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5 Bilinear and Quadratic Forms

In this chapter, we will discuss bilinear and quadratic forms. Bilinear forms are simply linear transformations that
are linear in more than one variable, and they will allow us to extend our study of linear phenomena. They are
closely related to quadratic forms, which are (classically speaking) homogeneous quadratic polynomials in multiple
variables. Despite the fact that quadratic forms are not linear, we can (perhaps surprisingly) still use many of the
tools of linear algebra to study them.

5.1 Bilinear Forms

• We begin by discussing basic properties of bilinear forms on an arbitrary vector space.

5.1.1 De�nition, Associated Matrices, Basic Properties

• Let V be a vector space over the �eld F .

• De�nition: A function Φ : V × V → F is a bilinear form on V if it is linear in each variable when the
other variable is �xed. Explicitly, this means Φ(v1 + αv2, y) = Φ(v1,w) + αΦ(v2,w) and Φ(v,w1 + αw2) =
Φ(v,w1) + αΦ(v,w2) for arbitrary vi,wi ∈ V and α ∈ F .

◦ It is easy to see that the set of all bilinear forms on V forms a vector space (under componentwise
addition and scalar multiplication).

◦ Example: An inner product on a real vector space is a bilinear form, but an inner product on a complex
vector space is not, since it is conjugate-linear in the second component rather than (actually) linear.

◦ Example: If V = F [x] and a, b ∈ F , then Φ(p, q) = p(a)q(b) is a bilinear form on V .

◦ Example: If V = C[a, b] is the space of continuous functions on [a, b], then Φ(f, g) =
´ b
a
f(x)g(x) dx is a

bilinear form on V .

• A large class of examples of bilinear forms arise as follows: if V = Fn, then for any matrix A ∈ Mn×n(F ),
the map ΦA(v,w) = vTAw is a bilinear form on V .
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◦ Example: The matrixA =

[
1 2
3 4

]
yields the bilinear form ΦA

([
x1
y1

]
,

[
x2
y2

])
= [x1 y1]

[
1 2
3 4

] [
x2
y2

]
=

x1x2 + 2x1y2 + 3x2y1 + 4y1y2 .

• Indeed, if V is �nite-dimensional, then by choosing a basis of V we can see that every bilinear form arises in
the manner described above:

• De�nition: If V is a �nite-dimensional vector space, β = {β1, . . . , βn} is a basis of V , and Φ is a bilinear form
on V , the associated matrix of Φ with respect to β is the matrix [Φ]β ∈ Mn×n(F ) whose (i, j)-entry is the
value Φ(βi, βj).

◦ This is the natural analogue of the matrix associated to a linear transformation, for bilinear forms.

• Example: For the bilinear form Φ((a, b), (c, d)) = 2ac + 4ad − bc on F 2, �nd [Φ]β for the standard basis
β = {(1, 0), (0, 1)}.

◦ We simply calculate the four values Φ(βi, βj) for i, j ∈ {1, 2}, where β1 = (1, 0) and β2 = (0, 1).

◦ This yields Φ(β1, β1) = 2, Φ(β1, β2) = 4, Φ(β2, β1) = −1, and Φ(β2, β2) = 0.

◦ Thus, the associated matrix is [Φ]β =

[
2 4
−1 0

]
.

• Example: For the bilinear form Φ((a, b), (c, d)) = 2ac + 4ad − bc on F 2, �nd [Φ]γ for the basis γ =
{(2, 1), (−1, 4)}.

◦ We simply calculate the four values Φ(γi, γj) for i, j ∈ {1, 2}, where γ1 = (2, 1) and γ2 = (−1, 4).

◦ This yields Φ(γ1, γ1) = 14, Φ(γ1, γ2) = 29, Φ(γ2, γ1) = −16, and Φ(γ2, γ2) = −10.

◦ Thus, the associated matrix is [Φ]γ =

[
14 29
−16 −10

]
.

• Example: For the bilinear form Φ(p, q) =
´ 1
0
p(x)q(x) dx on P2(R), �nd [Φ]β for the basis β = {1, x, x2}.

◦ We simply calculate the nine values Φ(βi, βj) for i, j ∈ {1, 2, 3}, where β1 = 1, β2 = x, β3 = x2.

◦ For example, Φ(β1, β3) =
´ 1
0

1 · x2 dx =
1

3
and Φ(β3, β2) =

´ 1
0
x2 · x dx =

1

4
.

◦ The resulting associated matrix is [Φ]β =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 .

• Like with the matrices associated with linear transformations, we can describe how the matrices associated
to bilinear forms relate to coordinate vectors, how they change under a change of basis, and we can use them
to translate back and forth between bilinear forms and matrices:

• Proposition (Associated Matrices): Suppose that V is a �nite-dimensional vector space, β = {β1, . . . , βn} is a
basis of V , and Φ is a bilinear form on V . Then the following hold:

1. If v and w are any vectors in V , then Φ(v,w) = [v]Tβ [Φ]β [w]β .

◦ Proof: If v = βi and w = βj then the result follows immediately from the de�nition of matrix
multiplication and the matrix [Φ]β . The result for arbitrary v and w then follows by linearity.

2. The association Φ 7→ [Φ]β of a bilinear form with its matrix representation yields an isomorphism of the
space B(V ) of bilinear forms on V with Mn×n(F ). In particular, dimF B(V ) = n2.

◦ Proof: The inverse map is de�ned as follows: given a matrix A ∈ Mn×n(F ), de�ne a bilinear form
ΦA via ΦA(v,w) = [v]TβA[w]β .

◦ It is easy to verify that this map is a well-de�ned linear transformation and that it is inverse to the
map given above. The dimension calculation is immediate.
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3. If ΦT is the reverse form of Φ de�ned via ΦT (v,w) = Φ(w,v), then [ΦT ]β = [Φ]Tβ .

