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0.1 Determinants, Formally

• In this supplement, we give a formal development of the determinant. Since we will not use determinants
except in the context of doing practical calculations, and the general theory of determinants will not be of
theoretical use to us, the material has been relegated to this appendix.

0.1.1 De�nition of the Determinant

• De�nition: If A is an n × n matrix, we de�ne A(i,j) to be the (n − 1) × (n − 1) matrix obtained by deleting
the ith row and jth column from A.

◦ Example: For A =

 a1 a2 a3
b1 b2 b3
c1 c2 c3

 we have A(1,1) =

[
b2 b3
c2 c3

]
and A(2,3) =

[
a1 a2
c1 c2

]
.

• De�nition: The determinant of a square matrix A, denoted det(A) or |A|, is de�ned inductively. For a 1× 1
matrix [a] it is just the constant a. For an n× n matrix with n ≥ 2, de�ne A(1,k) to be the matrix obtained

from A by deleting the 1st row and kth column. Then we de�ne det(A) =

n∑
k=1

(−1)k+1a1,k det(A
(1,k)).

◦ Example: The determinant

∣∣∣∣ a b
c d

∣∣∣∣ is ∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc.

◦ Example: The determinant

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ is
∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣ b2 b3
c2 c3

∣∣∣∣−a2 ∣∣∣∣ b1 b3
c1 c3

∣∣∣∣+a3

∣∣∣∣ b1 b2
c1 c2

∣∣∣∣.
0.1.2 Determinants and Elementary Row Operations

• Our �rst goal is to characterize how the determinant behaves under the elementary row operations. As seems
reasonable by working out a few examples, the row operations change a determinant in the following manner:

◦ Interchanging two rows multiplies the determinant by −1.
◦ Multiplying all entries in one row by a constant scales the determinant by the same constant.

◦ Adding or subtracting a scalar multiple of one row to another leaves the determinant unchanged.

• In order to establish these results, we will �rst prove the �linearity� property of the determinant. To state
this result conveniently, we introduce some (nonstandard) notation:



• De�nition: If A is an n× n matrix, de�ne A(k)[v] to be the n× n matrix obtained by replacing the kth row
of A with the vector v.

◦ Example: For A =

 a1 a2 a3
b1 b2 b3
c1 c2 c3

 we have A(2)(1, 4, 7) =

 a1 a2 a3
1 4 7
c1 c2 c3

.
• Theorem (Linearity of the Determinant): If A is an n×n matrix, then for any vectors v and w, any 1 ≤ k ≤ n,
and any scalar r, we have det(A(k)[v + rw]) = det(A(k)[v]) + r det(A(k)[w]).

◦ In other words, this theorem says that the determinant of an n×n matrix is a linear function of the kth
row, when the other rows are �xed.

◦ Proof: We use induction on n. For n = 1, the result is trivial.

◦ Now suppose n ≥ 2, and let v = 〈b1, . . . , bn〉 and w = 〈c1, . . . , cn〉.
◦ If k = 1, then we can expand directly along the top row to see that

det(A(1)[v + rw]) =

n∑
j=1

(−1)j+1(bj + rcj) det(A
(1,j))

det(A(1)[v]) =

n∑
j=1

(−1)j+1(bj) det(A
(1,j))

det(A(1)[w]) =

n∑
j=1

(−1)j+1(cj) det(A
(1,j))

and so clearly det(A(1)[v + rw]) = det(A(1)[v]) + r det(A(1)[w]) as required.

◦ If k > 1, then we may apply the induction hypothesis to the (n− 1)× (n− 1) matrix A(1,j) for each j,
to see that it is a linear function of its (k − 1)st row.

◦ Thus, det(A
(1,j)
(k−1)[v+ rw]) = det(A

(1,j)
(k−1)[v]) + r det(A

(1,j)
(k−1)[w]). (The notation means that we have �rst

deleted the 1st row and jth column of A, and then replaced the (k − 1)st row with the appropriate
vector.)

◦ Then, by expanding along the top row, we have

det(A(k)[v + rw]) =

n∑
j=1

(−1)j+1a1,j det(A
(1,j)
(k−1)[v + rw])

=

n∑
j=1

(−1)j+1a1,j

[
det(A

(1,j)
(k−1)[v]) + r det(A

(1,j)
(k−1)[w])

]

=

 n∑
j=1

(−1)j+1a1,j det(A
(1,j)
(k−1)[v])

+ r

 n∑
j=1

(−1)j+1a1,j det(A
(1,j)
(k−1)[w])


= det(A(k)[v]) + r det(A(k)[w])

as required.

