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Lecture #5 of 38 ∼ January 28, 2021

Curves and Motion in 3-Space

Velocity, Speed, and Acceleration

Arclength

Unit Tangent and Unit Normal Vectors

This material represents §1.3.2 from the course notes.



Motion in 3-Space, I

To finish up our discussion of vectors and 3D geometry, we discuss
motion in 3-space and some topics about the geometry of curves.

For all of today’s discussion, we will be considering the motion
of a particle along a parametric curve, where the variable t
represents time.

So, suppose we have a particle traveling through space, so
that its position at time t is given by r(t) = 〈x(t), y(t), z(t)〉.
As t varies, the position of the particle traces a parametric
curve in space.



Motion in 3-Space, II

So, suppose that r(t) = 〈x(t), y(t), z(t)〉 represents the position of
a particle.

As discussed last class, the derivative
v(t) = r′(t) = 〈x ′(t), y ′(t), z ′(t)〉 represents the velocity of
the particle.

The magnitude ||v(t)|| of the velocity then represents the
speed of the particle.

Also, the second derivative
a(t) = v′(t) = r′′(t) = 〈x ′′(t), y ′′(t), z ′′(t)〉 represents the
acceleration of the particle.



Motion in 3-Space, III

Example: Find the velocity, speed, and acceleration of a particle
traveling along the path r(t) =

〈
t3, 6t, 3t2

〉
.

The velocity is v(t) = r′(t) =
〈
3t2, 6, 6t

〉
.

The speed is ||v(t)|| =
√

(3t2)2 + 62 + (6t)2 =√
9t4 + 36 + 36t2 = 3t2 + 6.

The acceleration is a(t) = v′(t) = 〈6t, 0, 6〉.
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Motion in 3-Space, IV

Example: Find the velocity, speed, and acceleration of a particle
traveling along the path r(t) =

〈
2 + et , 5 + t

√
2, 4− e−t

〉
.

The velocity is v(t) = r′(t) =
〈
et ,
√

2, e−t
〉
.

The speed is ||v(t)|| =
√

(et)2 + (
√

2)2 + (e−t)2 =
√
e2t + 2 + e−2t = et + e−t .

The acceleration is a(t) = v′(t) = 〈et , 0, −e−t〉.



Motion in 3-Space, IV
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.
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√
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√
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√
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Motion in 3-Space, V

As we might expect, there is a relation between the speed of a
particle and the total distance it travels.

So suppose we want to find the distance travelled by the
particle between time t = a and time t = b.

If we imagine breaking up the particle’s path into many small
segments, where the speed and direction of travel are
essentially constant, then by the elementary relation
[distance] = [rate] · [time], the length of each segment will
simply be the speed of the particle ||v(ti )|| times the length
∆ti of the corresponding time interval.

The total length of all the segments is
∑
||v(ti )||∆ti .

This sum is a Riemann sum for the integral
∫ b
a ||v(t)|| dt, so

by the usual sort of Riemann-sum limit argument, this integral
gives the length of the curve.
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Motion in 3-Space, VI

To summarize, we have the following:

Definition

If a particle has position r(t) at time t, then the arclength of the
curve, representing the total distance travelled by the particle,
between t = a and t = b is given by

∫ b
a ||v(t)|| dt.

The arclength is often written using the letter s: thus, we would
write s =

∫ b
a ||v(t)|| dt.



Motion in 3-Space, VII

Example: Find the arclength of the curve r(t) =
〈
t3, 6t, 3t2

〉
from

t = 1 to t = 2.

We calculated earlier that ||v(t)|| =
√

(3t2)2 + 62 + (6t)2 =√
9t4 + 36 + 36t2 = 3t2 + 6.

Thus, s =
∫ 2
1 (3t2 + 6) dt = (t3 + 6t)

∣∣2
t=1

= 13.

Example: At time t seconds, a particle has position
r(t) =

〈
2 + et , 5 + t

√
2, 4− e−t

〉
meters. Find the distance the

particle travels between t = 0s and t = 2s.

