ′ +

(
3y2x2 + y ex

)
= 0.

So y ′ = −3y2x2 + y ex

2yx3 + ex
.



Implicit Differentiation, V

Example: Find y ′, if y2x3 + y ex = 2.

This is the relation f (x , y) = 2, where f (x , y) = y2x3 + y ex .

We have fx = 3y2x2 + y ex , and fy = 2yx3 + ex , so the

formula gives y ′ =
dy

dx
= − fx

fy
= −3y2x2 + y ex

2yx3 + ex
.

If you want to check this by doing the implicit differentiation
directly, here is the calculation:

We have
d

dx

[
y2x3 + y ex

]
= 0.

Differentiating the left-hand side yields(
2yy ′x3 + 3y2x2

)
+ (y ′ ex + y ex) = 0.

Rearranging yields
(
2yx3 + ex

)
y ′ +

(
3y2x2 + y ex

)
= 0.

So y ′ = −3y2x2 + y ex

2yx3 + ex
.



Implicit Differentiation, VI

We can also perform implicit differentiation in the event that there
are more than 2 variables.

For an implicit relation f (x , y , z) = c , we can compute
implicit derivatives for any of the 3 variables with respect to
either of the others, using a chain rule calculation like in the
theorem earlier.



Implicit Differentiation, VII

The idea is simply to view any variables other than our target
variables as constants.

So, if we have an implicit relation f (x , y , z) = c and want to

compute
∂z

∂x
, we view the other variable (in this case y) as

constant. Then the chain rule says
∂z

∂x
= −∂f /∂x

∂f /∂z
= − fx

fz
.

If we wanted to compute
∂z

∂y
then we would view x as a

constant, and then
∂z

∂y
= −∂f /∂y

∂f /∂z
= − fy

fz
.

Similarly,
∂y

∂x
= − fx

fy
,
∂y

∂z
= − fz

fy
,
∂x

∂y
= − fy

fx
, and

∂x

∂z
= − fz

fx
.

The general form is
∂v

∂w
= − fw

fv
for any variables v ,w .



Implicit Differentiation, VIII

Example: Suppose that x , y , z satisfy x2yz + ex cos(y) = 3.

1. If z is defined implicitly in terms of x and y , find ∂z/∂x .

The implicit relation is f (x , y , z) = 3 where
f (x , y , z) = x2yz + ex cos(y). We then compute
fx = 2xyz + ex cos(y), fy = x2z − ex sin(y), fz = x2y .
By the implicit differentiation formulas,
∂z

∂x
= −∂f /∂x

∂f /∂z
= − fx

fz
= −2xyz + ex cos(y)

x2y
.

2. If y is defined implicitly in terms of x and z , find ∂y/∂z .

Using the calculations above, we get
∂y

∂z
= −∂f /∂z

∂f /∂y
= − fz

fy
= − x2y

x2z − ex sin(y)
.



Implicit Differentiation, VIII

Example: Suppose that x , y , z satisfy x2yz + ex cos(y) = 3.

1. If z is defined implicitly in terms of x and y , find ∂z/∂x .

The implicit relation is f (x , y , z) = 3 where
f (x , y , z) = x2yz + ex cos(y). We then compute
fx = 2xyz + ex cos(y), fy = x2z − ex sin(y), fz = x2y .
By the implicit differentiation formulas,
∂z

∂x
= −∂f /∂x

∂f /∂z
= − fx

fz
= −2xyz + ex cos(y)

x2y
.

2. If y is defined implicitly in terms of x and z , find ∂y/∂z .

Using the calculations above, we get
∂y

∂z
= −∂f /∂z

∂f /∂y
= − fz

fy
= − x2y

x2z − ex sin(y)
.



Implicit Differentiation, VIII

Example: Suppose that x , y , z satisfy x2yz + ex cos(y) = 3.

1. If z is defined implicitly in terms of x and y , find ∂z/∂x .

The implicit relation is f (x , y , z) = 3 where
f (x , y , z) = x2yz + ex cos(y). We then compute
fx = 2xyz + ex cos(y), fy = x2z − ex sin(y), fz = x2y .
By the implicit differentiation formulas,
∂z

∂x
= −∂f /∂x

∂f /∂z
= − fx

fz
= −2xyz + ex cos(y)

x2y
.

2. If y is defined implicitly in terms of x and z , find ∂y/∂z .

Using the calculations above, we get
∂y

∂z
= −∂f /∂z

∂f /∂y
= − fz

fy
= − x2y

x2z − ex sin(y)
.



Summary

We introduced the multivariable chain rule and discussed how to
apply it.

We discussed implicit differentiation using the multivariable chain
rule.

Next lecture: Minima and maxima, classification of critical points.


