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Limits and Partial Derivatives

Limits

Partial Derivatives

This material represents §2.1 from the course notes.



Overview of §2: Partial Derivatives
We now move into the second chapter of the course, where we will
discuss how to generalize the idea of a derivative to functions of
several variables.

Today, we will have a brief discussion of limits and continuity
(since the derivatives we discuss will all be defined in terms of
limits) and introduce partial derivatives, which capture the
notion of the rate of change of a function in one of the
coordinate directions.

Next, we will generalize the idea of a partial derivative to that
of a directional derivative, which measures the rate of change
in an arbitrary direction.

The rest of the chapter is devoted to other familiar topics, all
related to derivatives: tangent lines and planes, the chain rule,
linearization, classification of critical points (minima and
maxima), and various types of optimization problems.



Limits (As Quickly As Possible), I

Here is the official definition of limit for a function of 2 variables:

Definition

A function f (x , y) has the limit L as (x , y)→ (a, b), written as
lim(x ,y)→(a,b) f (x , y) = L, if, for any ε > 0 there exists a δ > 0 with
the property that for all (x , y) with
0 <

√
(x − a)2 + (y − b)2 < δ, we have that |f (x , y)− L| < ε.

Roughly speaking, it works as follows:

Suppose you claim f has a limit L as (x , y)→ P.
In order to convince me that the function really does have
that limit, I challenge you by handing you some small value
ε > 0, and I want you to give me some value of δ, with the
property that f (x) is always within ε of the limit value L, for
all the points that are within a distance δ of P.
If you can always meet the challenge, no matter what ε I give
you, then I agree the limit really is L.



Limits (As Quickly As Possible), II

The definition of limit is not easy to work with, and we won’t work
with it. Instead, one uses the definition to establish various basic
limit evaluations.

For example, one can show lim(x ,y)→(a,b) c = c for any
constant c , and also lim(x ,y)→(a,b) x = a, lim(x ,y)→(a,b) y = b.

Likewise, one obtains all of the usual limit laws:

Explicitly, suppose lim(x ,y)→(a,b) f (x , y) = Lf and
lim(x ,y)→(a,b) g(x , y) = Lg .

Then lim(x ,y)→(a,b) [f (x , y) + g(x , y)] = Lf + Lg , and
lim(x ,y)→(a,b) [f (x , y)− g(x , y)] = Lf − Lg , and
lim(x ,y)→(a,b) [f (x , y)g(x , y)] = Lf Lg , and
lim(x ,y)→(a,b) [f (x , y)/g(x , y)] = Lf /Lg provided Lg 6= 0,
and so forth....



Limits (As Quickly As Possible), III

We say a function is continuous if it equals its limit. Using the
limit rules and basic limit evaluations, we can establish that the
usual slate of functions is continuous:

Any polynomial in x and y is continuous everywhere.

Any quotient of polynomials
p(x , y)

q(x , y)
is continuous everywhere

that the denominator is nonzero.

The exponential, sine, and cosine of any continuous function
are all continuous everywhere.

The logarithm of a positive continuous function is continuous.



Limits (As Quickly As Possible), IV

For one-variable limits, we also have a notion of “one-sided” limits,
namely, the limits that approach the target point either from above
or from below.

In the multiple-variable case, there are many more paths along
which we can approach our target point.

For example, if our target point is the origin (0, 0), then we
could approach along the positive x-axis, or the positive
y -axis, or along any line through the origin... or along the
curve y = x2, or any other continuous curve that passes
through (0, 0).



Limits (As Quickly As Possible), V

As with limits in one variable, if limits from different directions
have different values, then the overall limit does not exist:

Proposition (“Two Paths Test”)

Let f (x , y) be a function of two variables and (a, b) be a point. If
there are two continuous paths passing through the point (a, b)
such that f has different limits as (x , y)→ (a, b) along the two
paths, then lim

(x ,y)→(a,b)
f (x , y) does not exist.

The proof is essentially just the definition of limit: if the limit
exists, then f must stay within a very small range near (a, b). But
if there are two paths through (a, b) along which f approaches
different values, then the values of f near (a, b) do not stay within
a small range, so the limit cannot exist.



