
Math 2321 (Multivariable Calculus)

Lecture #4 of 38 ∼ January 27, 2021

Lines, Planes, and Vector-Valued Functions

Distances, Lines, and Planes

Vector-Valued Functions

Parametric Curves in 3-Space

This material represents §1.2.4-1.3.1 from the course notes.



Recap, I

Some reminders:

Definition

The dot product of two vectors v1 = 〈a1, . . . , an〉 and
v2 = 〈b1, . . . , bn〉 is defined to be the scalar
v1 · v2 = a1b1 + a2b2 + · · ·+ anbn.

Definition

The cross product of v1 =〈x1, y1, z1〉 and v2 = 〈x2, y2, z2〉 is
defined to be the vector

v1×v2 =det
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where i, j, k are the standard unit vectors.



Recap, II

Proposition (Parametrization of a Line)

Given distinct points P1 = 〈x1, y1, z1〉 and P2 = 〈x2, y2, z2〉, the
points 〈x , y , z〉 on the line l through P1 and P2 are given
parametrically by 〈x , y , z〉 = P1 + t v, as t varies through the real
numbers and v = P2 − P1 = 〈x2 − x1, y2 − y1, z2 − z1〉. The
equation can be written explicitly as
〈x , y , z〉 = 〈x1 + t(x2 − x1), y1 + t(y2 − y1), z1 + t(z2 − z1)〉.

Proposition (Planes and Normal Vectors)

The plane defined by ax + by + cz = d is orthogonal to its
normal vector n = 〈a, b, c〉. In other words, every line lying in this
plane is orthogonal to 〈a, b, c〉. Conversely, given a nonzero vector
n = 〈a, b, c〉, there is a unique plane normal to that vector passing
through a given point (x0, y0, z0), and its equation is
a(x − x0) + b(y − y0) + c(z − z0) = 0.



More Lines and Planes, I

Example: Parametrize the line of intersection of x − y + 2z = 3
and 2x + y − z = 0.

The normal vector to each plane will be orthogonal to the line
of intersection (since the line lies in both planes).

Therefore, we can get the direction vector of the line by
taking the cross product of the two planes’ normal vectors.

We have n1 = 〈1,−1, 2〉 and n2 = 〈2, 1,−1〉. Then the cross
product is v = n1 × n2 = 〈−1, 5, 3〉.
Sanity check: v · n1 = −1(1) + 5(−1) + 3(2) = 0 and
v · n2 = −1(2) + 5(1) + 3(−1) = 0.
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More Lines and Planes, II

Example: Parametrize the line of intersection of x − y + 2z = 3
and 2x + y − z = 0.

We have the direction vector v = 〈−1, 5, 3〉.
Now we need to find a point in both planes (since we need a
point on the line).

There are many possible choices, so what we can do is try
looking for one with x = 0: this requires −y + 2z = 3 and
y − z = 0.

Solving these two equations together yields y = z = 3, so
(0, 3, 3) is in both planes and thus on the line l .

Applying the line parametrization formula gives
l : 〈x , y , z〉 = 〈−t, 5t + 3, 3t + 3〉.



More Lines and Planes, II
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More Lines and Planes, III

Another common problem is to compute the distance from a point
to a plane. It turns out there is a reasonably nice formula for this
distance:

Proposition (Point-to-Plane Distance)

The distance from the point P = (x0, y0, z0) to the plane

ax + by + cz = d is equal to
|ax0 + by0 + cz0 − d |√

a2 + b2 + c2
.

The shortest vector connecting P to the plane will be in the same
direction as the normal vector to the plane.

In principle, we could use this information to parametrize the
line joining P to the plane, find the intersection of the line
and plane, and finally compute the distance we seek.

However, there is a less messy way using vector projections.



More Lines and Planes, IV

Proof:

Let Q be any point on the plane ax + by + cz = d and let n
be the normal vector to the plane.

Then the vector v connecting P to the plane is given by the
vector projection of w = Q − P onto the normal n.

Explicitly, v = Projn(w) =
(n ·w
n · n

)
n. Then the length of v is

||v|| =
|n ·w|
||n||2

||n|| =
|n ·w|
||n||

.