◦ Proof: By de�nition we have ΦT (v,w) = [w]Tβ [Φ]β [v]β . Since the matrix product on the right is a

scalar, it is equal to its transpose, which is [v]Tβ [Φ]Tβ [w]β .

◦ This means [ΦT ]β and [Φ]Tβ agree, as bilinear forms, on all pairs of vectors [v]β and [w]β in Fn, so
they are equal.

4. If γ is another basis of V and Q = [I]γβ is the change-of-basis matrix from β to γ, then [Φ]γ = QT [Φ]βQ.

◦ Proof: By de�nition, [v]γ = Q[v]β . Hence [v]TβQ
T [Φ]βQ[w]β = [v]Tγ [Φ]β [w]γ .

◦ This means that QT [Φ]βQ and [Φ]γ agree, as bilinear forms, on all pairs of vectors [v]β and [w]β in
Fn, so they are equal.

• The last result of the proposition above tells us how bilinear forms behave under change of basis: rather than
the more familiar conjugation relation B = QAQ−1, we instead have a slightly di�erent relation B = QTAQ.

• We record one other property of bilinear forms that we will need to make use of later:

• De�nition: If Φ is a bilinear form on V and there exists a nonzero vector x ∈ V such that Φ(x,v) = 0 for all
v ∈ V , we say Φ is degenerate. Otherwise, if there is no such x, we say Φ is nondegenerate.

5.1.2 Symmetric Bilinear Forms and Diagonalization

• In the same way that we classi�ed the linear operators on a vector space that can be diagonalized, we would
also like to classify the diagonalizable bilinear forms.

• De�nition: If V is �nite-dimensional, a bilinear form Φ on V is diagonalizable if there exists a basis β of V
such that [Φ]β is a diagonal matrix.

◦ The matrix formulation of this question is as follows: we say that matrices B and C are congruent if
there exists an invertible matrix Q such that C = QTBQ.

◦ Then the matrices B and C are congruent if and only if they represent the same bilinear form in di�erent
bases (the translation being B = [Φ]β and C = [Φ]γ , with Q = [I]γβ being the corresponding change-of-
basis matrix).

◦ Warning: Although we use the same word, diagonalizability for bilinear forms is not the same as diagonal-
izability for linear transformations! Make sure to keep straight the di�erence between the corresponding
matrix versions: two matrices are similar when we can write B = Q−1AQ, whereas they are congruent
when we can write B = QTAQ.

• It turns out that when char(F ) 6= 2, there is an easy criterion for diagonalizability.

• De�nition: A bilinear form Φ on V is symmetric if Φ(v,w) = Φ(w,v) for all v,w ∈ V .

◦ Notice that Φ is symmetric if and only if it equals its reverse form ΦT .

◦ By taking associated matrices, we see immediately that if V is �nite-dimensional with basis β, then Φ
is a symmetric bilinear form if and only if [Φ]β is equal to its transpose, which is to say, when it is a
symmetric matrix.

◦ Now observe that if Φ is diagonalizable, then [Φ]β is a diagonal matrix hence symmetric, and thus Φ
must be symmetric.

• When the characteristic of F is not equal to 2, the converse holds also:

• Theorem (Diagonalization of Bilinear Forms): Let V be a �nite-dimensional vector space over a �eld F of
characteristic not equal to 2. Then a bilinear form on V is diagonalizable if and only if it is symmetric.

◦ Proof: The forward direction was established above. For the reverse, we show the result by induction on
n = dimF V . The base case n = 1 is trivial, so suppose the result holds for all spaces of dimension less
than n, and let Φ be symmetric on V .
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◦ If Φ is the zero form, then clearly Φ is diagonalizable. Otherwise, suppose Φ is not identically zero: we
claim there exists a vector x with Φ(x,x) 6= 0.

◦ By hypothesis, Φ is not identically zero so suppose that Φ(v,w) 6= 0. If Φ(v,v) 6= 0 or Φ(w,w) 6= 0 we
may take x = v or x = w. Otherwise, we have Φ(v + w,v + w) = Φ(v,v) + 2Φ(v,w) + Φ(w,w) =
2Φ(v,w) 6= 0 by the assumption that Φ(v,w) 6= 0 and 2 6= 0 in F (here is where we require the
characteristic not to equal 2), and so we may take x = v + w.

◦ Now consider the linear functional T : V → F given by T (v) = Φ(x,v). Since T (x) = Φ(x,x) 6= 0, we
see that im(T ) = F , so dimF ker(T ) = n− 1 by the nullity-rank theorem.

◦ Then the restriction of Φ to ker(T ) is clearly a symmetric bilinear form on ker(T ), so by induction, there
exists a basis {β1, . . . , βn−1} of ker(T ) such that the restriction of Φ is diagonalized by this basis, which
is to say, Φ(βi, βj) = 0 for i 6= j.

◦ Now set βn = x and observe that since x 6∈ ker(T ), the set β = {β1, . . . , βn−1, βn} is a basis of V . Since
Φ(x, βi) = Φ(βi,x) = 0 for all i < n by de�nition of T , we conclude that β diagonalizes Φ, as required.

• We will note that the assumption that char(F ) 6= 2 in the theorem above cannot be removed.

◦ Explicitly, if F = F2 is the �eld with 2 elements, then if Φ is the bilinear form on F 2 with associated

matrix A =

[
0 1
1 0

]
, then Φ is symmetric but cannot be diagonalized.

◦ Explicitly, suppose Q =

[
a b
c d

]
: then QTAQ =

[
a c
b d

] [
0 1
1 0

] [
a b
c d

]
=

[
0 ad+ bc

ad+ bc 0

]
,

so the only possible diagonalization of Φ would be the zero matrix, but that is impossible because Φ is
not the zero form.

◦ In this example we can see that1 Φ(x,x) = 0 for all x ∈ F 2, which causes the inductive argument to fail.

• As an immediate corollary, we see that every symmetric matrix is congruent to a diagonal matrix in charac-
teristic 6= 2:

• Corollary: If char(F ) 6= 2, then every symmetric matrix over F is congruent to a diagonal matrix.