Limits (As Quickly As Possible), VI

Example: Show that lim
(x ,y)→(0,0)

xy

x2 + y2
does not exist.

We try some simple paths: along the path (x , y) = (t, 0) as

t → 0 the limit becomes limt→0
t · 0

t2 + 02
= limt→0 0 = 0.

Along the path (x , y) = (0, t) as t → 0 we have

limt→0
0 · t

02 + t2
= limt→0 0 = 0.

Along these two paths the limits are equal. But this does not
show the existence of the limit.

Let’s try along the path (x , y) = (t, t): the limit then

becomes limt→0
t2

t2 + t2
= limt→0

1

2
=

1

2
.

Thus, along the two paths (x , y) = (0, t) and (x , y) = (t, t),
the function has different limits as (x , y)→ (0, 0).

Hence the limit does not exist.



Limits (As Quickly As Possible), VII

Here is a plot of z = (xy)/(x2 + y2) near (0, 0):



Limits (As Quickly As Possible), VIII

Example: Show that lim
(x ,y)→(0,0)

x2y

x4 + y2
does not exist.

If we try along the line x = 0, with (x , y) = (0, t), then the

limit becomes limt→0
0

t2
= 0.

If we try along the line y = mx , with (x , y) = (t,mt), then

the limit becomes limt→0
mt3

t2 + t4
= limt→0

mt

1 + t2
= 0.

So it seems like the limit might be zero, since it is zero along
any line approaching the origin.

But, quite strangely, the limit actually does not exist! If we go
along the parabola y = x2, with (x , y) = (t, t2), then the

limit becomes limt→0
t4

t4 + t4
= limt→0

1

2
=

1

2
.

So this limit actually does not exist.



Limits (As Quickly As Possible), VIII

Example: Show that lim
(x ,y)→(0,0)

x2y

x4 + y2
does not exist.

If we try along the line x = 0, with (x , y) = (0, t), then the

limit becomes limt→0
0

t2
= 0.

If we try along the line y = mx , with (x , y) = (t,mt), then

the limit becomes limt→0
mt3

t2 + t4
= limt→0

mt

1 + t2
= 0.

So it seems like the limit might be zero, since it is zero along
any line approaching the origin.

But, quite strangely, the limit actually does not exist! If we go
along the parabola y = x2, with (x , y) = (t, t2), then the

limit becomes limt→0
t4

t4 + t4
= limt→0

1

2
=

1

2
.

So this limit actually does not exist.



Limits (As Quickly As Possible), IX

Here is a plot of z = (x2y)/(x4 + y2) near (0, 0):



Partial Derivatives, I

Now that we have very briefly discussed limits, we can get to the
main attraction: partial derivatives.

Imagine we wanted to try to give an answer to the question
“What is the derivative of f (x , y) = x2 + y2?”.

One option would be to think back to the original definition of
derivative, as the rate of change of a function: we can ask “if
we change x by some small amount, how much does f change
by?”. (And we can formalize that question using limits.)

However, there is no reason to ask this question only about x!

The function f also depends on the variable y , so we could
just as well ask about what happens to values of f as we
change y .

Since both of these questions are very reasonable things to
ask, we will just ask both of them!



Partial Derivatives, II

We first define the “partial derivative with respect to x”:

Definition

For a function f (x , y) of two variables, we define the
partial derivative of f with respect to x as

∂f

∂x
= fx = lim

h→0

f (x + h, y)− f (x , y)

h
.

Observe that the numerator of ∂f /∂x is evaluating how much the
value of f is changing if we change x to x + h, but y is left
unchanged.

The difference quotient ∂f /∂x is therefore measuring how fast f is
changing as we change the value of x , but keep y fixed.



Partial Derivatives, III

We also have an analogous “partial derivative with respect to y”:

Definition

For a function f (x , y) of two variables, we define the
partial derivative of f with respect to y as

∂f

∂y
= fy = lim

h→0

f (x , y + h)− f (x , y)

h
.

