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Vectors and Dot Products

Vectors and Vector Operations

Dot Products

This material represents §1.2.1-1.2.2 from the course notes.



Roadmap

Last time, we discussed 3D coordinate system and the associated
questions of graphing for functions of 2 or 3 variables.

Today, we will introduce a related topic; namely, vectors and vector
operations, which will allow us to develop a slightly different
framework in which to view the geometry of curves and surfaces in
3-space.

We will then use the vector framework (next week) to say more
things about lines, planes, and curves in 3-dimensional space.



Vectors, I

A vector is a quantity which has both a magnitude and a direction.

We view a vector in contrast to a scalar, which carries only a
magnitude.

Some examples of vector quantities are force, velocity,
acceleration, momentum, torque, and electric and magnetic
fields.

In contrast, quantities like time, distance, mass, and
temperature are scalars.



Vectors, II

We denote the n-dimensional vector from the origin to the point
(a1, a2, · · · , an) as v = 〈a1, a2, · · · , an〉, where the ai are scalars.

We use the angle brackets 〈·〉 rather than parentheses (·) so
as to emphasize the difference between a vector and the
coordinates of a point in space. We will, however, view
coordinates of vectors and coordinates of points as essentially
interchangeable.

We also write vectors in boldface (v, not v), so that we can
tell them apart from scalars. When writing by hand, it is hard
to differentiate boldface, so the notation ~v is frequently used.



Vectors, III

We typically think of vectors as directed line segments (“arrows”):

The length of the line segment is the magnitude of the vector, and
the direction the segment is pointing is the direction of the vector.



Vectors, IV

As a warning, we remark that vectors are a little bit different from
directed line segments, because we don’t care where a vector
starts: we only care about the difference between the starting and
ending positions.

Thus, the directed segment whose start is (0, 0) and end is
(1, 1) and the segment starting at (1, 1) and ending at (2, 2)
represent the same vector 〈1, 1〉.
This distinction is rarely necessary in most applications, but it
is a useful thing to keep in mind when visualizing vectors,
since we can view any vector as having any arbitrary starting
point we choose.



Vectors, V

We can add vectors (provided they are of the same dimension!) in
the obvious way, one component at a time:

Definition

If v = 〈a1, · · · , an〉 and w = 〈b1, · · · , bn〉 of the same length, then
their sum is v + w = 〈a1 + b1, · · · , an + bn〉.

This definition is natural, but we can justify this using our
geometric idea of what a vector does:

Specifically, v moves us from the origin to (a1, · · · , an).

Then w adds 〈b1, · · · , bn〉 to the coordinates of our current
position, so it moves us from (a1, · · · , an) to
(a1 + b1, · · · , an + bn).

The net result is that the sum v + w moves us from the origin
to (a1 + b1, · · · , an + bn), so it is 〈a1 + b1, · · · , an + bn〉.



Vectors, VI

Geometrically, we can think of vector addition using a
parallelogram whose pairs of parallel sides are v and w and whose
diagonal is v + w, which also explains that v + w = w + v:



Vectors, VII

We can also ’scale’ a vector by a scalar, one component at a time:

Definition

If r is a scalar and v = 〈a1, . . . , an〉 is a vector, then the scalar
multiple rv is defined as r v = 〈ra1, · · · , ran〉.

Again, we can justify this by our geometric idea of what a vector
does:

If v moves us some amount in a direction, then
1

2
v should

move us half as far in that direction.

Analogously, 2v should move us twice as far in that direction,
while −v should move us exactly as far, but in the opposite
direction.



Vectors, VIII

Example: If v = 〈−1, 2, 2〉 and w = 〈3, 0,−4〉, find the following:

1. 2w.

2. v + w.

3. v − 2w.

1. We have 2w = 〈2 · 3, 2 · 0, 2 · (−4)〉 = 〈6, 0,−8〉.
2. Also, v + w = 〈−1 + 3, 2 + 0, 2 + (−4)〉 = 〈2, 2,−2〉.
3. Finally, v − 2w = 〈−1, 2, 2〉 − 〈6, 0,−8〉 = 〈−7, 2, 10〉.



