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Cross Products, Lines and Planes

Cross Products

Lines and Planes (part 1)

This material represents §1.2.3-1.2.4 from the course notes.



Reminders

Some reminders from last week:

Definition

The dot product of two vectors v1 = 〈a1, . . . , an〉 and
v2 = 〈b1, . . . , bn〉 is defined to be the scalar
v1 · v2 = a1b1 + a2b2 + · · ·+ anbn.

Definition

We define the norm of the vector v = 〈a1, . . . , an〉 as
||v|| =

√
(a1)2 + · · ·+ (an)2. Note that ||v||2 = v · v.

Theorem (Dot Product)

For vectors v1 and v2 forming an angle θ between them, we have
v1 · v2 = ||v1|| ||v2|| cos(θ).



Cross Products, I

In addition to the dot product, we have another type of product
defined for vectors in 3-space, called the cross product:

Definition

The cross product of v1 = 〈x1, y1, z1〉 and v2 = 〈x2, y2, z2〉 is
defined to be the vector
v1 × v2 = 〈y1z2 − y2z1, z1x2 − z2x1, x1y2 − x2y2〉.

Important Note: The cross product is only defined for vectors
with 3 components, and outputs another vector with 3
components. In contrast, the dot product is defined for
vectors of any length, and outputs a scalar.



Cross Products, II

A way to remember the cross product formula is as a determinant:

v1×v2 = det

∣∣∣∣∣∣
i j k

x1 y1 z1
x2 y2 z2

∣∣∣∣∣∣ =

∣∣∣∣ y1 z1
y2 z2

∣∣∣∣ i−∣∣∣∣ x1 z1
x2 z2

∣∣∣∣ j+∣∣∣∣ x1 y1
x2 y2

∣∣∣∣ k
where i, j, k are the standard unit vectors: i = 〈1, 0, 0〉,
j = 〈0, 1, 0〉, and k = 〈0, 0, 1〉.

(Note 2× 2 determinants are evaluated as

∣∣∣∣ a b
c d

∣∣∣∣ = ad − bc.)

It may seem a little unusual to have vectors inside a determinant,
but it works out to the correct answer.

Warning: Don’t forget the minus sign on the middle term in the
determinant formula above!



Cross Products, III

The fundamental property of the cross product v1 × v2 is that it is
orthogonal both to v1 and to v2.

To verify this, we can just evaluate the dot products
v1 · (v1 × v2) and v2 · (v1 × v2) and check they are both zero.

For example, we have
v1·(v1×v2) = x1(y1z2−y2z1)+y1(z1x2−z2x1)+z1(x1y2−x2y2),
which some algebra will confirm is equal to zero. (Three
terms each appear once with a plus and once with a minus.)



Cross Products, IV

Example: If v = 〈4, 2, 1〉 and w = 〈−2, 3, 1〉, find v ×w and verify
that v ×w is orthogonal to both v and w.

We have

v ×w =

∣∣∣∣∣∣
i j k
4 2 1
−2 3 1

∣∣∣∣∣∣
=

∣∣∣∣ 2 1
3 1

∣∣∣∣ i− ∣∣∣∣ 4 1
−2 1

∣∣∣∣ j +

∣∣∣∣ 4 2
−2 3

∣∣∣∣ k
= [2 · 1− 3 · 1]i− [4 · 1− (−2) · 1]j + [4 · 3− (−2) · 2]k

= −1i− 6j + 16k = 〈−1,−6, 16〉 .

To check the orthogonality, we have
v · (v ×w) = 〈4, 2, 1〉 · 〈−1,−6, 16〉 = −4− 12 + 16 = 0, and
also w · (v×w) = 〈−2, 3, 1〉 · 〈−1,−6, 16〉 = 2− 18 + 16 = 0.
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Cross Products, V

Example: If v = 〈1, 1, 3〉 and w = 〈2,−1, 1〉, find

1. v ×w. 2. w × v. 3. v × v. 4. w ×w.