• Corollary (Row of Zeroes): If a matrix has a row of all zeroes, then its determinant is zero.

◦ Proof: If the kth row of A is the zero vector, apply the linearity result with v = w = 0.

◦ This yields det(A) = det(A(k)[0]) = det(A(k)[0]) + r det(A(k)[0]) = (r + 1) det(A) for any scalar r. But
the only way this can happen is when det(A) = 0.

• Corollary (Scaling a Row): Scaling a row by c scales the determinant by c.

◦ Proof: Apply the linearity result with v = 0 and w is the kth row of A: we obtain det(A(k)[rw]) =
det(A(k)[0]) + r det(A(k)[w]) = 0 + r det(A) = r det(A).



• Next, we will prove that interchanging two rows in a matrix will scale its determinant by −1. To do this
we will require the following calculation, which is simply the expansion of the determinant along the top two
rows:

• Proposition: For an n × n matrix A with n ≥ 3, let A[[i,j]] be the matrix obtained by deleting the �rst two

rows, and the ith and jth columns, of A. Then det(A) =
∑

1≤i<j≤n

(−1)i+j+1(a1,ia2,j − a2,ia1,j) det(A[[i,j]]). In

particular, interchanging the �rst two rows of A scales det(A) by −1.

◦ Proof: By de�nition, det(A) =

n∑
j=1

(−1)j+1a1,j det(A
(1,j)).

◦ Furthermore, det(A(1,j)) =

j−1∑
i=1

(−1)i+1a2,i det(A[[i,j]]) +

n∑
i=j+1

(−1)i+1a2,i det(A[[i,j]]).

◦ Plugging in the formulas for det(A(1,j)) into det(A), we obtain

det(A) =

n∑
j=1

(−1)j+1a1,j

j−1∑
i=1

(−1)i+1a2,i det(A[[i,j]]) +

n∑
i=j+1

(−1)i+1a2,i det(A[[i,j]])


=

∑
1≤i<j≤n

(−1)i+j+1(a1,ia2,j − a2,ia1,j) det(A[[i,j]])

after rearranging the summations.

◦ For the second statement, observe that interchanging the �rst two rows will reverse the order of the
terms a1,ia2,j and a2,ia1,j but leave everything else unchanged.

• Theorem (Interchanging Two Rows): Interchanging two rows of a determinant scales the determinant by −1.

◦ Proof: We use induction on n. For n = 2, we observe that

∣∣∣∣ p q
r s

∣∣∣∣ = ps− qr = −
∣∣∣∣ r s
p q

∣∣∣∣.
◦ Now suppose n ≥ 3 and that we are interchanging the ath and bth rows of A, where a < b, and take B
to be the matrix obtained by interchanging the ath and bth rows of A.

◦ If a = 1 and b = 2, then by the result above, interchanging the 1st and 2nd rows of A scales its
determinant by −1, and we are done.

◦ If a = 1 and b > 2, �rst interchange the 1st and 2nd rows of A to obtain the matrix C.

∗ Then det(C) =

n∑
j=1

(−1)j+1a1,j det(C
(1,j)).

∗ By the induction hypothesis, interchanging the 1st and (b− 1)st rows of C(1,j) scales det(C(1,j)) by
−1, so det(C(1,j)) = −det(D(1,j)), where D is the matrix whose �rst row is the second row of A,
whose second row is the bth row of A, and whose bth row is the �rst row of A.

∗ Then det(A) = −det(C) = −
n∑

j=1

(−1)j+1a1,j det(C
(1,j)) =

n∑
j=1

(−1)j+1a1,j det(D
(1,j)) = det(D).

∗ But now det(D) = −det(E) where E is obtained by interchanging the �rst two rows of D: this
is the same matrix obtained by interchanging the �rst row of A with the bth row, so we conclude
det(A) = −det(E).

◦ If a, b > 1, �rst write det(A) =

n∑
j=1

(−1)j+1a1,j det(A
(1,j)).

