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Minimum and Maximum Rate of Change

This material represents §2.2.1 from the course notes.



Roadmap

Last time, we developed the notion of the partial derivatives of a
function, which measure the rate of change in the coordinate
directions.

Specifically, fx is the rate of change in the x-direction, fy is
the rate of change in the y -direction, and so forth.

However, we could just as well ask for the rate of change in any
direction, not just the coordinate directions.

Our immediate goal is to develop this idea of finding a
“directional derivative”.

As it turns out, we can compute these general directional
derivatives using the (regular) partial derivatives and an
associated vector known as the gradient.



Directional Derivatives, I

So, suppose we have a function f (x , y), a point P = (px , py ), and
a unit direction vector v = 〈vx , vy 〉.

We want to understand the rate of change of f at P as we
move in the direction of v.

To do this, imagine looking at the values of f as we travel
along the line through P in the direction of v: we can then
just find the rate of change at P as we travel along this line.

The line is parametrized as 〈x , y〉 = 〈px , py 〉+ t〈vx , vy 〉, so
x = px + tvx and y = py + tvy . Note P corresponds to t = 0.

We then want to find the rate of change of the single-variable
function f (x(t), y(t)) = f (px + tvx , py + tvy ) at t = 0.

This rate of change is given by the difference quotient

lim
h→0

f (px + hvx , py + hvy )− f (px , py )

h
.



Directional Derivatives, II

Here is the formal definition of the directional derivative:

Definition

If v = 〈vx , vy 〉 is a unit vector, then the
directional derivative of f (x , y) in the direction of v at (x , y),
denoted Dv(f )(x , y), is defined to be the limit

Dv(f )(x , y) = lim
h→0

f (x + h vx , y + h vy )− f (x , y)

h
, provided that

the limit exists.

Important Note: In the definition of directional derivative, the
vector v must be a unit vector.

We sometimes will speak of the directional derivative of a
function in the direction of a vector w whose length is not 1.

What we mean by this is the directional derivative in the
direction of the unit vector w

||w|| in the same direction as w.



Directional Derivatives, III

If v = 〈vx , vy 〉 is a unit vector, then the directional derivative is

Dv(f )(x , y) = lim
h→0

f (x + h vx , y + h vy )− f (x , y)

h
.

The limit in the definition (summarized above) is explicit, but
a little bit hard to understand as written.

If we write things in vector notation, with x = 〈x , y〉, then the
definition might be clearer to you: it becomes

Dv(f )(x) = lim
h→0

f (x + h v)− f (x)

h
.

The difference quotient is the ratio ∆f /∆h, where ∆f is the
amount that f changes by moving a distance ∆h in the
direction of v, as discussed during the motivation earlier.

Compare it to the definition of the derivative of a function of

one variable: f ′(x) = lim
h→0

f (x + h)− f (x)

h
.



Directional Derivatives, IV

If v = 〈vx , vy 〉 is a unit vector, then the directional derivative is

Dv(f )(x , y) = lim
h→0

f (x + h vx , y + h vy )− f (x , y)

h
.

When v is the unit vector in one of the coordinate directions, the
directional derivative reduces to the corresponding partial
derivative. Explicitly:

If v = 〈1, 0〉, the unit vector in the x-direction, then

Dv(f )(x , y) = lim
h→0

f (x + h, y)− f (x , y)

h
= fx(x , y).

If v = 〈0, 1〉, the unit vector in the y -direction, then

Dv(f )(x , y) = lim
h→0

f (x , y + h)− f (x , y)

h
= fy (x , y).



Directional Derivatives, V

Computing directional derivatives using the limit definition is
generally quite tedious.

Example: If v = 〈35 ,
4
5〉, and f (x , y) = 2x + y , find the directional

derivative of f in the direction of v at (x , y) = (1, 6).