◦ Proof: The result follows immediately by diagonalizing the corresponding bilinear form.

• We can give an explicit procedure for writing a symmetric matrix S in the form D = QTSQ that is similar
to the algorithm for computing the inverse of a matrix.

◦ Recall that if E is an elementary row matrix (obtained by performing an elementary row operation on
the identity matrix), then EA is the matrix obtained by performing that elementary row operation on
A.

◦ Likewise, if C is an elementary column matrix, then AC is the matrix obtained by performing that
elementary column operation on A.

◦ Hence if E is an elementary row matrix, then EAET is the matrix obtained by performing the elementary
row operation on A (given by E) and then the corresponding elementary column operation (given by
ET ).

◦ Since the invertible matrix Q is a product E1 · · ·Ed of elementary row matrices, we see that QTSQ =
ETd · · ·ET1 SE1 · · ·Ed is obtained from S by performing a sequence of these paired row-column operations.

◦ Our result on diagonalization above ensures that there is a sequence of these operations that will yield
a diagonal matrix.

◦ We may �nd the proper sequence of operations by performing these �paired� operations using a method
similar to row-reduction: using the (1,1)-entry, we apply row operations to clear out all the entries in
the �rst column below it. (If this entry is zero, we add an appropriate multiple of another row to the
top row to make it nonzero.)

1This follows by noting that Φ(βi, βi) = 0 for each basis element βi. Then if v = a1β1 + · · ·+ anβn, expanding Φ(v,v) linearly and
applying symmetry shows that every term aiajΦ(βi, βj) for i 6= j has a coe�cient of 2, so Φ(v,v) = 0 for all v.
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◦ This will also clear out the column entries to the right of the (1,1)-entry, yielding a matrix whose �rst
row and column are now diagonalized. We then restrict attention to the smaller (n− 1)× (n− 1) matrix
excluding the �rst row and column, and repeat the procedure recursively until the matrix is diagonalized.

◦ Then we may obtain the matrix QT = ETd · · ·ET1 I by applying all of the elementary row operations (in
the same order) starting with the identity matrix.

• We may keep track of these operations using a �double matrix� as in the algorithm for computing the inverse
of a matrix: on the left we start with the symmetric matrix S, and on the right we start with the identity
matrix I.

◦ At each step, we select a row operation and perform it, and its corresponding column operation, on the
left matrix. We also perform the row operation (but only the row operation!) on the right matrix.

◦ When we are �nished, we will have transformed the double-matrix [S|I] into the double-matrix [D|QT ],
and we will have QTSQ = D.

• Example: For S =

[
1 3
3 −4

]
, �nd an invertible matrix Q and diagonal matrix D such that QTSQ = D.

◦ We set up the double matrix and perform row/column operations as listed (to emphasize again, we
perform the row and then the corresponding column operation on the left side, but only the row operation

on the right side): [
1 3
3 −4

∣∣∣∣ 1 0
0 1

]
R2−3R1−→
C2−3C1

[
1 0
0 −13

∣∣∣∣ 1 0
−3 1

]
◦ The matrix on the left is now diagonal.

◦ Thus, we may take D =

[
1 0
0 −13

]
with QT =

[
1 0
−3 1

]
and thus Q =

[
1 −3
0 1

]
. Indeed, one may

double-check that QTSQ = D, as claimed.

• Example: For S =

 1 2 3
2 1 0
3 0 2

, �nd an invertible matrix Q and diagonal matrix D such that QTSQ = D.

◦ We set up the double matrix and perform row/column operations as listed: 1 2 3
2 1 0
3 0 2

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 R2−2R1−→
C2−2C1

 1 0 3
0 −3 −6
3 −6 2

∣∣∣∣∣∣
1 0 0
−2 1 0
0 0 1


R3−3R1−→
C3−3C1

 1 0 0
0 −3 −6
0 −6 −7

∣∣∣∣∣∣
1 0 0
−2 1 0
−3 0 1

 R3−2R2−→
C3−2C2

 1 0 0
0 −3 0
0 0 5

∣∣∣∣∣∣
1 0 0
−2 1 0
1 −2 1


◦ The matrix on the left is now diagonal.

◦ Thus, we may take D =

 1 0 0
0 −3 0
0 0 5

 with QT =

 1 0 0
−2 1 0
1 −2 1

 and thus Q =

 1 −2 1
0 1 −2
0 0 1

.
Indeed, one may double-check that QTSQ = D, as claimed.

5.2 Quadratic Forms

• In the proof that symmetric forms are diagonalizable, the existence of a vector x ∈ V such that Φ(x,x) 6= 0
played a central role. We now examine this (non-linear!) function Φ(x,x) more closely.
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5.2.1 De�nition and Basic Properties

• De�nition: If Φ is a symmetric bilinear form on V , the function Q : V → F given by Q(v) = Φ(v,v) is called
the quadratic form associated to Φ.

◦ Example: If Φ is the symmetric bilinear form with matrix A =

[
1 3
3 4

]
over F 2, then the corresponding

quadratic form has Q(

[
x
y

]
) = x2 +6xy+4y2. (The fact that this is a homogeneous2 quadratic function

of the entries of the input vector is the reason for the name �quadratic form�.)

◦ Example: If Φ is an inner product 〈·, ·〉 on a real vector space, then the associated quadratic form is

Q(v) = ||v||2, the square of the norm of v.

• Clearly, Q is uniquely determined by Φ. When char(F ) 6= 2, the reverse holds as well.

◦ Explicitly, since Q(v + w) = Φ(v + w,v + w) = Q(v) + 2Φ(v,w) + Q(w), we can write Φ(v,w) =
1

2
[Q(v + w)−Q(v)−Q(w)], and so we may recover Φ from Q.

◦ Also, observe that for any scalar α ∈ F , we have Q(αv) = Φ(αv, αv) = α2Φ(v,v) = α2Q(v).