From our earlier results, we can take n = 〈a, b, c〉: then
n ·w = n · P− n ·Q = (ax0 + by0 + cz0)− (d), and
||n|| =

√
a2 + b2 + c2. (The fact that n ·Q = d is just a

restatement of the fact that Q lies in the plane
ax + by + cz = d .)

Then ||v|| =
|n ·w|
||n||

=
|ax0 + by0 + cz0 − d |√

a2 + b2 + c2
, as claimed.



More Lines and Planes, V

Example: Find the distance from the point P = (1, 2, 4) to the
plane z = 0.

The plane can be written as 0x + 0y + 1z = 0.

Then the formula gives
|0 · 1 + 0 · 2 + 1 · 4− 0|√

02 + 02 + 12
=
|4|
1

= 4.

This result should agree with your intuition: the plane z = 0
is the horizontal xy -plane, and so the distance of any point to
this plane is simply the absolute value of its z-coordinate.

Example: Find the distance from the point P = (1, 2, 4) to the
plane x + 2y − 2z = 3.

The formula gives
|1 · 1 + 2 · 2− 2 · 4− 3|√

12 + 22 + (−2)2
=
|−6|√

9
= 2.
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More Lines and Planes, VI

Example: Find the distance between the planes 2x + y + 2z = 1
and 2x + y + 2z = 7.

These two planes are parallel since they have the same normal
vector 〈2, 1, 2〉.
To compute the distance between them, we can pick any point
on one plane and compute its distance to the other plane.

Since the point (0, 1, 0) lies on 2x + y + 2z = 1, the formula

gives the distance as
|2 · 0 + 1 · 1 + 2 · 0− 7|√

22 + 12 + 22
=
|−6|√

9
= 2 .

By the same argument, the distance between the planes
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Vector-Valued Functions, I

Our goal now is to extend our results about lines and planes to
discuss more general curves in 3-space.

We introduce the notion of a vector-valued function and of its
graph, which will be a curve or surface in space.

Then we analyze the geometry of curves in 3-space from a
physical perspective.

Our motivation here is to develop some ideas (namely, the
relationship between derivatives and tangent vectors, and also
of the unit tangent and unit normal vectors to a curve) that
will be important later in the semester.



Vector-Valued Functions, II

The first task is to introduce functions involving vectors:

Definition

A vector-valued function of one variable r(t) is a function whose
output is a vector, each of whose components is a function of the
parameter t.

Examples:

r1(t) =
〈
t2, 2t

〉
.

r2(t) = 〈t, t, t〉.

r3(t) =
〈

cos(t2), e2t , tan−1(
√

t2 + 1)
〉

.

We have already encountered a few vector-valued functions: the
parametrization of a line, such as r(t) = 〈2 + 3t, 1− t, 1 + 2t〉 is
an example of a vector-valued function.



Vector-Valued Functions, III

We can add and scalar-multiply vector-valued functions in the
same manner as normal vectors.

Example: Suppose that r1(t) =
〈
et , cos(t), t2 − 1

〉
and

r2(t) =
〈
t, 0,−t2

〉
.

Then r1(t) + r2(t) = 〈et + t, cos(t),−1〉.
Also, 2r2(t) =

〈
2t, 0,−2t2

〉
.



Vector-Valued Functions, IV

For the moment, we will primarily be interested in vector functions
of the form r(t) = 〈x(t), y(t)〉 and r(t) = 〈x(t), y(t), z(t)〉, which
have a single input parameter t and output a vector with 2 or 3
coordinates.

As we vary t, these functions will trace out parametric curves
in 2 or 3-dimensional space (respectively).

Later, we will also be interested in vector functions of the form
r(s, t) = 〈x(s, t), y(s, t), z(s, t)〉, for two input parameters s, t.

These functions, in general, will describe surfaces in
3-dimensional space as we vary s and t.

However, we need to develop more tools to be able to
describe and analyze parametric surfaces, so we will focus on
the one-variable case for now, and return to discuss surfaces
in November.



Vector-Valued Functions, V

Example: The curve given by r(t) = 〈cos(t), sin(t)〉 traces around
the unit circle as t varies.

This curve traces counterclockwise at constant speed, and
completes one revolution after a time interval of 2π.