We calculated earlier that ||v(t)|| = et + e−t .

Thus, s =
∫ 2
0 (et + e−t) dt = (et − e−t)|2t=0 = (e2 − e−2)m.
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Motion in 3-Space, VIII

Using the vector language makes it very straightforward to analyze
projectile motion.

Example: A projectile is fired at time t = 0s from initial position
r(0) = 〈4, 6, 0〉m in a vacuum with initial velocity
v(0) = 〈1,−2, 45〉 ms . Assuming that the only force acting on the
projectile is the downward acceleration due to gravity of
a(t) = 〈0, 0,−10〉 m

s2
, find the following:

1. The position of the projectile at time t.

2. The projectile’s maximum height.

3. The time the projectile hits the ground.

4. The speed of the projectile when it hits the ground.

5. The total distance the projectile travels along its path.



Motion in 3-Space, IX

Example: A projectile has initial position r(0) = 〈4, 6, 0〉m, initial
velocity v(0) = 〈1,−2, 45〉 ms , and constant acceleration
a(t) = 〈0, 0,−10〉 m

s2
. Find

1. The position of the projectile at time t.

We just have to take the antiderivative of a(t) twice to find
r(t) and plug in the initial conditions.

Since the acceleration is a(t) = 〈0, 0,−10〉 m
s2

, integrating
yields v(t) = 〈C1, C2, C3 − 10t〉 ms for some C1,C2,C3.

Setting t = 0 yields v(0) = 〈C1,C2,C3〉, so since v(0) is given
as 〈1,−2, 45〉 ms , we see that v(t) = 〈1,−2, 45− 10t〉 ms .

Integrating again yields
r(t) =

〈
C4 + t, C5 − 2t, C6 + 45t − 5t2

〉
m. Since the initial

position is r(0) = 〈4, 6, 0〉m, we see that r(0) = 〈C4,C5,C6〉,
and therefore r(t) =

〈
4 + t, 6− 2t, 45t − 5t2

〉
m.
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Motion in 3-Space, X

Example: At time ts, a projectile has position
r(t) =

〈
4 + t, 6− 2t, 45t − 5t2

〉
m. Find

2. The projectile’s maximum height.

The height of the projectile is the z-coordinate. Since
z ′(t) = 45− 10t, the maximum height occurs when t = 4.5s,
and the height is z(4.5s) = 101.25m.

3. The time the projectile hits the ground.

The height of the projectile is the z-coordinate, so it hits the
ground when 45t − 5t2 = 0, so that t = 0 or t = 9.

Thus, the projectile hits the ground at time t = 9s.

4. The speed of the projectile when it hits the ground.

The speed is ||v(t)|| =
√

(1)2 + (−2)2 + (45− 10t)2.

At time t = 9s, the speed is ||v(9s)|| =
√

2030m
s ≈ 45.056m

s .
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Motion in 3-Space, XI

Example: At time ts, a projectile has position
r(t) =

〈
4 + t, 6− 2t, 45t − 5t2

〉
m. Find

5. The total distance the projectile travels along its path.

The total distance travelled by the particle is the arclength of
the path between t = 0s and t = 9s. Since
||v(t)|| =

√
12 + (−2)2 + (45− 10t)2 ms , the arclength is

given by
∫ 9
0

√
12 + (−2)2 + (45− 10t)2 dt meters.

This integral is not so easy to evaluate, but it is possible to
compute it using a series of substitutions (u = 45− 10t
followed by u =

√
5 tan(s)).

The result is
∫ 9
0

√
12 + (−2)2 + (45− 10t)2 dt =

1
2

(
9
√

2030 + sinh−1
(
9
√

5
))
≈ 204.598m.