◦ This last two relations provide us a way to de�ne a quadratic form without explicit reference to the
underlying symmetric bilinear form.

• De�nition: If V is a vector space, a quadratic form is a function Q : V → F such that Q(αv) = α2Q(v) for
all α ∈ F , and the function Q(v + w)−Q(v)−Q(w) is a bilinear form in v and w.

◦ By setting α = 0 we see Q(0) = 0, and by setting α = −1 we see Q(−v) = Q(v).

◦ Like with bilinear forms, the set of all quadratic forms on V forms a vector space.

• Example (again): Show that the function Q[(x, y)] = x2 + 6xy + 4y2 is a quadratic form on F 2.

◦ First observe that Q[α(x, y)] = (αx)2 + 6(αx)(αy) + 4(αy)2 = α2(x2 + 6xy + 4y2) = α2Q(x, y).

◦ We also see that Q[(x1, y1) + (x2, y2)]−Q[(x1, y1)]−Q[(x2, y2)] = 2x1x2 + 6x1y2 + 6x2y1 + 8y1y2. It is
straightforward to verify that this is a bilinear form by checking the linearity explicitly.

◦ Alternatively (at least when char(F ) 6= 2) we can write down the associated bilinear form Φ((a, b), (c, d)) =
1

2
[Q[(a+ c, b+ d)]−Q[(a, c)]−Q[(b, d)]] = ac+ 3ad+ 3bc+ 4bd, and this is the bilinear form associated

to the matrix

[
1 3
3 4

]
, as indeed we saw earlier.

• Example: If V = C[a, b], show that the function Q(f) =
´ b
a
f(x)2 dx is a quadratic form on V .

◦ First, we have Q(αf) =
´ b
a

[αf(x)]2 dx = α2
´ b
a
f(x)2 dx = α2Q(f).

◦ Also, we have Q(f+g)−Q(f)−Q(g) =
´ b
a

[f(x)+g(x)]2 dx−
´ b
a
f(x)2 dx−

´ b
a
g(x)2 dx =

´ b
a

2f(x)g(x) dx,
and this is indeed a bilinear form in f and g.

• If char(F ) 6= 2, then the function
1

2
[Q(v+w)−Q(v)−Q(w)] is the bilinear pairing associated to Q. It is not

hard to see that we obtain a correspondence between quadratic forms and bilinear pairings in this case, since
we may recover a bilinear pairing from each quadratic form and a quadratic form from each bilinear pairing.

◦ In particular, any homogeneous quadratic function on Fn (i.e., any polynomial function all of whose
terms have total degree 2) is a quadratic form on Fn: for variables x1, . . . , xn, such a function has the
general form

∑
1≤i≤j≤n ai,jxixj .

3

2A polynomial in several variables is called homogeneous if all of the terms have the same total degree. For example, x3 +3xy2−2y3

and 2xyz are both homogeneous of degree 3, while x4z+ 2w2y3 − p5 is homogeneous of degree 5. But x2 + y and x3y+ y4 − x2 are not
homogeneous because they both have terms of di�erent degrees.

3It can also be veri�ed directly from the de�nition that this is a quadratic form via some mild calculations; this also shows the
statement is true even when char(F ) = 2.
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◦ Then we can see that the associated matrix A for the corresponding bilinear form has entries ai,j =

aj,i =

{
ai,i for i = j

ai,j/2 for i 6= j
; this of course requires char(F ) 6= 2 in order to be able to divide by 2.

◦ Example: The function Q(x1, x2) = 7x21 − 4x1x2 + 3x22 is a quadratic form on F 2. The matrix for the

associated symmetric bilinear form is

[
7 −2
−2 3

]
.

◦ Example: The function Q(x1, x2, x3) = x21 + 2x1x3 − 3x2x3 + 4x23 is a quadratic form on F 3. When

char(F ) 6= 2, the matrix for the associated symmetric bilinear form is

 1 0 1
0 0 − 3

2
1 − 3

2 4

.
◦ Example: The function Q(x1, . . . , xn) = x21 + 2x22 + 3x23 + · · · + nx2n is a quadratic form on Fn. Its
associated matrix is the diagonal matrix with entries 1, 2, . . . , n.

5.2.2 Quadratic Forms Over Rn: Diagonalization of Quadratic Varieties

• In the event that V is a �nite-dimensional vector space over F = R, quadratic forms are particularly pleasant.
By choosing a basis we may assume that V = Rn for concreteness.

◦ Then, per the real spectral theorem, any real symmetric matrix is orthogonally diagonalizable, meaning
that if S is any real symmetric matrix, then there exists an orthogonal matrix Q (with QT = Q−1) such
that QSQ−1 = D is diagonal.

◦ But since QT = Q−1, if we take R = QT then this condition is the same as saying RTSR = D is diagonal.
This is precisely the condition we require in order to diagonalize a symmetric bilinear form.

◦ Hence: we may diagonalize a symmetric bilinear form over R by computing the (regular) diagonaliza-
tion of the corresponding matrix: this is quite e�cient as it only requires �nding the eigenvalues and
eigenvectors.

◦ The corresponding diagonalization represents �completing the square� in the quadratic form via a change
of variables that is orthogonal (i.e., arises from an orthonormal basis), which corresponds geometrically
to a rotation of the standard coordinate axes, possibly also with a re�ection.

• Example: Find an orthogonal change of basis that diagonalizes the quadratic form Q(x, y, z) = 5x2 + 4xy +
6y2 + 4yz + 7z2 over R3.

◦ We simply diagonalize the matrix for the corresponding bilinear form, which is A =

 5 2 0
2 6 2
0 2 7

 . The
characteristic polynomial is p(t) = det(tI3 − A) = t3 − 18t2 + 99t − 162 = (t − 3)(t − 6)(t − 9), so the
eigenvalues are λ = 3, 6, 9.