For the first two, we have

v ×w =

∣∣∣∣∣∣
i j k
1 1 3
2 −1 1

∣∣∣∣∣∣ =

∣∣∣∣ 1 3
−1 1

∣∣∣∣ i− ∣∣∣∣ 1 3
2 1

∣∣∣∣ j +

∣∣∣∣ 1 1
2 −1

∣∣∣∣ k
= (1− (−3))i− (1− 6)j + (−1− 2)k = 〈4, 5,−3〉 .

w × v =

∣∣∣∣∣∣
i j k
2 −1 1
1 1 3

∣∣∣∣∣∣ =

∣∣∣∣ −1 1
1 3

∣∣∣∣ i− ∣∣∣∣ 2 1
1 3

∣∣∣∣ j +

∣∣∣∣ 2 −1
1 1

∣∣∣∣ k
= (−3− 1)i− (6− 1)j + (2− (−1))k = 〈−4,−5, 3〉 .

Notice that v ×w and w × v are negatives of each other.
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Cross Products, VI
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Cross Products, VI
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Cross Products, VII

Here are a few algebraic properties of the cross product:

Proposition (Properties of Cross Products)

For any vectors u, v, v1, v2,w, and any scalar r , the following hold:

1. The cross product of two vectors is orthogonal to both
vectors: v · (v ×w) = 0 and w · (v ×w) = 0.

2. The cross product distributes over addition:
(v1 + v2)×w = (v1 ×w) + (v2 ×w).

3. The cross product distributes through scaling:
(rv)×w = r(v ×w) = v × (rw).

4. The cross product is anticommutative: v ×w = −(w × v). In
particular, v × v = 0 for any v.

Proofs: Each of these properties is a simple algebraic calculation
from the definition of the cross product.



Cross Products, VIII

Like with the dot product, there is a relationship involving the
cross product and the angle between two vectors:

Theorem (Cross Product Theorem)

If θ is the angle between v1 and v2, then
||v1 × v2|| = ||v1|| ||v2|| sin(θ) = A, where A is the area of the
parallelogram formed by v1 and v2.



Cross Products, IX

Proof:

We just need to show that
||v1 × v2||2 + (v1 · v2)2 = ||v1||2 ||v2||2, because we know that
v1 · v2 = ||v1|| ||v2|| cos(θ) from the Dot Product Theorem.

To check this, we simply write it out, which reduces to
showing that (y1z2 − y2z1)2 + (z1x2 − z2x1)2 +
(x1y2 − x2y2)2 + (x1x2 + y1y2 + z1z2)2 is equal to[
(x1)2 + (y1)2 + (z1)2

]
·
[
(x2)2 + (y2)2 + (z2)2

]
.

Expanding both sides will show that they are equal.

Now use the Pythagorean identity sin2(θ) + cos2(θ) = 1 and
the fact that the norm of the cross product is nonnegative to
deduce that ||v1 × v2|| = ||v1|| ||v2|| sin(θ) as claimed.

For the statement about the area, it is a standard fact of
geometry that the area of the triangle with sides v1 and v2 is
1
2 ||v1|| ||v2|| sin(θ). The parallelogram’s area is twice this.



Cross Products, X

Example: Find the area of the parallelogram formed by the vectors
v = 〈1, 4, 2〉 and w = 〈0, 5, 6〉.

By the Cross Product Theorem, the area of the parallelogram
is A = ||v ×w||.

We compute v ×w =

∣∣∣∣∣∣
i j k
1 4 2
0 5 6

∣∣∣∣∣∣ =∣∣∣∣ 4 2
5 6

∣∣∣∣ i− ∣∣∣∣ 1 2
0 6

∣∣∣∣ j +

∣∣∣∣ 1 4
0 5

∣∣∣∣ k = 〈14,−6, 5〉.

This means the area of the parallelogram is
||v ×w|| =

√
142 + (−6)2 + 52 =

√
257 ≈ 16.031.
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Cross Products, XI

Example: Find the area of the triangle whose vertices are the
points A(1,−1, 2), B(2,−3, 1), and C (2, 2, 2).

By the Cross Product Theorem, the area of the triangle is
A = 1

2 ||v ×w||, where v and w are vectors representing two
sides of the triangle.

We take v = B − A = 〈1,−2,−1〉 and w = C − A = 〈1, 3, 0〉.

Then v ×w =

∣∣∣∣∣∣
i j k
1 −2 −1
1 3 0

∣∣∣∣∣∣ =∣∣∣∣ −2 −1
3 0

∣∣∣∣ i− ∣∣∣∣ 1 0
0 1

∣∣∣∣ j +

∣∣∣∣ 1 −2
1 3

∣∣∣∣ k = 〈3,−1, 5〉.