Since v is a unit vector, the definition says that

Dv(f )(1, 6) = lim
h→0

f (x + h vx , y + h vy )− f (x , y)

h

= lim
h→0

f (1 + 3
5h, 6 + 4

5h)− f (1, 6)

h

= lim
h→0

[
2(1 + 3

5h) + (6 + 4
5h)
]
− [2 · 1 + 6]

h

= lim
h→0

(8 + 2h)− 8

h
= 2.
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Directional Derivatives, VI

We now describe an easier way to compute directional derivatives:

We want to understand the behavior of f (x + hv) as h→ 0.
We can break hv into horizontal and vertical components:

Then the total change in f is the sum of the horizontal and
vertical changes.

The horizontal change is determined by the x-partial fx , while
the vertical change is determined by the y -partial fy .
Specifically, the horizontal change is fx · hvx , while the vertical
change is fy · hvy . Therefore, the total change is
fx · hvx + fy · hvy , so if we divide by h and take the limit, we
get the simple expression fxvx + fyvy .
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The Gradient Vector, I

We can package this last calculation using vector language:

Definition

The gradient of a function f (x , y), denoted ∇f , is the
vector-valued function ∇f (x , y) = 〈fx(x , y), fy (x , y)〉.
For a function g(x , y , z), the gradient ∇g is
∇g(x , y , z) = 〈gx(x , y , z), gy (x , y , z), gz(x , y , z)〉.

Note: The symbol ∇ is called “nabla”, and is pronounced
either as “nabla” or as “del”.

If f is a function of some other number of variables, the
gradient is defined analogously.

Note that the gradient of f is a vector-valued function: it
takes the same number of arguments as f does, and outputs a
vector in the same number of coordinates.



The Gradient Vector, II

Example: Find the gradient vector for each given function:

1. f (x , y) = x2 cos(y).

2. g(x , y , z) = x2 + y2 + z2.

3. p(x , y , z) = sin(yz2).

We have ∇f (x , y) = 〈fx , fy 〉 =
〈
2x cos(y), −x2 sin(y)

〉
.

We have ∇g(x , y , z) = 〈gx , gy , gz〉 = 〈2x , 2y , 2z〉.
We have
∇p(x , y , z) = 〈px , py , gz〉 =

〈
0, z2 cos(yz2), 2yz cos(yz2)

〉
.
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The Gradient Vector, II

Our main result is that we can use the gradient vector to compute
directional derivatives:

Theorem (Gradient and Directional Derivatives)

If v is any unit vector, and f is a function all of whose partial
derivatives are continuous, then the directional derivative Dvf
satisfies Dvf = ∇f · v. In words, the directional derivative of f in
the direction of v is the dot product of ∇f with the vector v.

Warning: This result requires the direction v to be a unit vector. If
the desired direction is not a unit vector, it is necessary to
normalize the direction vector first! (Otherwise, the formula will
give the wrong answer.)



The Gradient Vector, III

The proof of the theorem is really just a formalization of the
geometric argument we gave before, about breaking the direction
vector v into its components in the coordinate directions and then
adding up the changes in the function from each piece.

On the next slides I will give the algebraic details for the
two-variable case, which mostly involve wrestling with the limit
definition.

If vx = 0 then the directional derivative is the x-partial (or its
negative), and if vy = 0 then the directional derivative is the
y -partial (or its negative), and the result is true. So the only case
of interest is when vx and vy are both nonzero.



The Gradient Vector, IV

Proof:

If vx and vy are both nonzero, then Dv(f )(x , y)

= lim
h→0

f (x+h vx , y+h vy )−f (x ,y)
h ,

= lim
h→0

[
f (x+h vx , y+h vy )−f (x ,y+h vy )

h +
f (x ,y+h vy )−f (x ,y)

h

]
= lim

h→0

[
f (x+h vx , y+h vy )−f (x ,y+h vy )

h vx
vx +

f (x ,y+h vy )−f (x ,y)
h vy

vy
]

= vx lim
h→0

[
f (x+h vx , y+h vy )−f (x ,y+h vy )

h vx

]
+ vy lim

h→0

[
f (x ,y+h vy )−f (x ,y)

h vy

]
= vx

∂f

∂x
+ vy

∂f

∂y
= 〈vx , vy 〉 · 〈fx , fy 〉 = v · ∇f (as claimed),

where we used the continuity of fx to evaluate the first term
and the definition of fy to evaluate the second term.