Notice now that ∂f /∂y is measuring how fast f is changing as we
change the value of y , but keep x fixed.



Partial Derivatives, IV

A few notational / terminological remarks:

In multivariable calculus, we use the symbol ∂ (typically
pronounced either like the letter d or as “del”) to denote
taking a derivative, in contrast to single-variable calculus
where we use the symbol d .

We will frequently use both notations
∂f

∂y
and fy to denote

partial derivatives: I generally use the difference quotient
notation to emphasize a formal property of a derivative, and
the subscript notation when I want to save space.

Do not use the one-variable “prime” notation (f ′) with
functions of more than one variable, because it is not clear
which variable the function is being differentiated with respect
to.



Partial Derivatives, V

Although partial derivatives are defined in terms of limits, we can
in fact use all of our usual differentiation rules to compute them.

Specifically, to evaluate a partial derivative of the function f
with respect to x , we need only pretend that all the other
variables (i.e., everything except x) that f depends on are
constants.

Then we just evaluate the derivative of f with respect to x
like a normal one-variable derivative.

And, of course, the differentiation rules (the product rule,
quotient rule, chain rule, etc.) from one-variable calculus still
hold: there will just be extra variables floating around.



Partial Derivatives, VI

Example: Find fx and fy for f (x , y) = x3y2 + ex .

For fx , we treat y as a constant and x as the variable.

Thus, fx = 3x2 · y2 + ex .

Similarly, to find fy , we instead treat x as a constant and y as
the variable.

Thus, fy = x3 · 2y + 0 = 2x3y . (Note in particular that the
derivative of ex with respect to y is zero.)



Partial Derivatives, VII

Example: Find fx and fy for f (x , y) = ln(x3 + y4).

For fx , we treat y as a constant and x as the variable.

We can apply the chain rule to get fx =
3x2

x3 + y4
, since the

derivative of the inner function x3 + y4 with respect to x is
3x2. (Remember that y is constant, so its x-derivative is
zero.)

Similarly, we can use the chain rule to find the partial

derivative fy =
4y3

x3 + y4
.



Partial Derivatives, VII

Example: Find fx and fy for f (x , y) = ln(x3 + y4).

For fx , we treat y as a constant and x as the variable.

We can apply the chain rule to get fx =
3x2

x3 + y4
, since the

derivative of the inner function x3 + y4 with respect to x is
3x2. (Remember that y is constant, so its x-derivative is
zero.)

Similarly, we can use the chain rule to find the partial

derivative fy =
4y3

x3 + y4
.



Partial Derivatives, VIII

Example: Find fx and fy for f (x , y) =
exy

x2 + x
.

For fx we apply the quotient rule:

fx =
∂
∂x [exy ] · (x2 + x)− exy · ∂

∂x

[
x2 + x

]
(x2 + x)2

.

Then we can evaluate the derivatives in the numerator to get

fx =
(y exy ) · (x2 + x)− exy · (2x + 1)

(x2 + x)2
.

For fy , the calculation is easier because the denominator is
not a function of y .

So in this case, we just need to use the chain rule to get

fy =
1

x2 + x
· (x exy ).



Partial Derivatives, VIII

Example: Find fx and fy for f (x , y) =
exy

x2 + x
.

For fx we apply the quotient rule:

fx =
∂
∂x [exy ] · (x2 + x)− exy · ∂

∂x

[
x2 + x

]
(x2 + x)2

.

Then we can evaluate the derivatives in the numerator to get

fx =
(y exy ) · (x2 + x)− exy · (2x + 1)

(x2 + x)2
.

For fy , the calculation is easier because the denominator is
not a function of y .

So in this case, we just need to use the chain rule to get

fy =
1

x2 + x
· (x exy ).



Partial Derivatives, IX

We can generalize partial derivatives to functions of more than two
variables, in the natural way.

For each input variable, we get a partial derivative with
respect to that variable.

Thus, for example, a function f (x , y , z) would have three
different partial derivatives: fx , fy , and fz .

To evaluate a partial derivative, treat all variables except the
variable of interest as constants, and then differentiate with
respect to the variable of interest.