Hence the area of the triangle is
1
2 ||〈3,−1, 5〉|| = 1

2

√
32 + (−1)2 + 52 =

√
35/2 ≈ 2.958.
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Lines in 3-Space, I

Among the many useful applications of vectors is that they can be
used to give simple descriptions of lines and planes in 3-space.

In the 2-dimensional plane, the general equation of a line is
ax + by = d for some constants a, b, d (with a and b not
both zero). The 3-dimensional version of this would be
ax + by + cz = d (with a, b, c not all zero), which will
describe a plane.

To describe lines in 3-space, we instead need to describe them
as parametric curves, in the form x = x(t), y = y(t),
z = z(t) for some functions x(t), y(t), z(t). As t varies, the
set of points (x(t), y(t), z(t)) will form a curve: the goal is
to choose the functions so that the curve is a line.

It should not be surprising that the proper choice is to take
x(t), y(t), z(t) to be linear functions of t.



Lines in 3-Space, II

Proposition (Parametrization of a Line)

Given distinct points P1 = 〈x1, y1, z1〉 and P2 = 〈x2, y2, z2〉, the
points 〈x , y , z〉 on the line l through P1 and P2 are given
parametrically by 〈x , y , z〉 = P1 + t v, as t varies through the real
numbers and v = P2 − P1 = 〈x2 − x1, y2 − y1, z2 − z1〉. The
equation can be written explicitly as
〈x , y , z〉 = 〈x1 + t(x2 − x1), y1 + t(y2 − y1), z1 + t(z2 − z1)〉.

Proof:

There is a unique line between two points, by the axioms of
geometry, so we need only verify that l : 〈x , y , z〉 = P1 + t v is
a line and that it goes through P1 and P2.

The x ,y , and z coordinates are all linear, so l is a line.

Setting t = 0 yields P1, while setting t = 1 yields
P1 + (P2 −P1) = P2. Thus, l passes through both P1 and P2.



Lines in 3-Space, III

Some remarks:

This procedure will yield the parametrization of a line in a
space of any dimension, not just 3-space. Later, we will
sometimes need to use it to parametrize lines in the xy-plane.

We call the vector v = P2 − P1 the direction vector for the
line l : it tells us in which direction the line is pointing. The
term P1 in the sum P1 + t v specifies which particular line we
want, of all possible lines in that direction. The direction
vector for a line is not unique: we could instead use any
nonzero multiple of v and we would get the same line.

We also emphasize here that there are many different possible
parametrizations of a given line (we could use a different starting
point or a different multiple of the direction vector).



Lines in 3-Space, IV

Example: Find a parametrization of the line through the point
(1, 0, 6) with direction vector v = 〈4, 2, 3〉.

The line is given parametrically by
〈x , y , z〉 = 〈1, 0, 6〉+ t 〈4, 2, 3〉 = 〈1 + 4t, 2t, 6 + 3t〉.
More explicitly, we can convert the “vector equation” above
to an explicit system of equations to see that this line is
described by x = 1 + 4t, y = 2t, z = 6 + 3t.

As t ranges through the real numbers, the points (x , y , z) will
range along the desired line.

For example, setting t = 1 yields the point 〈5, 2, 9〉 on the
line, while t = 2 yields a different point 〈9, 4, 12〉.



Lines in 3-Space, IV
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Lines in 3-Space, V

Example: Let ` be the line through (1, 2, 3) and (−1, 2,−1).

1. Find a parametrization of the line `.

2. Find the point on ` having x-coordinate 6.

1. First, we find the direction vector: we get
v = 〈−1, 2,−1〉 − 〈1, 2, 3〉 = 〈−2, 0,−4〉.
Then the line is given parametrically by
〈x , y , z〉 = 〈1, 2, 3〉+ t 〈−2, 0,−4〉 = 〈1− 2t, 2, 3− 4t〉.
More explicitly, we get x = 1− 2t, y = 2, z = 3− 4t.

2. The point with x-coordinate 6 has 1− 2t = 6 so that
t = −5/2. Then setting t = −5/2 gives the full coordinates
as 〈6, 2, 13〉.
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Planes in 3-Space, I

Next, we tackle descriptions of planes.