Motion in 3-Space, XI

Example: At time ts, a projectile has position
r(t) =

〈
4 + t, 6− 2t, 45t − 5t2

〉
m. Find

5. The total distance the projectile travels along its path.

The total distance travelled by the particle is the arclength of
the path between t = 0s and t = 9s. Since
||v(t)|| =

√
12 + (−2)2 + (45− 10t)2 ms , the arclength is

given by
∫ 9
0

√
12 + (−2)2 + (45− 10t)2 dt meters.

This integral is not so easy to evaluate, but it is possible to
compute it using a series of substitutions (u = 45− 10t
followed by u =

√
5 tan(s)).

The result is
∫ 9
0

√
12 + (−2)2 + (45− 10t)2 dt =

1
2

(
9
√

2030 + sinh−1
(
9
√

5
))
≈ 204.598m.



Unit Tangent and Unit Normal Vectors, I

When working with curves in 3-space (especially in physics), it is
often useful to use normalized tangent vectors, rather than just the
velocity and acceleration vectors.

There are three standard “normalized tangent vectors”, which we
will discuss in order:

The unit tangent vector T(t)

The unit normal vector N(t)

The unit binormal vector B(t).



Unit Tangent and Unit Normal Vectors, II

Definition

If r(t) represents the position of a particle, the unit tangent vector

T(t) =
v(t)

||v(t)||
measures the direction in which the particle is

moving.

By definition, the unit tangent vector satisfies ||T(t)|| = 1,
and T(t) is in the same direction as r′(t).

Thus T(t) is a unit vector, in the same direction as the
velocity (or “tangent”) vector.



Unit Tangent and Unit Normal Vectors, III

Definition

If r(t) represents the position of a particle, the unit normal vector

N(t) =
T′(t)

||T′(t)||
, orthogonal to the unit tangent vector, measures

roughly the direction that forces are pulling the particle.

By the definition, the unit normal vector satisfies ||N(t)|| = 1,
as long as T′(t) 6= 0.

It can be shown that the unit normal vector N(t) is
orthogonal to T(t).

The idea is to take the derivative of the equation since
T(t) · T(t) = 1: using properties of the dot product yields the
result T(t) · T′(t) = 0, and then dividing by ||T′(t)|| shows
that T(t) ·N(t) = 0.



Unit Tangent and Unit Normal Vectors, IV

The vectors T(t) and N(t) span the particle’s plane of motion.
The third coordinate direction is perpendicular to those two:

Definition

If r(t) represents the position of a particle, the

unit binormal vector B(t) = T(t)×N(t) =
v(t)× a(t)

||v(t)× a(t)||
,

orthogonal to the tangent and normal vectors, gives the direction
perpendicular to the particle’s plane of motion.

By its definition via the cross product, the binormal vector is
orthogonal to both the (unit) normal and (unit) tangent
vectors, and since those vectors have length 1, so does B.

Thus, we see that the unit tangent, unit normal, and unit
binormal vectors are all orthogonal to each other.



Unit Tangent and Unit Normal Vectors, V

Example: Find the unit tangent and normal vectors for the curve
r(t) = 〈 cos(2t), sin(2t)〉.

We have v(t) = 〈−2 sin(2t), 2 cos(2t)〉, and so ||v(t)|| =√
[−2 sin(2t)]2 + [2 cos(2t)]2 =

√
4 sin2(2t) + 4 cos2(2t) = 2.

Thus, T(t) = 〈− sin(2t), cos(2t)〉.
Then T′(t) = 〈−2 cos(2t),−2 sin(2t)〉, and like above we can
find ||T′(t)|| =

√
[−2 cos(2t)]2 + [−2 sin(2t)]2 =√

4 cos2(2t) + 4 sin2(2t) = 2.

Therefore, N(t) = 〈− cos(2t),− sin(2t)〉.
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Unit Tangent and Unit Normal Vectors, VI

Here is a plot of the tangent and normal vectors in the previous
example:



Unit Tangent and Unit Normal Vectors, VII

Here is a plot of the tangent and normal vectors for
r(t) = 〈t2 − 1, t3 − t〉:



Unit Tangent and Unit Normal Vectors, VIII

Example: For the helix r(t) = 〈sin(3t), cos(3t), 4t〉, find T, N, B.