Partial Derivatives, X

Example: Find fx , fy , and fz for f (x , y , z) = x2y + x3yz .

For fx we think of y and z as constants.

Thus, fx = (2x)y + (3x2)yz .

For fy we think of x and z as constants.

Thus, fy = x2 + x3z .

For fz we think of x and y as constants.

Thus, fz = 0 + x3y = x3y .



Partial Derivatives, X

Example: Find fx , fy , and fz for f (x , y , z) = x2y + x3yz .

For fx we think of y and z as constants.

Thus, fx = (2x)y + (3x2)yz .

For fy we think of x and z as constants.

Thus, fy = x2 + x3z .

For fz we think of x and y as constants.

Thus, fz = 0 + x3y = x3y .



Partial Derivatives, XI

Example: Find fx , fy , and fz for f (x , y , z) = y z e2x
2−y .

By the chain rule we have fx = y z · e2x2−y · 4x . (We don’t
need the product rule for fx since y and z are constants.)

For fy we need to use the product rule since f is a product of
two nonconstant functions of y .

We get fy = z · e2x2−y + y z · ∂
∂y

[
e2x

2−y
]
, and then using the

chain rule gives fy = z e2x
2−y − y z · e2x2−y .

For fz , all of the terms except for z are constants, so we have
fz = y e2x

2−y .



Partial Derivatives, XI

Example: Find fx , fy , and fz for f (x , y , z) = y z e2x
2−y .

By the chain rule we have fx = y z · e2x2−y · 4x . (We don’t
need the product rule for fx since y and z are constants.)

For fy we need to use the product rule since f is a product of
two nonconstant functions of y .

We get fy = z · e2x2−y + y z · ∂
∂y

[
e2x

2−y
]
, and then using the

chain rule gives fy = z e2x
2−y − y z · e2x2−y .

For fz , all of the terms except for z are constants, so we have
fz = y e2x

2−y .



Partial Derivatives, XII

Example: Find
∂g

∂s
and

∂g

∂t
for g(s, t) =

√
s2 + 4st2.

We get
∂g

∂s
= gs =

1

2
(s2 + 4st2)−1/2 · (2s + 4t2) by the chain

rule.

We get
∂g

∂t
= gt =

1

2
(s2 + 4st2)−1/2 · (8st) by the chain rule.



Partial Derivatives, XII

Example: Find
∂g

∂s
and

∂g

∂t
for g(s, t) =

√
s2 + 4st2.

We get
∂g

∂s
= gs =

1

2
(s2 + 4st2)−1/2 · (2s + 4t2) by the chain

rule.

We get
∂g

∂t
= gt =

1

2
(s2 + 4st2)−1/2 · (8st) by the chain rule.



Geometry of Partial Derivatives, I

We can also interpret the partial derivatives in various geometric
ways.

Per the definition, for a function f (x , y) of two variables, the
partial derivative fx represents the rate of change of f as x
changes but y is held constant.

Therefore, if we look at the vertical cross-section of the
surface z = f (x , y) when y = b, the slope of the tangent line
to the resulting curve at the point x = a is the value of the
partial derivative fx(a, b).



Geometry of Partial Derivatives, II

Here is the cross-section at y = 0 of the surface z = x2 − y2:

Here, fx measures the slope of the tangent line to the curve.



Geometry of Partial Derivatives, III

In the same way, fy represents the slope of the tangent line in a
cross-section of z = f (x , y) where x is held constant:



Geometry of Partial Derivatives, IV

We can also use level sets to visualize the partial derivatives.

If we draw the level curves for a function f (x , y), then we can
estimate the value of the partial derivative fx at a given point
P = (a, b) by looking at the behavior of the function in the
positive x-direction near P.

If moving in the positive x-direction from P crosses over level
curves corresponding to larger values of f , then fx(P) > 0.

Inversely, if moving in the positive x-direction crosses over
level curves with smaller values of f , then fx(P) < 0.

We can also estimate the approximate value of fx(P) based on how
much f changes as we move in the x-direction:

Per the limit definition, if the value of f changes by a total
amount ∆f as we move a distance ∆x in the x-direction from
P, then fx(P) ≈ ∆f /∆x .