Vectors, VIII
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Vectors, IX

Arithmetic of vectors satisfies several algebraic properties that
follow from the definition:

1. Addition of vectors is commutative: v + w = w + v.

2. Addition of vectors is associative: u + (v + w) = (u + v) + w.

3. There is a zero vector 0 (namely, the vector with all entries
zero) such that v + 0 = v for every v.

4. Every vector v has an additive inverse −v (namely, the vector
with all entries scaled by −1) such that v + (−v) = 0.

5. Scalar multiplication distributes over addition of vectors
(r(v + w) = rv + rw) and scalars ((r + s)v = rv + sv).

6. Scaling is consistent ((ab)v = a(bv)) and 1 is an identity
(1v = v).

In linear algebra (if you have not already taken it) you will learn
about general vector spaces, which abstract the concept of a
vector from the properties listed here.



Vectors, X

At this point, we will restrict ourselves to talking just about
2-dimensional space and 3-dimensional space.

Our primary reason for this is that most of the immediate
applications of vectors (e.g., to physics) happen in
3-dimensional space.

If you want to learn about higher-dimensional things, take
more advanced math courses such as linear algebra and real
analysis.



Vectors, XI

It will be useful to have a way to denote the “unit coordinate”
vectors of 3-dimensional space.

Definition

The unit coordinate vectors i, j, k are i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, and
k = 〈0, 0, 1〉.

We can rewrite any vector in 2-space or 3-space as a linear
combination of the unit coordinate vectors.

Example: The vector 〈3, 2,−5〉 is equal to 3i + 2j− 5k.

Note: Some authors primarily use ijk-notation when working
with vectors. We will generally use the angle bracket notation,
except in a few cases when there are useful mnemonics that
are easier to remember using ijk-notation. But you will see
such notation in the WeBWorK problems (this is to make sure
you’re comfortable with what you might see elsewhere!)



Lengths, I

We now analyze lengths and angles between vectors.

Definition

We define the norm (also called the length or magnitude) of the
vector v = 〈a1, . . . , an〉 as ||v|| =

√
(a1)2 + · · ·+ (an)2.

This is just an application of the distance formula: the norm
of the vector 〈a1, . . . , an〉 is just the length of the line segment
joining the origin (0, . . . , 0) to the point (a1, . . . , an).

Example: For v = 〈−1, 2, 2〉 and w = 〈3,−4〉, we have
||v|| =

√
(−1)2 + 22 + 22 = 3 and ||w|| =

√
32 + (−4)2 = 5.

If r is a scalar, we can see immediately from the definition
that ||r v|| = |r | ||v||, since we can just factor out a

√
r2 = |r |

from each term under the square root.
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Lengths, II

Starting with any nonzero vector, we can construct a unit vector
(that is, a vector of length 1) in the same direction of v just by
scaling v by 1 over its length.

Definition

If v is a nonzero vector, the vector u =
v

||v||
, called the

normalization of v, is a unit vector in the same direction as v.

Example: Find a unit vector in the same direction of v = 〈−1, 2, 2〉
and of w = 〈3,−4〉.

We compute ||v|| =
√

(−1)2 + 22 + 22 = 3, so a unit vector

in the same direction as v is u1 =
v

||v||
=

〈
−1

3
,

2

3
,

2

3

〉
.

Likewise, we have ||w|| =
√

32 + (−4)2 = 5, so

u2 =

〈
3

5
,−4

5

〉
is a unit vector in the direction of w.
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The Dot Product, I

Another thing we might want to know about two vectors is the
angle θ between them. This (admittedly anemic) question is our
motivation for defining the dot product of two vectors:

Definition

The dot product of two vectors v1 = 〈a1, . . . , an〉 and
v2 = 〈b1, . . . , bn〉 is defined to be the scalar
v1 · v2 = a1b1 + a2b2 + · · ·+ anbn.

Note that the dot product of two vectors is a scalar, NOT a
vector! For this reason, the dot product is sometimes called the
scalar product.