Proposition (Planes and Normal Vectors)

The plane defined by ax + by + cz = d is orthogonal to its
normal vector n = 〈a, b, c〉. In other words, every line lying in this
plane is orthogonal to 〈a, b, c〉. Conversely, given a nonzero vector
n = 〈a, b, c〉, there is a unique plane normal to that vector passing
through a given point (x0, y0, z0), and its equation is
a(x − x0) + b(y − y0) + c(z − z0) = 0.

The key idea here is that we can transfer back and forth between
the equation ax + by + cz = d of the plane and the normal vector
n = 〈a, b, c〉. This transfer is very easy, because we merely have to
read off the entries of the normal vector from the coefficients of
x , y , z , and vice versa.



Planes in 3-Space, II

Proof:

Suppose l is a line in the plane. All we need to show is that
its direction vector is orthogonal to n.

So suppose the direction vector is v = P2 − P1, where both
points P2 = 〈x2, y2, z2〉 and P1 = 〈x1, y1, z1〉 lie in the plane.

Then P1 · n = ax1 + by1 + cz1 = d since P1 lies in the plane,
and similarly P2 · n = d . But then we have
v · n = (P2 − P1) · n = P2 · n− P1 · n = d − d = 0, so that v
is orthogonal to n as claimed.

For the converse statement, clearly if n = 〈a, b, c〉 then the
equation of the plane must be ax + by + cz = � for some
value of �, by the previous argument.

Plugging the given point into the equation shows
� = ax0 + by0 + cz0, and finally we can rewrite the equation
as a(x − x0) + b(y − y0) + c(z − z0) = 0, as claimed.



Planes in 3-Space, III

Example: Find an equation for each plane:

1. The plane with normal vector 〈2, 1, 4〉 passing through the
point (2, 2, 0).

2. The plane with normal vector 〈0, 1,−1〉 passing through the
point (3,−3, 1).

1. By the proposition, this plane has equation
2(x − 2) + 1(y − 2) + 4(z − 0) = 0, which we can equivalently
write as 2x + y + 4z = 6.

2. By the proposition, this plane has equation
0(x − 3) + 1(y + 3)− 1(z − 1) = 0, which we can equivalently
write as y − z = −4.
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0(x − 3) + 1(y + 3)− 1(z − 1) = 0, which we can equivalently
write as y − z = −4.



Lines and Planes in 3-Space, I

Using these two results we can solve a wide variety of problems
involving lines and planes. The fundamental ideas to remember
when working with lines and planes are as follows:

To specify a line, we need to know its direction vector and a
point it passes through.

To specify a plane, we need to know its normal vector and a
point it passes through.



Lines and Planes in 3-Space, II

Example: Find an equation for the plane containing the vectors
v1 = 〈1, 1, 1〉 and v2 = 〈1, 2, 3〉 and passing through the point
P = (1,−1, 1).

The normal vector to the plane is orthogonal to both v1 and
v2, so we can find it by taking their cross product.

We get n = v1 × v2 =

∣∣∣∣∣∣
i j k
1 1 1
1 2 3

∣∣∣∣∣∣ =∣∣∣∣ 1 1
2 3

∣∣∣∣ i− ∣∣∣∣ 1 1
1 3

∣∣∣∣ j +

∣∣∣∣ 1 1
1 2

∣∣∣∣ k = 〈1,−2, 1〉.

As a sanity check: n · v1 = (1)(1) + (−2)(1) + (1)(1) = 0 and
n · v2 = (1)(1) + (−2)(2) + (1)(3) = 0.

Then the plane equation is 1(x − 1)− 2(y + 1) + 1(z − 1) = 0,
or equivalently, x − 2y + z = 4.
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Lines and Planes in 3-Space, III

Example: Find an equation for the plane passing through the three
points P1 = (3, 0,−1), P2 = (1, 2, 2) and P3 = (−2, 1, 4).

We need the plane’s normal vector n. To find it, we need to
find two vectors lying in the plane, and then take their cross
product to get n.

Two vectors in the plane are v1 = P2 − P1 and v2 = P3 − P1.

We have v1 = P2 − P1 = 〈−2, 2, 3〉 and
v2 = P3 − P1 = 〈−5, 1, 5〉.