◦ Computing a basis for each eigenspace yields eigenvectors

 2
−2
1

,
 −2
−1
2

,
 1

2
2

 for λ = 3, 6, 9.

◦ Hence we may take Q =
1

3

 2 −2 1
−2 −1 2
1 2 2

, so that QT = Q−1 and QAQ−1 =

 3 0 0
0 6 0
0 0 9

 = D.

◦ Therefore the desired change of basis is x′ =
1

3
(2x− 2y+ z), y′ =

1

3
(−2x− y+ 2z), z′ =

1

3
(x+ 2y+ 2z),

and with this change of basis it is not hard to verify that, indeed, Q(x, y, z) = 3(x′)2 + 6(y′)2 + 9(z′)2.

• One application of the existence of such a diagonalization is to classify the conic sections in R2, and the
quadric surfaces in R3. These curves (in R2) and surfaces (in R3)

◦ For conics in R2, the general equation is Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. By diagonalizing, we
may eliminate the xy term, and so the quadratic term can be put into the form Ax2 + Cy2. We then
have various cases depending on the signs of A and C.
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Figure 1: (Top row) Ellipsoid, Circular Cylinder, Hyperboloid of One Sheet, Cone,
(Bottom row) Hyperboloid of Two Sheets, Elliptic Paraboloid, Hyperbolic Paraboloid

◦ If A and C are both zero then the conic degenerates to a line. If one is zero and the other is not,
then by rescaling and swapping variables we may assume A = 1 and C = 0, in which case the equation
x2 +Dx+ Ey + F = 0 yields a parabola upon solving for y.

◦ If both A,C are nonzero, then we may complete the square to eliminate the linear terms, and then rescale
so that F = −1. The resulting equation then has the form A′x2 + C ′y2 = 1. If A′, C ′ have the same
sign, then the curve is an ellipse, while if A′, C ′ have the opposite sign, the curve is a hyperbola.

◦ For quadric surfaces in R3 we may likewise eliminate cross-terms by diagonalizing, which yields a reduced
equation Ax2 +By2 + Cz2 +Dx+ Ey + Fz +G = 0.

◦ We can then perform a similar analysis (based on how many of A,B,C are zero and the relative signs of
the nonzero coe�cients and the linear terms) to obtain all of the possible quadric surfaces in R3.

◦ In addition to the �degenerate� surfaces (e.g., a point, a plane, two planes), after rescaling the variables,
one obtains 9 di�erent quadric surfaces: the ellipsoid (e.g., x2 + y2 + z2 = 1), the elliptic, parabolic,
and hyperbolic cylinders (e.g., x2 + y2 = 1, y = x2, and x2 − y2 = 1), the hyperboloid of one sheet
(e.g., z2 − x2 − y2 = 1), the elliptical cone (e.g., z2 = x2 + y2), the hyperboloid of two sheets (e.g.,
x2 + y2 − z2 = 1), the elliptic paraboloid (e.g., z = x2 + y2), and the hyperbolic paraboloid (e.g.,
z = x2 − y2).
◦ Seven of the quadric surfaces are plotted in Figure 1 (the parabolic and hyperbolic cylinders are omitted).

• All of the conics and quadric surfaces are examples of algebraic varieties, which are the solution sets of
polynomial equations in several variables.

◦ If we have a general quadratic variety (i.e., a quadratic polynomial equation in n variables), we can make
an appropriate translation and rescaling to convert it to the form Q(x1, . . . , xn) = 1 or 0, where Q is a
quadratic form.

◦ By diagonalizing the corresponding quadratic form using an orthonormal change of basis (which corre-
sponds to a rotation of the coordinates axes and possibly also a re�ection), we can then determine the
shape of the variety's graph in Rn.
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• Example: Diagonalize the quadratic form Q(x, y) = 2x2 − 4xy − y2. Use the result to describe the shape of
the conic section Q(x, y) = 1 in R2.

◦ The matrix associated to the corresponding bilinear form is A =

[
2 −2
−2 −1

]
.

◦ The characteristic polynomial is p(t) = det(tI2 −A) = t3 − t+ 6 with eigenvalues λ = 3,−2.

◦ We need to diagonalize A using an orthonormal basis of eigenvectors. Since the eigenvalues are distinct,
we simply compute a basis for each eigenspace: doing so yields eigenvectors (−2, 1) and (1, 2) for λ = 3,−2
respectively.

◦ Thus, we may diagonalize A via the orthogonal matrix Q =
1√
5

[
−2 1
1 2

]
, and the resulting diagonal-

ization is Q(x, y, z) = 3(x′)2 − 2(y′)2.

◦ In particular, since the change of basis is orthonormal, in the new coordinate system the equation
Q(x, y, z) = 1 reads simply as 3(x′)2 − 2(y′)2 = 1.

◦ By rescaling again, with x′′ =
√

3x′, y′′ =
√

2y′, this is equivalent to (x′′)2 − (y′′)2 = 1, which is a

hyperbola .

• Example: Diagonalize the quadratic form Q(x, y, z) = 2x2 + 4xy − 20xz + 11y2 + 16yz + 5z2. Use the result
to describe the shape of the quadric surface Q(x, y, z) = 1 in R3.

◦ The matrix associated to the corresponding bilinear form is A =

 2 2 −10
2 11 8
−10 8 5

.
◦ The characteristic polynomial is p(t) = det(tI3−A) = t3− 18t2− 81t+ 1458 = (t+ 9)(t− 9)(t− 18) with
eigenvalues λ = 9, 18,−9.

◦ We need to diagonalize A using an orthonormal basis of eigenvectors. Since the eigenvalues are distinct,
we simply compute a basis for each eigenspace: doing so yields eigenvectors (−2,−2, 1), (−1, 2, 2),
(2,−1, 2), for λ = 9, 18,−9 respectively.