Gradients and Directional Derivatives, I

Here is the same directional derivative example as before:

Example: If v =
〈
3
5 ,

4
5

〉
, and f (x , y) = 2x + y , find the directional

derivative of f in the direction of v at (1, 6).

We compute the gradient: fx = 2 and fy = 1, so ∇f = 〈2, 1〉.
Then Dvf = ∇f · v = 〈2, 1〉 ·

〈
3
5 ,

4
5

〉
= 6

5 + 4
5 = 2.

Observe how much easier it was to use the gradient to compute
the directional derivative! (No limits and very little computation.)
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Gradients and Directional Derivatives, II

Example: Find the rate of change of the function
f (x , y , z) = x2z + y3 at the point (x , y , z) = (1,−1, 2) in the
direction of the unit vector w = 1

13 〈3, 12, 4〉.

Note that ||w|| = 1 is a unit vector, so we can use the
theorem directly.

We compute ∇f =
〈
2xz , 3y2, x2

〉
, so ∇f (1,−1, 2) = 〈4, 3, 1〉.

Then the desired rate of change is
Dwf = ∇f ·w = 3

13 · 4 + 12
13 · 3 + 4

13 · 1 = 52
13 = 4.
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Gradients and Directional Derivatives, III

Example: Find the rate of change of the function f (x , y , z) = exyz

at the point (x , y , z) = (1, 1, 1) in the direction of the vector
w = 〈−2, 1, 2〉.

Note that w is not a unit vector, so we must normalize it:
since ||w|| =

√
(−2)2 + 12 + 22 = 3, we take

v =
w

||w||
=

〈
−2

3
,

1

3
,

2

3

〉
.

Now we compute ∇f = 〈yz exyz , xz exyz , xy exyz〉, so
∇f (1, 1, 1) = 〈e, e, e〉.
Then the desired rate of change is

Dvf = ∇f · v = −2

3
e +

1

3
e +

2

3
e =

1

3
e ≈ 0.9061.
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Gradients and Directional Derivatives, IV

Example: Find the rate of change of the function
f (x , y) = ln(x2 + y2) at the point (1, 2) in the direction towards
the point (3, 3).

Here, our direction vector is w = 〈3, 3〉 − 〈1, 2〉 = 〈2, 1〉,
which we must normalize since it is not a unit vector.

The normalization is v =
1√
5
〈2, 1〉 =

〈
2√
5
,

1√
5

〉
.

Then ∇f =

〈
2x

x2 + y2
,

2y

x2 + y2

〉
, so ∇f (1, 2) =

〈
2

5
,

4

5

〉
.

Therefore, the desired rate of change is

Dvf = ∇f · v =
2√
5
· 2

5
+

1√
5
· 4

5
=

8

5
√

5
≈ 0.7155.
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Gradients and Directional Derivatives, V

From the gradient theorem for computing directional derivatives,
we can deduce several corollaries about how the magnitude of the
directional derivative depends on the direction v:

Corollary (Minimum and Maximum Increase)

Suppose f is a differentiable function with gradient ∇f 6= 0 and v
is a unit vector. Then the following hold:

1. The maximum value of Dvf occurs when v is a unit vector in
the direction of ∇f , and the maximum value is ||∇f ||.

2. The minimum value of Dvf occurs when v is a unit vector in
the opposite direction of ∇f , and the minimum is − ||∇f ||.

3. The value of Dvf is zero if and only if v is orthogonal to the
gradient ∇f .



Gradients and Directional Derivatives, VI

To summarize these results:

The direction where f is increasing most rapidly is the
direction of the gradient ∇f .