∗ By the induction hypothesis, interchanging the (a−1)st and (b−1)st rows of A(1,j) scales det(A(1,j))
by −1, so det(A(1,j)) = −det(B(1,j)).

∗ Then det(A) =

n∑
j=1

(−1)j+1a1,j det(A
(1,j)) = −

n∑
j=1

(−1)j+1a1,j det(B
(1,j)) = −det(B).



◦ We have shown in all cases that interchanging the ath row with the bth row of A scales the determinant
by −1, so we are done.

• Using the result above we can now prove that the determinant of a matrix with two equal rows is zero:

• Proposition (Two Equal Rows): A matrix with two equal rows has determinant zero.

◦ Proof: We showed earlier that det(A) =
∑

1≤i<j≤n

(−1)i+j+1(a1,ia2,j − a2,ia1,j) det(A[[i,j]]).

◦ If rows 1 and 2 are equal then each term a1,ia2,j − a2,ia1,j is zero, so det(A) = 0.

◦ Now suppose that the ath and bth rows are equal. Let B be the matrix obtained by interchanging the
ath and 1st rows: then det(B) = ± det(A) (the plus sign will occur if a = 1, and the minus sign will
occur when a 6= 1). Then let C be the matrix obtained by interchanging the bth and 2nd rows; in the
same way, det(C) = ±det(B) = ±det(A).

◦ Then A has equal �rst and second rows, so det(A) = 0. Thus, det(C) = 0.

◦ Remark: A similar argument is to interchange the two equal rows: this would scale the determinant by
−1, in which case we would conclude det(A) = −det(A) so that 2 det(A) = 0. However, this will only
force det(A) = 0 when 2 6= 0 in the scalar �eld (and there do exist �elds in which 2 = 0). The proof we
gave above works in every �eld.

• We can, at last, show that adding or subtracting a scalar multiple of one row to another leaves the determinant
unchanged.

• Theorem (Adding a Multiple of A Row to Another): Adding or subtracting a scalar multiple of one row to
another leaves a determinant unchanged.

◦ Proof: Suppose that we are adding r times the bth row of A to the kth row of A.

◦ Apply the linearity result in the kth row of A, where v is the kth row of a and w is the bth row of A.

◦ This yields det(A(k)[v + rw]) = det(A(k)[v]) + r det(A(k)[w]).

◦ But now notice that A(k)[w] has both its bth and kth rows equal to w, so by the proposition above, its
determinant is zero.

◦ Hence det(A(k)[v + rw]) = det(A(k)[v]), as claimed.

0.1.3 Cofactor Expansions

• Corollary (Linear Dependence of Rows): If the rows of a matrix are linearly dependent, its determinant is
zero.

◦ Proof: If there is a nontrivial linear dependence among the rows, we can apply elementary row and
column operations to create a row of all zeroes. The determinant of the resulting matrix is a nonzero
scalar times the original determinant, but the new determinant is zero.

• We can also give an expansion formula for the determinant along an arbitrary row:

• De�nition: If A is an n× n matrix, the (j, k) cofactor of A, C(j,k), is de�ned to be (−1)j+k det(A(j,k)).

◦ Example: The (2, 3) cofactor of

 6 −1 3
0 2 0
3 0 3

 is (−1)2+3

∣∣∣∣ 6 −1
3 0

∣∣∣∣ = (−1)53 = −3.

• Theorem (Expansion by Minors): If A is an n× n matrix, then for any �xed k, det(A) =

n∑
j=1

ak,jC
(j,k).

◦ Proof: Starting with the matrix A, successively interchange rows k and 1, rows 1 and 2, rows 2 and 3,
... , and rows k − 2 and k − 1.



◦ The �rst row of the resulting matrix B will be the kth row of A, and the remaining rows will be rows 1,
2, ... , k − 1, k + 1, ... , n of A, in that order.

◦ By our results, det(B) = (−1)k−1 det(A). But now by de�nition, det(B) =

n∑
j=1

(−1)j+1b1,j det(B
(1,j)),

and B(1,j) is the same as the matrix obtained by deleting the kth row and jth column of A, so B(1,j) =
A(k,j).

◦ So we obtain det(A) = det(B) = (−1)k−1

n∑
j=1

(−1)j+1ak,j det(A
(k,j)) =

n∑
j=1

ak,jC
(j,k), as claimed.