◦ Thus, we may diagonalize A via the orthogonal matrix Q =
1

3

 −2 −1 2
−2 2 −1
1 2 2

, and the resulting

diagonalization is Q(x, y, z) = 9(x′)2 + 18(y′)2 − 9(z′)2.

◦ In particular, since the change of basis is orthonormal, in the new coordinate system the equation
Q(x, y, z) = 1 reads simply as 9(x′)2 + 18(y′)2 − 9(z′)2 = 1.

◦ By rescaling again, with x′′ = 3x′, y′′ = 3
√

2y′, z′′ = 3z′, this is equivalent to (x′′)2 + (y′′)2 − (z′′)2 = 1,

which is a hyperboloid of one sheet .

5.2.3 Quadratic Forms Over Rn: The Second Derivatives Test

• We can also use quadratic forms to prove the famous �second derivatives test� from multivariable calculus:

• Theorem (Second Derivatives Test in Rn): Suppose f is a function of n variables x1, . . . , xn that is twice-
di�erentiable and P is a critical point of f , so that fxi(P ) = 0 for each i. Let H be the Hessian matrix, whose
(i, j)-entry is the second-order partial derivative fxixj

(P ). If all eigenvalues of H are positive then f has a
local minimum at P , if all eigenvalues of H are negative then f has a local maximum at P , if H has at least
one eigenvalue of each sign then f has a saddle point at P , and in all other cases (where H has at least one
zero eigenvalue and does not have one of each sign) the test is inconclusive.

◦ Proof (outline): By translating appropriately, assume for simplicity that P is at the origin.

◦ Then by the multivariable version of Taylor's theorem in R2, the function f(x1, . . . , xn) − f(P ) will be
closely approximated by its degree-2 Taylor polynomial T , which has the form T =

∑
1≤i≤j≤n ai,jxixi,

where ai,j =

{
fxi,xi

(P )/2 for i = j

fxi,xj (P ) for i 6= j
.

9



◦ Speci�cally, Taylor's theorem says that lim
(x1,...,xn)→P

f(x1, . . . , xn)− T − f(P )

x21 + · · ·+ x2n
= 0, which we can write

more compactly as f(x1, . . . , xn)− f(P ) = T +O(x21 + · · ·+ x2n).

◦ Now observe T is a quadratic form whose associated bilinear form has matrix H/2. By using an or-
thonormal change of basis, we may diagonalize this quadratic form, and the entries on the diagonal of
the diagonalization are the eigenvalues of H/2.

◦ If x′1, . . . , x
′
n is the new coordinate system, this means f(x1, . . . , xn)−f(P ) = 1

2λ1(x′1)2+· · ·+ 1
2λn(x′n)2+

O[(x′1)2 + · · ·+ (x′n)2].

◦ If all of the λi are positive then the error term is smaller than the remaining terms, and so we see that
f(x1, . . . , xn)− f(P ) > 0 su�ciently close to P , meaning that P is a local minimum.

◦ Likewise, if all of the λi are negative then the error term is smaller than the remaining terms, and so we
see that f(x1, . . . , xn)− f(P ) < 0 su�ciently close to P , meaning that P is a local maximum.

◦ If there is at least one positive eigenvalue λi and one negative eigenvalue λj , then approaching P along
the direction x′i yields values of f less than P , while approaching P along the direction x′j yields values
of f greater than P , so P is a saddle point.

◦ The other cases are inconclusive4 because we can take (for example) the functions f = x21 + x42 and
g = x21 − x42: then H has a single nonzero eigenvalue (corresponding to x1), but f has a local minimum
while g has a saddle point.

• Example: Classify the critical point at (0, 0) for the function f(x, y) = 2x2 + xy + 4y2.

◦ We compute the Hessian matrix: we have fxx = 4, fxy = fyx = 1, and fyy = 8, so evaluating these at

(0, 0) yields H =

[
4 1
1 8

]
.

◦ The characteristic polynomial of H is p(t) = det(tI2 −H) = t2 − 12t+ 31, whose roots are λ = 3±
√

2.

◦ Since the eigenvalues are both positive, the critical point is a local minimum .

• Example: Classify the critical point at (0, 0) for the function f(x, y) = x2 + 3xy − 6y2 + x5y3.

◦ We compute the Hessian matrix: we have fxx = 2+20x3y3, fxy = fyx = 3+15x4y2, and fyy = −6+6x5y,

so evaluating these at (0, 0) yields H =

[
2 3
3 −6

]
.

◦ The characteristic polynomial of H is p(t) = det(tI2 −H) = t2 − 4t− 21 = (t− 7)(t+ 3).

◦ Since the eigenvalues are −7 and 3, there is an eigenvalue of each sign, so the critical point is a

saddle point .

• Example: Classify the critical point at (0, 0, 0) for the function f(x, y, z) = 3x2 + 2xy − xz + y2 − yz + z2.

◦ We compute the Hessian matrix: we have fxx = 6, fxy = fyx = 2, fxz = fzx = −1, fyy = 2, fyz = fzy =

−1, and fzz = 2, so H =

 6 2 −1
2 2 −1
−1 −1 2

.
◦ The characteristic polynomial of H is p(t) = det(tI2 −H) = t3 − 10t2 + 22t− 12 = (t− 2)(t2 − 8t+ 6),
whose roots are λ = 2, 4±

√
10.

◦ Since the eigenvalues are all positive, the critical point is a local minimum .

• A fundamental component of the classi�cation in the second derivatives test was the behavior of the quadratic
form (and in particular, whether it was �always positive� or �always negative� for nonzero inputs). This
behavior is quite important and we will record it:

4Ultimately, the issue is that if some eigenvalues are zero, say, λ1 then if we approach P along the direction x′1, the quadratic form
T is constant, and so the sign of f(x1, . . . , xn)− f(P ) along that path will be determined by the error term. Except in the case where
the function is known to take both positive and negative values (guaranteeing a saddle point), any of the other possible behaviors not
ruled out by the existence of positive or negative eigenvalues could occur.