Vector-Valued Functions, VI

If we graph a vector-valued function r(t) = 〈x(t), y(t), z(t)〉 as t
varies, we will obtain a curve in 3-space.

A parametric curve in 3-space is just the set of points
(x(t), y(t), z(t)) for some functions x(t), y(t), and z(t).

Remember that we are thinking of functions giving parametric
curves interchangeably with vector functions: instead of
getting a point (x(t), y(t), z(t)) as output from a function,
we can equally well think of getting the vector output
〈x(t), y(t), z(t)〉.



Vector-Valued Functions, VII

Example: The curve given by r(t) = 〈t, t, t〉 is a line passing
through the origin with direction vector 〈1, 1, 1〉.



Vector-Valued Functions, VIII

Example: The curve given by
r(t) = (sin(t), cos(t), t) is a
helix wrapping around the
cylinder x2 + y2 = 1.

As t increases, x and y trace
around the unit circle at
constant speed, while z
increases at constant speed.



Vector-Valued Functions, IX

Example: The curve given by
r(t) = 〈cos(t), sin(t), cos(t)〉 is
an ellipse.

We can see that this curve is an
ellipse by observing that it is the
intersection of the plane z = x
with the cylinder x2 + y2 = 1.



Vector-Valued Functions, X

Finding a parametrization of a particular curve with a given
description can be difficult, and there is no general recipe.

However, in some cases, we can find parametrizations of
particular curves that are intersections of surfaces.

One idea that can be effective is to set one variable equal to
the parameter t, and then use the surface equations to solve
for the other variables in terms of t.

In some cases it can be better to use a slightly different choice
for one variable, such as sin(t), cos(t), or et .



Vector-Valued Functions, XI

Example: Find a parametrization for the curve of intersection
between the surfaces z = x2 + y2 and y = x2.

In this case, if we simply try taking x = t, then the second
equation requires y = t2.

Once we know x = t and y = t2, the first equation then tells
us that z = t2 + t4, so we get the parametrization
r(t) =

〈
t, t2, t2 + t4

〉
.

Each point of this form lies on both of the surfaces.
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Vector-Valued Functions, XII

Example: Find a parametrization for the curve of intersection
between the surfaces x2 + z2 = 4 and x + y + z = 3.

The first equation involves only x and z .

From what we know about circles, we can describe all of the
points (x , z) satisfying the first equation by taking
x = 2 cos(t), z = 2 sin(t).

Then we can solve for y by plugging these expressions into the
second equation: this yields
y = 3− x − z = 3− 2 cos(t)− 2 sin(t).

Putting this together gives the parametrization
r(t) = 〈2 cos(t), 3− 2 cos(t)− 2 sin(t), 2 sin(t)〉.
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Derivatives of Vector-Valued Functions, I

The next natural question to ask is: can we take derivatives of
vector-valued functions? The answer is, of course, yes!

Definition

The derivative of the vector function r(t) is given by

r′(t) = lim
h→0

r(t + h)− r(t)

h
, provided the limit exists.

Note the extreme similarity of this definition with the
definition of the derivative of a (scalar) function of one

variable f (t), which reads f ′(t) = lim
h→0

f (t + h)− f (t)

h
.

For r(t) = 〈x(t), y(t), z(t)〉, then by applying the definition of
the derivative, we see that r′(t) = 〈x ′(t), y ′(t), z ′(t)〉.
Thus, quite sensibly, taking the derivative of a vector function
is the same thing as differentiating each component.



Derivatives of Vector-Valued Functions, II

Example: For r(t) =
〈
et , cos(3t), t4 − t3

〉
, find the first derivative

r′(t) and the second derivative r′′(t).

We just take the derivative of each component function to get
r′(t), and then do it again to get r′′(t).

So, we have r′(t) =
〈
et ,−3 sin(3t), 4t3 − 3t2

〉
.

Then also r′′(t) =
〈
et ,−9 cos(3t), 12t2 − 6t

〉
.



Derivatives of Vector-Valued Functions, II
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Derivatives of Vector-Valued Functions, III

The derivative r′(t) of a vector-valued function r(t) yields the
tangent vector to the curve.

To see this, imagine a particle traveling along the curve: at
time t, its x-coordinate is x(t) and its y -coordinate y(t) at
time t.