We have v(t) = 〈3 cos(3t), −3 sin(3t), 4〉, so that

||v|| =
√

9 cos2(3t) + 9 sin2(3t) + 16 = 5.

Thus, T =
〈
3 cos(3t)

5 ,−3 sin(3t)
5 , 45

〉
.

Next, dT
dt =

〈
−9 sin(3t)

5 ,−9 cos(3t)
5 , 0

〉
so that

∣∣∣∣dT
dt

∣∣∣∣ = 9
5 .

Then N = 〈− sin(3t), − cos(3t), 0〉.

Finally, B = T×N =

∣∣∣∣∣∣
i j k

3 cos(3t)
5 −3 sin(3t)

5
4
5

− sin(3t) − cos(3t) 0

∣∣∣∣∣∣
=
〈
4 cos(3t)

5 ,−4 sin(3t)
5 ,−3

5

〉
.



Unit Tangent and Unit Normal Vectors, VIII

Example: For the helix r(t) = 〈sin(3t), cos(3t), 4t〉, find T, N, B.

We have v(t) = 〈3 cos(3t), −3 sin(3t), 4〉, so that

||v|| =
√

9 cos2(3t) + 9 sin2(3t) + 16 = 5.

Thus, T =
〈
3 cos(3t)

5 ,−3 sin(3t)
5 , 45

〉
.

Next, dT
dt =

〈
−9 sin(3t)

5 ,−9 cos(3t)
5 , 0

〉
so that

∣∣∣∣dT
dt

∣∣∣∣ = 9
5 .

Then N = 〈− sin(3t), − cos(3t), 0〉.

Finally, B = T×N =

∣∣∣∣∣∣
i j k

3 cos(3t)
5 −3 sin(3t)

5
4
5

− sin(3t) − cos(3t) 0

∣∣∣∣∣∣
=
〈
4 cos(3t)

5 ,−4 sin(3t)
5 ,−3

5

〉
.



Unit Tangent and Unit Normal Vectors, VIII

Example: For the helix r(t) = 〈sin(3t), cos(3t), 4t〉, find T, N, B.

We have v(t) = 〈3 cos(3t), −3 sin(3t), 4〉, so that

||v|| =
√

9 cos2(3t) + 9 sin2(3t) + 16 = 5.

Thus, T =
〈
3 cos(3t)

5 ,−3 sin(3t)
5 , 45

〉
.

Next, dT
dt =

〈
−9 sin(3t)

5 ,−9 cos(3t)
5 , 0

〉
so that

∣∣∣∣dT
dt

∣∣∣∣ = 9
5 .

Then N = 〈− sin(3t), − cos(3t), 0〉.

Finally, B = T×N =

∣∣∣∣∣∣
i j k

3 cos(3t)
5 −3 sin(3t)

5
4
5

− sin(3t) − cos(3t) 0

∣∣∣∣∣∣
=
〈
4 cos(3t)

5 ,−4 sin(3t)
5 ,−3

5

〉
.



Unit Tangent and Unit Normal Vectors, VIII

Example: For the helix r(t) = 〈sin(3t), cos(3t), 4t〉, find T, N, B.

We have v(t) = 〈3 cos(3t), −3 sin(3t), 4〉, so that

||v|| =
√

9 cos2(3t) + 9 sin2(3t) + 16 = 5.

Thus, T =
〈
3 cos(3t)

5 ,−3 sin(3t)
5 , 45

〉
.

Next, dT
dt =

〈
−9 sin(3t)

5 ,−9 cos(3t)
5 , 0

〉
so that

∣∣∣∣dT
dt

∣∣∣∣ = 9
5 .

Then N = 〈− sin(3t), − cos(3t), 0〉.