Then n = v1 × v2 =

∣∣∣∣ 2 3
1 5

∣∣∣∣ i− ∣∣∣∣ −2 3
−5 5

∣∣∣∣ j +

∣∣∣∣ −2 2
−5 1

∣∣∣∣ k =

〈7,−5, 8〉.
Sanity check: n · v1 = (7)(−5) + (−5)(1) + (8)(5) = 0 and
n · v2 = (7)(−2) + (−5)(2) + (8)(3) = 0.



Lines and Planes in 3-Space, III

Example: Find an equation for the plane passing through the three
points P1 = (3, 0,−1), P2 = (1, 2, 2) and P3 = (−2, 1, 4).

We need the plane’s normal vector n. To find it, we need to
find two vectors lying in the plane, and then take their cross
product to get n.

Two vectors in the plane are v1 = P2 − P1 and v2 = P3 − P1.

We have v1 = P2 − P1 = 〈−2, 2, 3〉 and
v2 = P3 − P1 = 〈−5, 1, 5〉.

Then n = v1 × v2 =

∣∣∣∣ 2 3
1 5

∣∣∣∣ i− ∣∣∣∣ −2 3
−5 5

∣∣∣∣ j +

∣∣∣∣ −2 2
−5 1

∣∣∣∣ k =

〈7,−5, 8〉.
Sanity check: n · v1 = (7)(−5) + (−5)(1) + (8)(5) = 0 and
n · v2 = (7)(−2) + (−5)(2) + (8)(3) = 0.



Lines and Planes in 3-Space, III

Example: Find an equation for the plane passing through the three
points P1 = (3, 0,−1), P2 = (1, 2, 2) and P3 = (−2, 1, 4).

We need the plane’s normal vector n. To find it, we need to
find two vectors lying in the plane, and then take their cross
product to get n.

Two vectors in the plane are v1 = P2 − P1 and v2 = P3 − P1.

We have v1 = P2 − P1 = 〈−2, 2, 3〉 and
v2 = P3 − P1 = 〈−5, 1, 5〉.

Then n = v1 × v2 =

∣∣∣∣ 2 3
1 5

∣∣∣∣ i− ∣∣∣∣ −2 3
−5 5

∣∣∣∣ j +

∣∣∣∣ −2 2
−5 1

∣∣∣∣ k =

〈7,−5, 8〉.
Sanity check: n · v1 = (7)(−5) + (−5)(1) + (8)(5) = 0 and
n · v2 = (7)(−2) + (−5)(2) + (8)(3) = 0.



Lines and Planes in 3-Space, IV

Example: Find an equation for the plane passing through the three
points P1 = (3, 0,−1), P2 = (1, 2, 2) and P3 = (−2, 1, 4).

Now we have n = 〈7,−5, 8〉.
We can use any of the three points to get the plane’s
equation. Using P1 yields the equation
7(x − 3)− 5(y − 0) + 8(z + 1) = 0, or equivalently
7x − 5y + 8z = 13.

For an extra error check, we can verify that all three points do
lie in this plane: we have 7(3)− 5(0) + 8(−1) = 13,
7(1)− 5(2) + 8(2) = 13, and 7(−2)− 5(1) + 8(4) = 13.

Thus, this really is the correct equation.



Lines and Planes in 3-Space, IV

Example: Find an equation for the plane passing through the three
points P1 = (1, 0, 2), P2 = (2, 1, 1) and P3 = (2, 0, 4).

Using the method we just described, we compute
v1 = P2 − P1 = 〈1, 1, 1〉 and v2 = P3 − P1 = 〈1, 0, 2〉.
Then

n = v1×v2 =

∣∣∣∣ 1 1
0 2

∣∣∣∣ i−∣∣∣∣ 1 1
1 2

∣∣∣∣ j+∣∣∣∣ 1 1
1 0

∣∣∣∣ k = 〈2,−1,−1〉.

Then using P1 as our point yields the equation
2(x − 1)− 1(y − 0)− 1(z − 2) = 0, or equivalently
2x − y − z = 0.

It is not hard to see that all three points do satisfy this
equation, so this is the correct equation.
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Summary

We discussed cross products and their properties.

We discussed parametrizations of lines and equations of planes in
3-space.

We discussed how to solve various problems involving lines and
planes.

Next lecture: More lines and planes in 3-space, vector-valued
functions and curves.


