Do not write in the boxes immediately below.
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Math 2321 Final Exam
December 14, 2015

Instructor’s name Your name

Please check that you have @ different pages.

Answers from your calculator, without supporting work, are worth zero points.

1) Consider the function f(z,y) = 4zty* — \/z ¥~ 1.

a) (6 points) What is the linearization L(z,y) of f(z,y) at a = (1,1)?
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b) (2 points) Use your linearization to estimate f(1.01,0.99). (The “exact” answer without using linearization is worth 0

points.)
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2) (8 points) Suppose that the real-valued function f = f(z,v, z) is differentiable at (—3,In5,1), and that Vf(—3,In5,1) =
(—3,5,2). Suppose that the position of a particle at time t is given by

z(t) = —3e', y(t) =In(t® +5), z(t) = cost.
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3) (4 points each) The elevation above sea level, in meters, of a saddle between two mountains is given by z = zy + 1000,
where z and y are also in meters. Suppose that a goat is at a point near the saddle where (z,y) = (10, —20).

a) In what direction (as a unit vector in the my plane) should the goat head to ascend as rapidly as possible?
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b) At What rate, in meters of elevation per meter of distance in the zy-plane, will the goat ascend if it moves in the direction

from{ /VZ(/a)'-,20)/ Jro(-2,1) | = s0vs.
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4) (8 points) Find an equation for the tangent plane of the level surface of the function f(z,y, z) = z?y —sinz at the point
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). Describe, in parametric form, the

5) (8 points) Consider the surface parameterized by r(u,v) = <u —v,u+v, Y 5

tangent plane of r at (u,v) = (4,2).
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6) (8 points) Find and classify the critical points of the function f(z,y) = x® — 6zy + 8y* as points where f attains a local
maximum value, a local minimum value, or has a saddle point.
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7) (10 points) Find the global maximum and global minimum values of f (z,y) = 2% + 2y% — 4y subject to the constraint
r
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8) (8 points) Evaluate the iterated integral / / V2 + 23 dz dy.
o Jyg

ecLy=/.
\/‘/'.,“ﬁxi/,
_VY -
K= 2 Z 0w
[ é‘"/=)%/'x/o
’-—-—
|
( Z

/Qevcrse or‘ojar‘

o7C /'n'te,jr*cu‘(?/'oﬂ,
[, 1

+x3ﬁ‘0{ A

A

://(z+x3)//2“o(A:
R

e 3
[et «u= 2+X - ( / u3/7: B
Adu=zx*dx. = 3 {{
pa
Ehea V)
_3/ 2
2 2 2
ANSWER: /?(3 —2' >




9) (8 points) An ice cream shop sells ice cream at a price of 2 dollars per pound. For one serving of ice cream, the machine

fills the cone, which has a shape given by z = /322 + 3y2, and then continues adding ice cream up to the surface of the
sphere given by z2 + y? + 22 = 25, where z, y, and z are in inches. Suppose that the ice cream they serve has a density of

0.04 1b/in®. How much will it cost to get one serving of ice cream?
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10) Suppose F(z,y) = (y3e® — z,3y%e® + 4z) represents a force field in Newtons, where z, y, and z are in meters.

a) (3 points) Compute the 2-dimensiondl curl of F. ( . B )
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b) (7 points) Find the work done by F on a particle which moves along the top half of the circle of radius 1, centered at
the origin, from (1,0) to (—1,0). \
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11) (8 points) Calculate the total outward flux of the vector field F(z,y,z) = (23,y3,1) across the boundary of the solid
bounded by the paraboloid where z = 1 — 22 — y? and the zy-plane.
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12) Let F(z,y,2) = (#2 — 2,z + y%,2?). Let C be the curve of intersection of the plane z = 1 -z —y and the cylinder
22 + 32 = 9. Assume that C is oriented counterclockwise, as viewed from above. Let M be the region in the plane

z=1— 12 — y which is inside the curve C, so that C is the boundary of M.
a) (2 points) Calculate the curl of F(z,y, 2),
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b) (2 points) Determine a unit normal to M which is compatible with the given orientation on its boundary C.
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(4 points) Use Stokes” Theorem to calculate fc F - dr.
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