All of the same logic also applies with y in place of x .



Geometry of Partial Derivatives, V

For example, here are the level sets for f (x , y) = x2 − y2:

Consider P = (1, 1), located on
the level set where f = 0.

If we move in the positive
x-direction, we move
towards the level sets
where f = 1, 2, 3, . . . .
This means fx > 0.

If we move in the positive
y -direction, we move
towards the level sets
where f = −1,−2,−3, . . . .
This means fy < 0.



Higher Derivatives, I

Like in the one-variable case, we also have higher-order partial
derivatives, obtained by taking a partial derivative of a partial
derivative.

However, because we have more than one choice of derivative
at each stage, we get a number of possible second derivatives.

For a function of two variables, there are four second-order
partial derivatives:

fxx =
∂2f

∂x2
=

∂

∂x
[fx ] fxy =

∂2f

∂y∂x
=

∂

∂y
[fx ]

fyx =
∂2f

∂x∂y
=

∂

∂x
[fy ] fyy =

∂2f

∂y2
=

∂

∂y
[fy ].

Remark: Partial derivatives in subscript notation are applied
left-to-right, while partial derivatives in differential operator
notation are applied right-to-left. (In practice, the order of the
partial derivatives rarely matters, as we will see.)



Higher Derivatives, II

Example: Find the second-order partial derivatives fxx , fxy , fyx , and
fyy for f (x , y) = x3y4 + y e2x .

First, we have fx = 3x2y4 + 2y e2x and fy = 4x3y3 + e2x .

So, fxx =
∂

∂x

[
3x2y4 + 2y e2x

]
= 6xy4 + 4y e2x .

Next, fxy =
∂

∂y

[
3x2y4 + 2y e2x

]
= 12x2y3 + 2e2x .

Also, fyx =
∂

∂x

[
4x3y3 + e2x

]
= 12x2y3 + 2e2x .

Finally, fyy =
∂

∂y

[
4x3y3 + e2x

]
= 12x3y2.



Higher Derivatives, II

Example: Find the second-order partial derivatives fxx , fxy , fyx , and
fyy for f (x , y) = x3y4 + y e2x .

First, we have fx = 3x2y4 + 2y e2x and fy = 4x3y3 + e2x .

So, fxx =
∂

∂x

[
3x2y4 + 2y e2x

]
= 6xy4 + 4y e2x .

Next, fxy =
∂

∂y

[
3x2y4 + 2y e2x

]
= 12x2y3 + 2e2x .

Also, fyx =
∂

∂x

[
4x3y3 + e2x

]
= 12x2y3 + 2e2x .

Finally, fyy =
∂

∂y

[
4x3y3 + e2x

]
= 12x3y2.



Higher Derivatives, III

Example: Find the second-order partial derivatives fxz , fyz , fzx , and
fzy for f (x , y , z) = x4y2z3.

First, we have fx = 4x3y2z3, fy = x4(2y)z3 = 2x4yz3, and
fz = x4y2(3z2) = 3x4y2z2.

So, fxz =
∂

∂z

[
4x3y2z3

]
= 4x3y2(3z2) = 12x3y2z2.

Next, fyz =
∂

∂z

[
2x4yz3

]
= 2x4y(3z2) = 6x4yz2.

Also, fzx =
∂

∂x

[
3x4y2z2

]
= 3(4x3)y2z2 = 12x3y2z2.

Finally, fzy =
∂

∂y

[
3x4y2z2

]
= 3x4(2y)z2 = 6x4yz2.



Higher Derivatives, III

Example: Find the second-order partial derivatives fxz , fyz , fzx , and
fzy for f (x , y , z) = x4y2z3.

First, we have fx = 4x3y2z3, fy = x4(2y)z3 = 2x4yz3, and
fz = x4y2(3z2) = 3x4y2z2.

So, fxz =
∂

∂z

[
4x3y2z3

]
= 4x3y2(3z2) = 12x3y2z2.

Next, fyz =
∂

∂z

[
2x4yz3

]
= 2x4y(3z2) = 6x4yz2.