10



• De�nition: A quadratic form on a real vector space is positive de�nite if Q(v) > 0 for every nonzero vector
v ∈ V , and it is negative de�nite if Q(v) < 0 for every nonzero vector v ∈ V .

◦ If V is a real inner product space, then the square of the norm function ||v||2 = 〈v,v〉 is a positive-
de�nite quadratic form on V . Indeed, this condition is precisely axiom [I3] from the de�nition of the
inner product.

◦ Indeed, it is not hard to see that the de�nition of an inner product on a real vector space is equivalent
to saying that 〈v,v〉 is a quadratic form on V . Thus, all of the results for norms on inner product spaces
also hold for positive-de�nite quadratic forms: for example, positive-de�nite quadratic forms obey the
Cauchy-Schwarz inequality.

◦ There are also a moderately useful weaker versions of these conditions: we say Q is positive semide�nite
if Q(v) ≥ 0 for all v ∈ V and negative semide�nite if Q(v) ≤ 0 for all v ∈ V .
◦ As noted in the proof of the second derivatives test, if a real quadratic form is positive de�nite, then
all the diagonal entries in its diagonalization are positive. Likewise, if a real quadratic form is negative
de�nite, then all the diagonal entries in its diagonalization are negative. (The statements for semide�nite
forms are similar, upon replacing �positive� with �nonnegative� and �negative� with �nonpositive�.)

◦ It is not hard to see that the converse of this statement holds also, by considering the diagonalization:
a real quadratic form is positive de�nite if and only all its eigenvalues are positive, while it is positive
semide�nite if and only if all its eigenvalues are nonnegative.

• Example: Determine whether the quadratic form Q[(x, y)] = 2x2 − 4xy + 4y2 on R2 is positive de�nite.

◦ The associated matrix for the bilinear form is

[
2 −2
−2 4

]
whose eigenvalues are λ = 4 ±

√
10. Since

these are both positive, Q is positive de�nite .

• We also have a matrix formulation of positive-de�niteness:

• De�nition: If A is a Hermitian matrix, we say A is positive-de�nite if its eigenvalues are all positive, and A is
positive-semide�nite if its eigenvalues are all nonnegative. We also say A is negative-de�nite if its eigenvalues
are all negative, and A is negative-semide�nite if its eigenvalues are all nonpositive.

◦ Recall that the eigenvalues of a Hermitian matrix are always real, and that for real matrices, saying A is
Hermitian is equivalent to saying it is symmetric.

◦ Thus, we see that the de�nitions above are equivalent to saying that the quadratic form Q(v) = vTAv
associated to A is positive-de�nite, positive-semide�nite, negative-de�nite, or negative-semide�nite (re-
spectively).

5.2.4 Quadratic Forms Over Rn: Sylvester's Law of Inertia

• We now discuss another fundamental result (which was, in fact, somewhat implicit in our earlier discussion
of conics) regarding the possible diagonal entries for the diagonalization of a real quadratic form.

◦ By making di�erent choices for the matrix P (e.g., by rescaling it or selecting di�erent row operations),
we may obtain di�erent diagonalizations of a given real quadratic form.

◦ For example, with the quadratic form Q(x, y) = x2 + 2y2, which is already diagonal, if we change basis
to x′ = x/2, y′ = y/3, then we obtain Q(x, y) = 4(x′)2 + 18(y′)2.

◦ Indeed, it is clear that given any diagonalization, if we scale the ith row of the diagonalizing matrix by
the scalar α, then the coe�cient of the ith variable will be scaled by α2.

◦ Hence, by rescaling, we may change any positive coe�cient to an arbitrary positive value and any negative
coe�cient to an arbitrary negative value.

◦ It turns out that this is essentially the only possible change we may make to the diagonalization over R.

• Theorem (Sylvester's Law of Inertia): Suppose V is a �nite-dimensional real vector space and Q is a quadratic
form on V . Then the numbers of positive diagonal entries, zero diagonal entries, and negative diagonal entries
in any diagonalization of Q is independent of the choice of diagonalization.
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◦ The idea of this result is that we may decompose V as a direct sum of three spaces: one on which Q acts
as a positive-de�nite quadratic form (corresponding to the positive diagonal entries), one on which Q
acts as the zero map (corresponding to the zero entries), and one on which Q acts as a negative-de�nite
quadratic form (corresponding to the negative diagonal entries).

◦ Since this decomposition of V depends only on Q, these three spaces (and thus their dimensions) are
independent of the choice of diagonalizing basis, and so the number of positive, zero, and negative
diagonal entries in any diagonalization is necessarily �xed.

◦ Proof: Since we are over a �eld of characteristic not 2, we may equivalently work with the symmetric
bilinear form Φ associated to Q.

◦ Let V0 be the subspace of V given by V0 = {v0 ∈ V : Φ(v0,v) = 0 for all v ∈ V }: then Φ acts as the
zero map on V0. Now write V = V0 ⊕ V1: we claim that Φ is nondegenerate on V1.

◦ To see this, suppose y ∈ V1 has Φ(y,v1) = 0 for all v1 ∈ V : then for any w ∈ V we may write
w = v0 + v1 for vi ∈ Vi, in which case Φ(y,w) = Φ(y,v0) + Φ(y,v1) = 0. But this would imply y ∈ V0
whence y = 0.

◦ Now we will show that if Φ is nondegenerate on V1, then V1 decomposes as a direct sum V1 = V+ ⊕ V−,
where Φ is positive-de�nite on V+ and negative-de�nite on V−.

◦ Let V+ be the maximal subspace of V1 on which Φ is positive-de�nite (since the condition is de�ned
only on individual vectors, this subspace is well-de�ned), and de�ne V− = {w ∈ V : Φ(v+,w) =
0 for all v+ ∈ V+}. Then by an application of Gram-Schmidt5 (via Φ, rather than an inner product), we
see that V1 = V+ ⊕ V−.
◦ It remains to show that Φ is negative-de�nite on V−, so let z ∈ V− be nonzero. Then by assumption, Φ
is not positive-de�nite on V+ ⊕ 〈z〉, so there exists some nonzero v = v+ + αz with v+ ∈ V+ and α ∈ R
such that Φ(v,v) ≤ 0.