The Dot Product, II

Examples: Find each of the following dot products:

1. 〈1, 2〉 · 〈3, 4〉.
2. 〈−1, 2, 2〉 · 〈3, 0,−4〉.
3. 〈5, 6〉 · 〈−6, 5〉.
4. 〈−1, 2, 2〉 · 〈3, 4〉.

〈1, 2〉 · 〈3, 4〉 is (1)(3) + (2)(4) = 11.

〈−1, 2, 2〉 · 〈3, 0,−4〉 is (−1)(3) + (2)(0) + (2)(−4) = −11.

〈5, 6〉 · 〈−6, 5〉 is (5)(−6) + (6)(5) = 0.

The dot product 〈−1, 2, 2〉 · 〈3, 4〉 does not make sense: the
vectors are not the same length.
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The Dot Product, III

The dot product possesses several numerous properties reminiscent
of standard multiplication.

Proposition (Properties of Dot Products)

For any vectors v, v1, v2,w, and any scalar r , the following
properties hold:

1. The dot product distributes over addition:
(v1 + v2) ·w = (v1 ·w) + (v2 ·w).

2. The dot product distributes through scaling:
(rv) ·w = r(v ·w) = v · (rw).

3. The dot product is commutative: v ·w = w · v.

4. The dot product of a vector with itself is the square of the
norm: v · v = ||v||2. (In particular, v · v ≥ 0 for all vectors v.)

Proofs: Each of these properties is a simple algebraic calculation
from the definition of the dot product.



The Dot Product, IV

There is a nice relation between the dot product and the angle
between two vectors:

Theorem (Dot Product Theorem)

For vectors v1 and v2 forming an angle θ between them, we have
v1 · v2 = ||v1|| ||v2|| cos(θ).

Proof: Apply the Law of Cosines in the triangle formed by v1, v2,
and v2 − v1:



The Dot Product, V

Proof (continued):

We get ||v2 − v1||2 = ||v1||2 + ||v2||2 − 2 ||v1|| ||v2|| cos(θ).

Since ||w||2 = w ·w for any vector v, we can then convert the
statement above to one involving dot products, and then
apply the various properties of dot products:

||v2 − v1||2 = (v2 − v1) · (v2 − v1)

= (v2 · v2)− (v1 · v2)− (v2 · v1) + (v1 · v1)

= ||v2||2 − 2(v1 · v2) + ||v1||2 .

Then, by comparing the expression above to the Law of
Cosines expression and cancelling terms, we are left with
v1 · v2 = ||v1|| ||v2|| cos(θ), as desired.



The Dot Product, VI

Example: Compute the angle between the vectors v =
〈
2, 1,
√

3
〉

and w =
〈
0,
√

3, 1
〉
.

We compute v ·w = (2)(0) + (1)(
√

3) + (
√

3)(1) = 2
√

3, and

||v|| =
√

22 + 12 + (
√

3)2 =
√

8 = 2
√

2 and

||w|| =
√

(
√

3)2 + 02 + 12 = 2.

Then by the Dot Product Theorem, the angle θ between the
vectors satisfies 2

√
3 = 2 · 2

√
2 · cos(θ), meaning that

θ = cos−1
(√

3/8
)
≈ 0.91 radians.
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The Dot Product, VI
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The Dot Product, VII

Example: Compute the angle between the vectors v = 〈2, 2,−1〉
and w = 〈3, 4, 0〉.

We compute v ·w = (2)(3) + (2)(4) + (−1)(0) = 14, and
||v|| =

√
22 + 22 + (−1)2 = 3 and

||w|| =
√

32 + (4)2 + 02 = 5.

Then by the Dot Product Theorem, the angle θ between the
vectors satisfies 14 = 3 · 5 · cos(θ), so

θ = cos−1

(
14

15

)
≈ 0.3672 ≈ 21.04◦.



The Dot Product, VII
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The Dot Product, VIII

Using the Dot Product Theorem, we can see that the sign and
magnitude of the dot product is (roughly) measuring whether the
vectors are pointing in the same direction:

If v1 and v2 are nonzero, both ||v1|| and ||v2|| are positive.