• The statement of the expansion-by-minors formula requires some unpacking.

◦ Essentially, the idea is that we can compute the determinant by expanding along any row, rather than
just the �rst row (as in the original de�nition), or along any column. The calculation of the determinant
this way is called �expansion by minors�.

◦ For example, expanding along the second row yields∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = −b1
∣∣∣∣ a2 a3
c2 c3

∣∣∣∣+ b2

∣∣∣∣ a1 a3
c1 c3

∣∣∣∣− b3

∣∣∣∣ a1 a2
c1 c2

∣∣∣∣.
◦ The only di�culty is remembering which terms have which sign (plus or minus). Each term has a
particular sign based on its location in the matrix, as follows: the (1, 1) entry has a plus sign, and the

remaining elements are �lled in in an alternating �checkerboard� pattern:

 + − +
− + −
+ − +

.
0.1.4 Computing Determinants

• The fundamental properties of the determinant we have derived so far are as follows:

◦ The determinant is a linear function of any row, when the other rows are �xed.

◦ Interchanging two rows multiplies the determinant by −1.
◦ Multiplying all entries in one row by a constant scales the determinant by the same constant.

◦ Adding or subtracting a scalar multiple of one row to another leaves the determinant unchanged.

◦ We can compute a determinant using �expansion by minors� along any row.

• When choosing a row to expand along, it is best to choose one with many zeroes, as this will reduce the
number of smaller determinants that need to be evaluated.

• Example: Find the determinant

∣∣∣∣∣∣∣∣
1 −1 6 6
2 4 4 7
0 0 3 0
0 0 8 4

∣∣∣∣∣∣∣∣.

◦ Using an expansion along the third row, we see that

∣∣∣∣∣∣∣∣
1 −1 6 6
2 4 4 7
0 0 3 0
0 0 8 4

∣∣∣∣∣∣∣∣ = 3

∣∣∣∣∣∣
1 −1 6
2 4 7
0 0 4

∣∣∣∣∣∣.
◦ Expanding along the third row again yields 3

∣∣∣∣∣∣
1 −1 6
2 4 7
0 0 4

∣∣∣∣∣∣ = 12

∣∣∣∣ 1 −1
2 4

∣∣∣∣ = 12(1 · 4− (−1) · 2) = 72 .

• Upper and lower-triangular matrices have many zeroes, and we can use expansion by minors to give a simple
formula for their determinants:

• Corollary (Upper and Lower-Triangular Determinants): The determinant of any upper-triangular or lower-
triangular matrix is equal to the product of the diagonal entries.



◦ Proof: Induct on the size of the matrix. The results are both trivial for a 1× 1 matrix.

◦ For an n × n lower-triangular matrix with n ≥ 2, expand along the �rst row: this yields a1,1 times the
determinant of the lower right (n− 1)× (n− 1) matrix, which by the inductive hypothesis is the product
of the remaining diagonal entries.

◦ For an n×n upper-triangular matrix with n ≥ 2, expand along the bottom row: this yields (−1)2n−2an,n =
an,n times the determinant of the upper left (n− 1)× (n− 1) matrix, which by the inductive hypothesis
is the product of the remaining diagonal entries.

• Although expansion by minors (or even just the de�nition of the determinant) gives a recursive method for
computing any n× n determinant, these methods are quite slow unless the matrix has many zero entries.

◦ Evaluating an n × n determinant using the de�nition requires computing n total (n − 1) × (n − 1)
determinants, each of which requires evaluating (n− 1) total (n− 2)× (n− 2) determinants.

◦ Continuing in this way, we see that evaluating an n×n determinant from the de�nition requires n! total
computations (where we say a 1× 1 determinant is one computation).

◦ Since 5! = 120, it is already quite unreasonable to compute a 5 × 5 determinant by hand using this
method, while a 10× 10 determinant (note 10! = 3628800) is entirely out of reach, and even a computer
would have trouble with a 30× 30 determinant (30! = 2.65 · 1032).

• Row-reduction is a far more e�cient method for computing large determinants.

◦ It is su�cient to row-reduce a matrix to put it into row-echelon form, since any row-echelon matrix
is upper-triangular, and the determinant of an upper triangular matrix is simply the product of the
diagonal entries.