The direction where f is decreasing most rapidly is the
opposite direction of the gradient −∇f .

The maximum rate of increase or decrease is the length of the
gradient vector.

The value of f is not changing in any direction orthogonal to
∇f .

The idea of the proof is simply to use the dot product theorem to
analyze the expression ∇f · v.



Gradients and Directional Derivatives, VII

Proof:

If v is a unit vector, then the directional derivative satisfies
Dvf = ∇f · v = ||∇f || ||v|| cos(θ), where θ is the angle
between ∇f and v.

We know that ||∇f || is a fixed nonnegative number, and
||v|| = 1. So if we change the direction of v, the only quantity
in ||∇f || ||v|| cos(θ) that changes is cos(θ).

So, the maximum value of ∇f · v occurs when cos(θ) = 1,
which is to say, when ∇f and v are parallel and point in the
same direction. The maximum value is then just ||∇f ||.
The minimum value of ∇f · v occurs when cos(θ) = −1,
which is to say, when ∇f and v are parallel and point in
opposite directions. The minimum value is then just − ||∇f ||.
Finally Dv f is zero if and only if ∇f · v = 0, which is
equivalent to saying that ∇f and v are orthogonal.



Gradients and Directional Derivatives, VIII

Example: Let f (x , y) = x2 + y2 and take P = (3, 4).

1. In what direction is f increasing fastest at P, and how fast?

2. In what direction is f decreasing fastest at P, and how fast?

3. Find a direction in which f is not changing at P.

The function is increasing the fastest in the direction of the
gradient and decreasing the fastest in the direction opposite
to the gradient, and the corresponding maximum rate of
increase (or decrease) is the magnitude of the gradient.

We have fx = 2x and fy = 2y so ∇f = 〈2x , 2y〉, and
∇f (3, 4) = 〈6, 8〉.
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Gradients and Directional Derivatives, IX

Example: Let f (x , y) = x2 + y2 and take P = (3, 4).

1. In what direction is f increasing fastest at P, and how fast?

Since ||∇f (3, 4)|| =
√

62 + 82 = 10, the maximum value of
the directional derivative Dvf is 10 and occurs in the direction

of
〈6, 8〉

10
=

〈
3

5
,

4

5

〉
.

2. In what direction is f decreasing fastest at P, and how fast?

Likewise, the minimum value of Dvf is −10 and occurs in the

direction of −〈6, 8〉
10

=

〈
−3

5
, −4

5

〉
.
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Gradients and Directional Derivatives, X

Example: Let f (x , y) = x2 + y2 and take P = (3, 4).

3. Find a direction in which f is not changing at P.

For this, we need to find a direction vector that is orthogonal
to ∇f (3, 4) = 〈6, 8〉.
If we explicitly write v = 〈vx , vy 〉, then we must have
6vx + 8vy = 0 and v2

x + v2
y = 1.

The first equation gives vy = (−3/4)vx and then the second
equation yields v2

x + (9/16)v2
x = 1 so that v2

x = 16/25 and so
vx = ±4/5.

So there are two possible direction vectors:

either v =

〈
4

5
, −3

5

〉
or its negative

〈
−4

5
,

3

5

〉
.
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Gradients and Directional Derivatives, XI

Example: For f (x , y , z) = x3 + y3 + 2z3, in which direction is f
increasing the fastest at (x , y , z) = (2,−2, 1), and how fast? In
which direction is f decreasing the fastest, and how fast?

Note f is increasing the fastest in the direction of ∇f and
decreasing the fastest in the direction opposite ∇f , and the
corresponding maximum rate of increase/decrease is ||∇f ||.
We have ∇f (x , y , z) =

〈
3x2, 3y2, 6z2

〉
, so

∇f (2,−2, 1) = 〈12, 12, 6〉.
Since ||∇f (2,−2, 1)|| =

√
122 + 122 + 62 = 18, we see that

the maximum value of the directional derivative Dvf is 18 and
occurs in the direction of 〈12,12,6〉18 =

〈
2
3 ,

2
3 ,

1
3

〉
.