Thus, if we examine the Dot Product Theorem
v1 · v2 = ||v1|| ||v2|| cos(θ), the value
v1 · v2 = ||v1|| ||v2|| cos(θ) will have the same sign as cos(θ).

If 0 ≤ θ < π/2, the dot product v1 · v2 will be positive.
Furthermore, the smaller θ is, the larger the value of v1 ·v2 will
be. Thus, a large positive value for the dot product indicates
that the vectors are pointing in roughly the same direction.

Inversely, if π/2 < θ ≤ π, the dot product v1 · v2 will be
negative, and the larger θ is, the larger negative v1 · v2 will be.
Thus, a large negative value for the dot product indicates that
the vectors are pointing in roughly opposite directions.
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The Dot Product, IX

We have a special name for the case where the angle between two
vectors is π/2:

Definition

We say two vectors are orthogonal if their dot product is zero.

From the Dot Product Theorem, since cos (π/2) = 0, we see
that two nonzero vectors are orthogonal if the angle between
them is π/2, which is to say, if they are perpendicular.

Example: The vectors 〈2,−1, 4〉 and 〈3, 2,−1〉 are orthogonal,
since their dot product is (2)(3) + (−1)(2) + (4)(−1) = 0.

Remark: Since the dot product of the zero vector with any
vector is zero, by our definition above, the zero vector is
orthogonal to every vector.



Vector Projection, I

Another basic question about vectors is: given a vector v and
another vector w, how much of w is in the direction of v, and how
much of w is orthogonal to v?

This problem often arises in Newtonian physics: one often
needs to separate the vector representing a force (or velocity,
or acceleration, ...) into orthogonal components.



Vector Projection, II

We want to write w = av + y, where y is orthogonal to v. The
goal is to determine the value of the scalar a.

We can rewrite the expression as y = w − av, where by
assumption y is orthogonal to v.

But now taking the dot product of both sides with v and
applying the algebraic properties of dot products yields
0 = y · v = (w − av) · v = w · v − a(v · v).

Now it is easy to solve for a: doing so yields a =
w · v
v · v

.



Vector Projection, III

We summarize the previous calculations as follows:

Definition

If v is a nonzero vector and w is any vector, then the

vector projection of w onto v is the vector Projv(w) =
(w · v
v · v

)
v.

The vector projection of w onto v gives the “piece” of w in
the direction of v, while the remaining piece w − Projv(w) is
orthogonal to v.



Vector Projection, IV

Example: Find the vector projection of w = i + 6j + 5k onto the
coordinate vectors i, j, and k.

We have Proji(w) =
w · i
i · i

i =
1

1
i = 1i.

Next, Projj(w) =
w · j
j · j

j =
6

1
j = 6j.

Finally, Projk(w) =
w · k
k · k

k =
5

1
k = 5k.

You should find these results very consistent with what the vector
projection actually represents.

For example, the component of i + 6j + 5k in the direction of j
should logically be 6, and this is exactly what we found.
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Vector Projection, V

Example: Find the vector projection of w = 〈6,−3, 0〉 onto
v = 〈2,−2,−1〉, and verify that w − Projv(w) is orthogonal to v.

We have Projv(w) =
(w · v
v · v

)
v =

(6)(2) + (−3)(−2) + (0)(−1)

22 + (−2)2 + (−1)2
v =

18

9
v = 2v = 〈4,−4,−2〉.

To check the orthogonality, note that w−Projv(w) = 〈2, 1, 2〉.
Indeed, 〈2, 1, 2〉 is orthogonal to v, because
〈2, 1, 2〉 · 〈2,−2,−1〉 = (2)(2) + (1)(−2) + (2)(−1) = 0.



Vector Projection, V
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Summary

We discussed vectors and vector operations.

We discussed lengths of vectors, dot products, angles between
vectors, and vector projection.

Next lecture: Cross products, lines and planes in 3-space.