◦ Row-reducing an n×n matrix requires approximately n2 individual multiplications, although due to the
fact that the sizes of the entries in the matrix can grow quite large (if one is trying to avoid introducing
denominators), the total number of calculations is on the order of n3.

◦ For n = 5, one can typically row-reduce a matrix by hand to compute a determinant, and even a 10× 10
determinant (approximately a few hundred computations) would not be impossible by hand. A computer
can easily deal with a 1000× 1000 determinant using row-reductions.

• Example: Find the determinant

∣∣∣∣∣∣∣∣
1 2 −1 3
3 7 0 4
−2 1 1 2
−1 3 16 5

∣∣∣∣∣∣∣∣.

◦ By row-reducing,

∣∣∣∣∣∣∣∣
1 2 −1 3
3 7 0 4
−2 1 1 2
−1 3 16 5

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 2 −1 3
0 1 3 −7
0 5 −1 8
0 5 15 8

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 2 −1 3
0 1 3 −7
0 0 −16 43
0 0 0 36

∣∣∣∣∣∣∣∣ = −576 .

0.1.5 Properties and Applications of Determinants

• As another application of the expansion-by-minors formulas, we can essentially give a formula for the inverse
of a matrix:

• Corollary (Adjugate Formula): For any matrix A, A · adj(A) = det(A)In, where adj(A) is the matrix whose

(i, j)-entry is given by the (j, i) cofactor C(j,i) of A. In particular, when det(A) 6= 0, A−1 =
1

det(A)
[adj(A)].

◦ The name adj(A) is short for adjugate. (Historically, this matrix was sometimes called the �adjoint�, but
that term is now used to denote a di�erent object.)

◦ Proof: First consider the (k, k) entry in the product A · adj(A): it is the sum

n∑
l=1

ak,lC
(k,l), which is the

cofactor expansion of det(A) along the kth row. Thus, the (k, k) entry is equal to det(A), for each k.



◦ Now consider the (i, j) entry of the product, for i 6= j: it is the sum

n∑
i=1

ai,lC
(j,l), which is the expansion

of the determinant of the matrix obtained by replacing the jth row of A with the ith one, along its ith
row. This determinant is zero since the matrix has two equal rows.

◦ Hence all of the o�-diagonal entries of A ·adj(A) are zero, and the diagonal entries are all equal to det(A):
this means A · adj(A) = det(A)In as claimed. The second formula then follows immediately.

• Although the adjugate formula does give an explicit formula for the inverse, it is not computationally useful:
it is much faster to compute A−1 using row reductions.

◦ Using the adjugate formula requires �nding an n× n determinant and n2 total (n− 1)× (n− 1) deter-
minants, so even for a 3× 3 matrix, the adjugate formula is far less e�cient than row reduction.

• Using row reductions, we can prove the other fundamental properties of the determinant.

• Theorem (Inverses and Determinants): A matrix A is invertible precisely when det(A) 6= 0.

◦ Proof: Applying an elementary row operation will scale det(A) by a nonzero constant, and elementary
matrices are invertible, so we may apply row operations to A without changing either of the parts of the
theorem.

◦ So now assume A is in reduced row-echelon form. If A has a row of all zeroes, then A is not invertible
and A also has determinant zero, by our earlier results.

◦ If A does not have any rows of all zeroes, then A must be the identity matrix, which is invertible and
has nonzero determinant.

• The other fundamental property of the determinant is that it is multiplicative.

• Theorem (Multiplication and Determinants): For any n× n matrices A and B, det(AB) = det(A) det(B).

◦ Proof: Observe �rst that if E is an elementary matrix, then det(EB) = det(E) det(B): this follows from
our analysis of the how the elementary row operations a�ect determinants and the fact that EB is the
matrix obtained by applying the elementary row operation to B.

◦ If A is invertible, then by our previous analysis we can row-reduce A to the identity matrix, and therefore
write A = E1E2 · · ·Ek for elementary matrices E1, . . . , Ek.

◦ Then by repeated application of the result above, det(A) = det(E1) det(E2) · · · det(Ek).

◦ Then, again by the result above, det(AB) = det(E1 · · ·EkB) = det(E1) det(E2) · · · det(Ek) det(B) =
det(A) det(B).

