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Answers from your calculator, without supporting work, are worth zero points.

1. Consider the function f(x, y, z) = x3
√
y2 + z2.

(a) (3 points) Find the gradient ∇f of the function f .

(b) (3 points) Find the linearization of the function f at the point (2,3,4).

(c) (2 points) Use the linearization of f from part (b) to estimate the number (1.98)3
√

(3.02)2 + (4.01)2.
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2. Let f(x, y, z) = ln(x2 + 2y2 + yz).

(a) (3 points) Find the rate of change of f with respect to z at the point (1, 1, 2).

(b) (3 points) Find the minimum rate of change of f at the point (1, 1, 2) and the direction in which
this minimum rate of change occurs.

(c) (3 points) Find a direction in which the value of f is not changing at the point (1, 1, 2).
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3. Consider the real valued function F (x, y) = xex−3 − y3.

(a) (4 points) Find an equation of the tangent line to the level curve F (x, y) = 2 at the point (3, 1).

(b) (4 points) Find an equation of the tangent plane to the graph of the function F , with equation
z = F (x, y), at the point (3, 1, 2).
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4. Consider the function f(x, y) = −3x2 + 3xy − y3.

(a) (3 points) This function has two critical points. Find them both.

(b) (6 points) Classify both critical points of the function f as local maximum, local minimum, or
saddle points.
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5. (8 points) Using the Lagrange Multiplier Method, find the global minimum of the function

f(x, y, z) = x2 + 3y2 + z2

on the plane with equation
x+ 4y + 5z = 6.

No credit is given for using a different method than the Lagrange Multiplier method.
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6. Consider the plane region R bounded above by y = 12− x and y = 5x and below by y = x2.

(a) (2 points) Sketch the region R by labeling carefully all the boundaries.

(b) (6 points) Integrate f(x, y) = 2x over the region R.

6



7. (8 points) Evaluate the integral ∫ 1

0

∫ √2−x2

x

y dydx,

by converting it to polar coordinates.
(Note: No points will be given, if polar coordinates are NOT used.)
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8. (8 points) Evaluate ∫∫∫
E

z dV,

where E lies in the first octant (x ≥ 0, y ≥ 0, z ≥ 0) between the spheres with equations

x2 + y2 + z2 = 1 and x2 + y2 + z2 = 4.
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9. (9 points) Find the mass of the solid under the paraboloid z = x2+y2 and above the disc in the xy-plane
where x2 + y2 ≤ 3, with the density

δ(x, y, z) = 1 + x2 + y2 kg/m3.

Your answer should include units.
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10. (9 points)

Calculate the line integral of

F (x, y) = (x− y3, x3 + y5)

along the curve C = C1 + C2 + C3, where
C1 is the line segment from (0, 0) to (0, 2),
C2 is a quarter-circle from (0, 2) to (−2, 0),
C3 is a line segment from (−2, 0) to (0, 0), as shown
in the picture to the right.
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11. (8 points) Evaluate the flux integral

∫∫
M

F · n dS where

F (x, y, z) =
(
x, y, 3

)
and M is the surface that consists of the cylinder

{x2 + y2 = 4, 0 ≤ z ≤ 2}

plus the disk
{x2 + y2 ≤ 4, z = 0}

on the bottom of this cylinder. The surface M is oriented by the outward normal.
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12. Consider the vector field F (x, y, z) =
(
2, xz, z3

)
.

(a) (3 points) Calculate the curl of F .

(b) (5 points) Using Stokes’ Theorem evaluate the line integral

∫
C

F · dr, where C is the boundary of

the surface z = xy2, 0 ≤ x, y ≤ 1, oriented counterclockwise as viewed from above.
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