◦ We cannot have α = 0 since then positive-de�niteness would imply v+ = 0. Since Φ(v,v) = Φ(v+,v+)+

2αΦ(v+, z) + α2Φ(z, z) = Φ(v+,v+) + α2Φ(z, z), we have Φ(z, z) =
1

α2
[Φ(v,v)− Φ(v+,v+)].

◦ Then both terms are less than or equal to zero, and both cannot be zero. Hence Φ(z, z) < 0 for all
nonzero z ∈ V− and so Φ is negative-de�nite on V−.

◦ The desired result then follows from the direct sum decomposition V = V0 ⊕ V+ ⊕ V−: if we select any
diagonalization, then the restriction to the subspace generated by the basis vectors with diagonal entries
0, positive, negative (respectively) is trivial, positive-de�nite, negative-de�nite (respectively), and thus
the number of diagonal elements is at least dim(V0), dim(V+), dim(V−) (respectively). But since the
total number of diagonal elements is dim(V ) = dim(V0) + dim(V+) + dim(V−), we must have equality
everywhere.

◦ Hence the numbers of positive diagonal entries, zero diagonal entries, and negative diagonal entries in
any diagonalization of Q is independent of the choice of diagonalization, as claimed.

• We will also mention that there is some classical terminology associated with this result: the index of a
quadratic form is the number of positive diagonal entries (in any diagonalization) and the signature is the
di�erence between the number of positive and negative diagonal entries.

◦ Equivalently, by our discussion of the spectral theorem, the index is equal to the number of positive
eigenvalues of the matrix associated to the symmetric bilinear form, while the signature is the di�erence
between the number of positive eigenvalues and the number of negative eigenvalues.

◦ Remark: Some authors instead refer to the triple (dimV+,dimV−,dimV0), or some appropriate permu-
tation, as the signature of the quadratic form. These three values themselves are called the invariants
of the form, and the value of any two of them (along with the dimension of the ambient space V ) is
su�cient to �nd the value of the other one.

◦ For nondegenerate forms, where there are no 0 entries (so dimV0 = 0), the dimension of the space along
with the value of dimV+ − dimV− is su�cient to recover the two values.

5The argument here is the same as for showing that dim(W ) + dim(W⊥) = dim(V ) for an inner product. The Gram-Schmidt
algorithm does not use the positive-de�niteness of the inner product (it requires only linearity and symmetry), so the same argument
also works for any bilinear form.
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◦ Example: The quadratic form Q(x, y, z) = x2 − y2 − z2 on R3 has index 1 and signature −1.

◦ Example: The quadratic form Q(x, y, z) = x2 − z2 on R3 has index 1 and signature 0.

◦ Example: The quadratic form Q(x, y, z) = 5x2 + 4xy+ 6y2 + 4yz + 7z2 on R3 has index 3 and signature
3, since we computed its diagonalization to have diagonal entries 3, 6, 9.

• Example: Find the index and signature of the quadratic form Q(x, y, z) = −x2 − 8xy+ 4xz− y2 + 4yz + 2z2.

◦ The matrix associated to the corresponding bilinear form is A =

 −1 −4 2
−4 −1 2
2 2 2

.
◦ The characteristic polynomial is p(t) = det(tI3 −A) = t3 − 27t+ 54 = (t− 3)2(t+ 6).

◦ Thus, since the eigenvalues are λ = 3, 3,−6, we see that the diagonalization will have two positive
diagonal entries and one negative diagonal entry.

◦ This means that the index is 2 and the signature is 1 .

• As a corollary of Sylvester's law of inertia, we can read o� the shape of a conic section or quadric surface (in
all nondegenerate cases, and also in many degenerate cases) simply by examining the signs of the eigenvalues
of the underlying quadratic form.

• Example: Determine the shape of the quadric surface 13x2 − 4xy + 10y2 − 8xz + 4yz + 13z2 = 1.

◦ If Q(x, y, z) is the quadratic form above, the bilinear form has associated matrix A =

 13 −2 −4
−2 10 2
−4 2 13

.
◦ The characteristic polynomial is p(t) = det(tI3 −A) = t3 − 144t2 + 6480t− 93312 = (t− 36)2(t− 72).

◦ This means, upon diagonalizing Q(x, y, z), we will obtain the equation 36(x′)2 + 36(y′)2 + 72(z′)2 = 1.

This is the equation of an ellipsoid .

◦ Note that the only information we needed here was the fact that all three eigenvalues were positive to
make this observation: the quadric surfaces Q(x, y, z) = 1 that are ellipsoids are precisely those for which
Q(x, y, z) is a positive-de�nite quadratic form.

• We will close our discussion by observing that the study of quadratic forms touches on nearly every branch of
mathematics: we have already examined some of its ties to linear algebra (in the guise of bilinear forms and
diagonalization), analysis (in the classi�cation of critical points), and geometry (in the analysis of quadratic
varieties and the action of matrices on quadratic forms).

◦ We will not discuss it much here, since the requisite tools do not really belong to linear algebra, but the
study of quadratic forms over Q turns out to be intimately tied with many topics in number theory.

◦ A very classical problem in elementary number theory is to characterize, in as much detail as possible,
the integers represented by a particular quadratic form. For example: which integers are represented by
the quadratic form Q(x, y) = x2 + y2 (i.e., which integers can be written as the sum of two squares)?

◦ This family of problems, while seemingly quite simple, is actually intimately related to a number of very
deep results in modern number theory, and (historically speaking) was a major motivating force in the
development of a branch of algebraic number theory known as class �eld theory.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2019-2020. You may not reproduce or distribute this
material without my express permission.
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