◦ Now suppose that A is not invertible. If AB were invertible, then we could write A−1 = B(AB)−1 and
so A would necessarily be invertible (which it is not). Thus, neither A nor AB is invertible, and thus
det(A) = det(AB) = 0, and so det(AB) = 0 = det(A) det(B) once again.

• Corollary (Determinant of Inverse Matrix): If A is invertible, then det(A−1) =
1

det(A)
.

◦ Proof: In det(AB) = det(A) det(B), set B = A−1: we get 1 = det(In) = det(AA−1) = det(A) det(A−1).

• Finally, we show that the determinant of the transpose of a matrix is equal to the determinant of the original
matrix.

• Theorem (Determinant of Transpose): For any n× n matrix A, det(A) = det(AT ).

◦ Proof: If A is invertible, then we can write A = E1E2 · · ·Ek as a product of elementary (row) matrices.

◦ Then AT = ET
k · · ·ET

2 E
T
1 , and so det(AT ) = det(ET

k ) · · · det(ET
2 ) det(E

T
1 ).

◦ But now it is a simple veri�cation that det(ET ) = det(E) for any elementary matrix E. Thus, we
conclude det(A) = det(AT ).

◦ If A is not invertible, then we can write A = E1E2 · · ·EkB where B is a matrix with a row of all zeroes.



◦ Then AT = BTET
k · · ·ET

2 E
T
1 , so det(AT ) = det(BT ) det(ET

k ) · · · det(ET
2 ) det(E

T
1 ). But BT is a matrix

with a column of all zeroes: such a matrix is not invertible (CBT would have a column of all zero entries
for any matrix C), and therefore has determinant zero.

◦ Then det(A) = 0 = det(AT ) in this case as well.

• The fact that the determinant of a transpose is equal to the determinant of the original matrix means that all
of the results about determinants that we proved for rows also hold for columns: interchanging two columns
of a matrix scales the determinant by −1, a matrix with two equal columns has determinant zero, we can
expand by minors along any column, and so forth.

• As a �nal application, we can use determinants to solve systems of linear equations whose coe�cient matrix
is invertible:

• Theorem (Cramer's Rule): If A is an invertible n× n matrix, then the matrix equation Ax = c has a unique

solution x = A−1c. Speci�cally, the ith coordinate of x is given by xi =
det(Ci)

det(A)
, where Ci is the matrix

obtained by replacing the ith column of A with the column vector c.

◦ Although Cramer's rule is useful theoretically, in practice computing all of the determinants takes much
longer than simply computing the inverse matrix A−1.

◦ Proof: If A is invertible, then we can multiply both sides of the equation Ax = c on the left by A−1 to

see that x = A−1(Ax) = A−1c. Since A−1 =
1

det(A)
adj(A), we obtain x =

adj(A)c

det(A)
.

◦ The ith coordinate of the matrix product in the numerator is xi =

n∑
k=1

ci(−1)k+i det(A(i,k)), which is the

expansion by minors along the ith column for the determinant of the matrix Ci.

◦ Therefore, xi =
det(Ci)

det(A)
as claimed.

• Example: Solve the system of equations 3x+ z = 0, x+ 2y − 3z = 1, 2x− 2y − z = 2 using Cramer's rule.

◦ The coe�cient matrix is C =

 3 0 1
1 2 −3
2 −2 −1

 whose determinant is det(C) = −30.

◦ Since this matrix is invertible the system will have a unique solution.

◦ We have C1 =

 0 0 1
1 2 −3
2 −2 −1

, C2 =

 3 0 1
1 1 −3
2 2 −1

, and C3 =

 3 0 0
1 2 1
2 −2 2

, and the respective

determinants are det(C1) = −6, det(C2) = 15, and det(C3) = 18.

◦ Thus, by Cramer's rule, the solution is (x, y, z) =

(
−6
−30

,
15

−30
,
18

−30

)
=

(
1

5
,−1

2
,−3

5

)
.

• As with the other formulas involving determinants, Cramer's rule is not particularly useful for practical
computation. In addition to requiring the coe�cient matrix to be square and invertible, the total amount of
computation is much larger.

◦ Solving an n× n system with Cramer's rule requires computing n+ 1 total n× n determinants.

◦ In comparison, solving the system via row-reduction directly requires only row-reducing one n×n matrix.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2019. You may not reproduce or distribute this
material without my express permission.