Then r′(t) = 〈x ′(t), y ′(t)〉 represents the instantaneous
velocity vector of the particle, simply because it is the rate of
change of the position vector.

But it is not hard to see that if we actually draw secant
vectors to the curve, they will approach the tangent vector to
the curve.

This is much easier to see with a picture.



Derivatives of Vector-Valued Functions, IV

Example:
For r(t)=〈cos(t), sin(t)〉,
r′(t)=〈− sin(t), cos(t)〉.

A portion of the curve r(t) is
plotted, along with the tangent
vector r′(t) at the endpoint of
the plotted portion of the curve.



Derivatives of Vector-Valued Functions, V

Example:
For r(t)=〈cos(3t), sin(2t)〉,

r′(t)=〈−3 sin(3t), 2 cos(2t)〉.

A portion of the curve r(t) is
plotted, along with the tangent
vector r′(t) at the endpoint of
the plotted portion of the curve.



Derivatives of Vector-Valued Functions, VI

We can use the fact that r′ gives a tangent vector to find the
parametrization of the tangent line to a curve.

Remember that to parametrize any line, we require a point
and a direction vector.

For the tangent line, the point is the point of tangency, and
the direction vector is the derivative vector.



Derivatives of Vector-Valued Functions, VII

Example: Find a parametrization for the tangent line to the curve
r(t) =

〈
t3, t4, t5

〉
at t = 1.

Note r′(t) =
〈
3t2, 4t3, 5t4

〉
.

At t = 1, the point of tangency is r(1) = 〈1, 1, 1〉, while the
direction vector is r′(1) = 〈3, 4, 5〉.
Therefore, the tangent line has parametrization
〈x , y , z〉 = 〈1, 1, 1〉+ s 〈3, 4, 5〉 = 〈1 + 3s, 1 + 4s, 1 + 5s〉.
We used the parameter s instead because t was already used
to describe the curve.



Derivatives of Vector-Valued Functions, VII

Example: Find a parametrization for the tangent line to the curve
r(t) =

〈
t3, t4, t5

〉
at t = 1.

Note r′(t) =
〈
3t2, 4t3, 5t4

〉
.

At t = 1, the point of tangency is r(1) = 〈1, 1, 1〉, while the
direction vector is r′(1) = 〈3, 4, 5〉.
Therefore, the tangent line has parametrization
〈x , y , z〉 = 〈1, 1, 1〉+ s 〈3, 4, 5〉 = 〈1 + 3s, 1 + 4s, 1 + 5s〉.
We used the parameter s instead because t was already used
to describe the curve.



Derivatives of Vector-Valued Functions, VIII

Example: Find a parametrization for the tangent line to the curve
r(t) =

〈
t, e2t

〉
at t = 2.

Note r′(t) =
〈
1, 2e2t

〉
.

At t = 2, the point of tangency is r(2) =
〈
2, e4

〉
, while the

direction vector is r′(2) =
〈
1, 2e4

〉
.

Therefore, the tangent line has parametrization
〈x , y〉 =

〈
2, e4

〉
+ s

〈
1, 2e4

〉
=
〈
2 + s, e4 + 2se4

〉
.

Note that this is really just asking for a parametrization of the
tangent line to the graph of y = e2x . (You can check, if you
like, that this tangent line is the same as the usual one you’d
find by computing y ′.)



Derivatives of Vector-Valued Functions, VIII
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Derivatives of Vector-Valued Functions, VIII
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Derivatives of Vector-Valued Functions, IX

As a last remark, we will observe that derivatives of vector
functions satisfy rules strongly reminiscent of the product rule with
regard to the dot and cross products:

Specifically, we have
d

dt
[r1 · r2] = r1 · (r′2) + (r′1) · r2 and

d

dt
[r1 × r2] = r1 × (r′2) + (r′1)× r2.

These properties can be verified by expanding out the dot and
cross products of [r1(t + h)− r1(t)] with [r2(t + h)− r2(t)],
applying the limit definition of derivative, and simplifying.



Summary

We discussed how to solve various problems involving distances,
lines, and planes.

We discussed vector-valued functions and curves in 3-space.

Next lecture: Curves and motion in 3-space.