Likewise, the minimum value of Dvf is −18 and occurs in the
direction of − 〈12,12,6〉18 =

〈
−2

3 , −
2
3 , −

1
3

〉
.



Gradients and Directional Derivatives, XI

Example: For f (x , y , z) = x3 + y3 + 2z3, in which direction is f
increasing the fastest at (x , y , z) = (2,−2, 1), and how fast? In
which direction is f decreasing the fastest, and how fast?
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corresponding maximum rate of increase/decrease is ||∇f ||.
We have ∇f (x , y , z) =

〈
3x2, 3y2, 6z2

〉
, so

∇f (2,−2, 1) = 〈12, 12, 6〉.
Since ||∇f (2,−2, 1)|| =

√
122 + 122 + 62 = 18, we see that

the maximum value of the directional derivative Dvf is 18 and
occurs in the direction of 〈12,12,6〉18 =

〈
2
3 ,

2
3 ,

1
3

〉
.

Likewise, the minimum value of Dvf is −18 and occurs in the
direction of − 〈12,12,6〉18 =
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2
3 , −

1
3

〉
.



Geometry of Directional Derivatives, I

We can also use level sets to visualize directional derivatives, like
with partial derivatives.

If we draw the level curves for a function f (x , y), we can
estimate the value of the directional derivative Dvf (P) by
looking at the behavior of f in the v-direction near P.

If moving along v from P crosses over level curves
corresponding to larger values of f , then Dvf (P) > 0.

Inversely, if moving along v from P crosses over level curves
corresponding to smaller values of f , then Dvf (P) < 0.

We can also estimate the approximate value of Dvf (P) based on
how much f changes as we move in the x-direction:

Per the limit definition, if the value of f changes by a total
amount ∆f as we move a distance ∆h in the v-direction from
P, then Dvf (P)) ≈ ∆f /∆h.



Geometry of Directional Derivatives, II

For example, here are the level sets for f (x , y) = x2 + y2:

Consider P = (1, 1), located on
the level set where f = 2.

If we move along
v = 1√

2
〈1, 1〉, we move

towards the level sets
where f = 3, 4, 5, . . . .
This means Dvf (P) > 0.

If we move along
v = 〈−1, 0〉, we move
towards the level set where
f = 1, so Dvf (P) < 0.



Geometry of Directional Derivatives, III

For another example, here are the level sets for f (x , y) = x2 − y2:

Consider P = (1, 1), located on
the level set where f = 0.

If we move along
v = 1√

2
〈1, 1〉, we stay on

the level set with f = 0.
This means Dvf (P) = 0.
If we move along
v = 1√

5
〈1, 2〉, we move

towards the level set where
f = −1, so Dvf (P) < 0.
If we move along
v = 1√

5
〈2, 1〉, we move

towards the level set where
f = 1, so Dvf (P) > 0.



Geometry of the Gradient, I

We can also view the gradient vector ∇f geometrically.

Specifically, as we just discussed, ∇f points in the direction of
fastest increase for f .

When we consider the plot of level sets, what this means is
that ∇f will be (more or less) pointing directly towards the
nearest level curve to P where f takes a larger value.

Intuitively, this should make sense: the fastest way to climb a
hill is to follow the steepest incline; inversely, the fastest way
to go down is to follow the steepest descent.



Geometry of the Gradient, II

Here are plots of some gradient vectors for f (x , y) = x2 + y2:



Geometry of the Gradient, III

Here are plots of some gradient vectors for f (x , y) = x2 − y2:



Summary

We introduced directional derivatives and gradient vectors and
discussed how to compute and interpret them.

We discussed how to find the minimum and maximum rate of
change of a function.

Next lecture: Tangent lines and planes, linearization.