Finally, B = T×N =

∣∣∣∣∣∣
i j k

3 cos(3t)
5 −3 sin(3t)

5
4
5

− sin(3t) − cos(3t) 0

∣∣∣∣∣∣
=
〈
4 cos(3t)

5 ,−4 sin(3t)
5 ,−3

5

〉
.



Unit Tangent and Unit Normal Vectors, IX

Here is a plot of T, N, B for the
helix example.

As the particle moves along the
curve, the T, N, B vectors will
travel along with the particle,
giving a “local coordinate
system” that behaves similarly
to the unit vectors i, j, k.



Other Quantities, I [FOR FUN ONLY]

There are a few other vector and scalar quantities that are
occasionally useful when working with curves in 3-space in physical
applications.

We will not make use of these in our course, but they show up in
more advanced geometry, and are also very useful when doing
astrophysical calculations (they are often used to give derivations
of Kepler’s laws for planetary motion).



Other Quantities, II [FOR FUN ONLY]

Definition

If r(t) represents the position of a particle, the curvature

κ(t) =
||T′(t)||
||v(t)||

=
||v(t)× a(t)||
||v(t)||3

measures how much the path of

the particle is curving.

Example: Find the curvature of the circle r(t) = 〈r cos t, r sin t, 0〉.
We have v(t) = 〈−r sin t, r cos t, 0〉 so ||v(t)|| = r and thus
T(t) = 〈− sin t, cos t, 0〉.
We then have T′(t) = 〈− cos t, − sin t, 0〉, so ||T′(t)|| = 1,
and therefore κ(t) = 1/r .

More generally, for any circle of radius r , the curvature is 1/r .

Curvature is always nonnegative. A small curvature indicates that
the path is close to a line segment, while a large curvature means
the path is turning sharply.



Other Quantities, III [FOR FUN ONLY]

The acceleration can be decomposed into a component in the
direction of the unit tangent vector T and a component in the
direction of the unit normal vector N:

Definition

The tangential and normal components of acceleration are
aT = d

dt [||v||] and aN = κ ||v||2, and they give the decomposition
a = aTT + aNN.

Example: For r(t) = 〈sin(3t), cos(3t), 4t〉, find κ, aT , and aN .

We previously found ||v|| = 5, so aT = d
dt [5] = 0.

We also calculated T = 〈3 cos(3t)5 ,−3 sin(3t)
5 , 45〉 and

N = 〈− sin(3t), − cos(3t), 0〉.
Then κ = ||T′(t)||

||v(t)|| = 9/5
5 = 9

25 , so aN = κ||v||2 = 9.

Indeed, a(t) = 〈−9 sin(3t),−9 cos(3t), 0〉 = 0T + 9N.



Other Quantities, IV [FOR FUN ONLY]

The final quantity we will mention is called the torsion:

Definition

If r(t) represents a particle’s position, the torsion

τ = −B′(t) ·N(t)

||v(t)||
=

1

||v × a||2

∣∣∣∣∣∣
x ′ y ′ z ′

x ′′ y ′′ z ′′

x ′′′ y ′′′ z ′′′

∣∣∣∣∣∣
measures how sharply the path of the particle is twisting out of its
plane of motion.

The torsion is the least intuitive of all of the quantities we have
listed. (Note that it is the only one to involve the third derivatives
of the coordinate functions.)



Other Quantities, V [FOR FUN ONLY]

To close out our discussion in this chapter, we remark that there
are many relationships between the various quantities
T, N, B, κ, τ, aT , aN we have described.

Three of these are the so-called “Frenet-Serret formulas”, which
describe how to compute the derivatives of the vectors T, N, and
B with respect to arclength:

dT

ds
= κN.

dN

ds
= τB− κT.

dB

ds
= −τN.

Our primary emphasis in this course will be on understanding the
vectors T and N. (We won’t see them again for a while, but I
promise: they will return at the end of the semester!)



Summary

We discussed how to solve various problems involving distances,
lines, and planes.

We discussed vector-valued functions and curves in 3-space.

Next lecture: Limits and partial derivatives.