Also, fzx =
∂

∂x

[
3x4y2z2

]
= 3(4x3)y2z2 = 12x3y2z2.

Finally, fzy =
∂

∂y

[
3x4y2z2

]
= 3x4(2y)z2 = 6x4yz2.



Higher Derivatives, IV

Notice that in both of the examples, we had an equality of the
“mixed partial derivatives”: fxy = fyx , fxz = fzx , and fyz = fzy .
This is a general fact:

Theorem (Clairaut’s Theorem)

If both partial derivatives fxy and fyx are continuous, then they are
equal. The same applies for any pair of mixed partial derivatives.

In other words, the mixed partials are always equal (given mild
assumptions about continuity), so for a function of two
variables, there are really only three second-order partial
derivatives: fxx , fxy , and fyx .

This theorem can be proven using the limit definition of
derivative and the Mean Value Theorem, but the details are
unenlightening, so I will skip them.



Higher Derivatives, V

We can continue on and take higher-order partial derivatives.

For example, a function f (x , y) has eight third-order partial
derivatives: fxxx , fxxy , fxyx , fxyy , fyxx , fyxy , fyyx , and fyyy .

By Clairaut’s Theorem, we can reorder the partial derivatives
any way we want (if they are continuous, which is almost
always the case).

Thus, fxxy = fxyx = fyxx and fxyy = fyxy = fyyx .

So in fact, f (x , y) only has four different third-order partial
derivatives: fxxx , fxxy , fxyy , fyyy .

Likewise, f (x , y) only has five different fourth-order partial
derivatives: fxxxx , fxxxy , fxxyy , fxyyy , fyyyy .



Higher Derivatives, VI

Example: Find the third-order partial derivatives fxxx , fxxy , fxyy ,
fyyy for f (x , y) = x4y2 + x3ey .

First, we have fx = 4x3y2 + 3x2ey and fy = 2x4y + x3ey .

Next, fxx = (fx)x = 12x2y2 + 6xey ,
fxy = (fx)y = 8x3y + 3x2ey , and
fyy = (fy )y = 2x4 + x3ey .

Finally, fxxx = (fxx)x = 24xy2 + 6ey ,
fxxy = (fxx)y = 24x2y + 6xey ,
fxyy = (fxy )y = 8x3 + 3x2ey , and
fyyy = (fyy )y = x3ey .



Higher Derivatives, VI

Example: Find the third-order partial derivatives fxxx , fxxy , fxyy ,
fyyy for f (x , y) = x4y2 + x3ey .

First, we have fx = 4x3y2 + 3x2ey and fy = 2x4y + x3ey .

Next, fxx = (fx)x = 12x2y2 + 6xey ,
fxy = (fx)y = 8x3y + 3x2ey , and
fyy = (fy )y = 2x4 + x3ey .

Finally, fxxx = (fxx)x = 24xy2 + 6ey ,
fxxy = (fxx)y = 24x2y + 6xey ,
fxyy = (fxy )y = 8x3 + 3x2ey , and
fyyy = (fyy )y = x3ey .



Higher Derivatives, VII

Example: If all 4th-order partial derivatives of f (x , y , z) are
continuous and fxyz = x3exyz , what is fzyyx?

By Clairaut’s theorem, we can differentiate in any order, and
so fzyyx = fxyzy = (fxyz)y .

Since fxyz = x3exyz we see that (fxyz)y = x3exyz · xz by the
chain rule.



Higher Derivatives, VII

Example: If all 4th-order partial derivatives of f (x , y , z) are
continuous and fxyz = x3exyz , what is fzyyx?

By Clairaut’s theorem, we can differentiate in any order, and
so fzyyx = fxyzy = (fxyz)y .

Since fxyz = x3exyz we see that (fxyz)y = x3exyz · xz by the
chain rule.



Summary

We briefly discussed limits for functions of several variables.

We introduced partial derivatives as limits and discussed how to
compute and interpret them.

We discussed some properties of higher-order partial derivatives.

Next lecture: Directional derivatives and gradient vectors.


