
Math 4571 (Advanced Linear
Algebra)

Lecture #30

Quadratic Forms (Part 1):

Quadratic Forms

Diagonalization of Quadratic Forms

Quadratic Varieties in Rn

This material represents §5.2.1 + §5.2.2 from the course notes.



Overview

In the previous lecture, we discussed bilinear forms on a vector
space.

In particular, in the proof that symmetric forms are diagonalizable,
the existence of a vector x ∈ V such that Φ(x, x) 6= 0 played a
central role. We now examine this (non-linear!) function Φ(x, x)
on V more closely.



Quadratic Forms, I

We begin by examining this associated form more closely:

Definition

If Φ is a symmetric bilinear form on V , the function Q : V → F
with Q(v) = Φ(v, v) is called the quadratic form associated to Φ.

Example:

If Φ is the symmetric bilinear form with matrix A =

[
1 3
3 4

]
over F 2, then the corresponding quadratic form has

Q(

[
x
y

]
) = x2 + 6xy + 4y2.

The fact that this is a homogeneous quadratic function of the
entries of the input vector is the reason for the name
“quadratic form”.



Quadratic Forms, I

We begin by examining this associated form more closely:

Definition

If Φ is a symmetric bilinear form on V , the function Q : V → F
with Q(v) = Φ(v, v) is called the quadratic form associated to Φ.
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If Φ is the symmetric bilinear form with matrix A =
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1 3
3 4

]
over F 2, then the corresponding quadratic form has
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[
x
y

]
) = x2 + 6xy + 4y2.

The fact that this is a homogeneous quadratic function of the
entries of the input vector is the reason for the name
“quadratic form”.



Quadratic Forms, II

More Examples:

More generally, if A is any n × n matrix, then the quadratic
form associated to ΦA(v,w) = vTAw is QA(v) = vTAv.

So for example, if A =

 1 3 4
3 4 7
4 7 2

 and v =

 x
y
z

 then

QA(v) = x2 + 6xy + 8yz + 4y2 + 14yz + 2z2.

If Φ is an inner product 〈·, ·〉 on a real vector space, then the
associated quadratic form is Q(v) = ||v||2, the square of the
norm of v.



Quadratic Forms, III

Clearly, Q is uniquely determined by Φ. When char(F ) 6= 2, the
reverse holds as well.

Explicitly, since
Q(v + w) = Φ(v + w, v + w) = Q(v) + 2Φ(v,w) + Q(w), we
can write Φ(v,w) = 1

2 [Q(v + w)− Q(v)− Q(w)], and so we
may recover Φ from Q.

Also, observe that for any scalar α ∈ F , we have
Q(αv) = Φ(αv, αv) = α2Φ(v, v) = α2Q(v).

These last two relations provide us a way to define a quadratic
form without explicit reference to the underlying symmetric
bilinear form.



Quadratic Forms, IV

Definition

If V is a vector space, a quadratic form is a function Q : V → F
such that Q(αv) = α2Q(v) for all α ∈ F , and the function
Q(v + w)− Q(v)− Q(w) is a bilinear form in v and w.

Here are some basic properties (easy to see from the definition):

Sensibly enough, the quadratic form associated to any bilinear
form is a quadratic form (per the definition above).

By setting α = 0 we see Q(0) = 0, and by setting α = −1 we
see Q(−v) = Q(v).

Like with bilinear forms, the set of all quadratic forms on V
forms a vector space.



Quadratic Forms, IV

Definition

If V is a vector space, a quadratic form is a function Q : V → F
such that Q(αv) = α2Q(v) for all α ∈ F , and the function
Q(v + w)− Q(v)− Q(w) is a bilinear form in v and w.

Here are some basic properties (easy to see from the definition):

Sensibly enough, the quadratic form associated to any bilinear
form is a quadratic form (per the definition above).

By setting α = 0 we see Q(0) = 0, and by setting α = −1 we
see Q(−v) = Q(v).

Like with bilinear forms, the set of all quadratic forms on V
forms a vector space.



Quadratic Forms, V

Example (again): Show that the function
Q[(x , y)] = x2 + 6xy + 4y2 is a quadratic form on F 2.

First, Q[α(x , y)] = (αx)2 + 6(αx)(αy) + 4(αy)2 =
α2(x2 + 6xy + 4y2) = α2Q(x , y).

Also, Q[(x1, y1) + (x2, y2)]− Q[(x1, y1)]− Q[(x2, y2)] =
2x1x2 + 6x1y2 + 6x2y1 + 8y1y2. It is straightforward to verify
that this is a bilinear form by checking the linearity explicitly.

Alternatively (at least when char(F ) 6= 2) we can write down
the associated bilinear form
Φ((a, b), (c , d)) = 1

2 [Q[(a+c , b+d)]−Q[(a, c)]−Q[(b, d)]] =
ac + 3ad + 3bc + 4bd , and this is the bilinear form associated

to the matrix

[
1 3
3 4

]
, as indeed we saw earlier.



Quadratic Forms, V

Example (again): Show that the function
Q[(x , y)] = x2 + 6xy + 4y2 is a quadratic form on F 2.

First, Q[α(x , y)] = (αx)2 + 6(αx)(αy) + 4(αy)2 =
α2(x2 + 6xy + 4y2) = α2Q(x , y).
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2x1x2 + 6x1y2 + 6x2y1 + 8y1y2. It is straightforward to verify
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the associated bilinear form
Φ((a, b), (c , d)) = 1

2 [Q[(a+c , b+d)]−Q[(a, c)]−Q[(b, d)]] =
ac + 3ad + 3bc + 4bd , and this is the bilinear form associated

to the matrix

[
1 3
3 4

]
, as indeed we saw earlier.



Quadratic Forms, VI

Example: If V = C [a, b], show that the function

Q(f ) =
∫ b
a f (x)2 dx is a quadratic form on V .

First, we have
Q(αf ) =

∫ b
a [αf (x)]2 dx = α2

∫ b
a f (x)2 dx = α2Q(f ).

Also, we have Q(f + g)− Q(f )− Q(g) =
∫ b
a [f (x) +

g(x)]2 dx −
∫ b
a f (x)2 dx −

∫ b
a g(x)2 dx =

∫ b
a 2f (x)g(x) dx ,

and this is indeed a bilinear form in f and g .



Quadratic Forms, VI

Example: If V = C [a, b], show that the function

Q(f ) =
∫ b
a f (x)2 dx is a quadratic form on V .

First, we have
Q(αf ) =

∫ b
a [αf (x)]2 dx = α2

∫ b
a f (x)2 dx = α2Q(f ).

Also, we have Q(f + g)− Q(f )− Q(g) =
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a [f (x) +

g(x)]2 dx −
∫ b
a f (x)2 dx −

∫ b
a g(x)2 dx =

∫ b
a 2f (x)g(x) dx ,

and this is indeed a bilinear form in f and g .



Quadratic Forms, VII

If char(F ) 6= 2, then the function
1

2
[Q(v + w)− Q(v)− Q(w)] is

the bilinear pairing associated to Q.

Indeed, the association maps give an isomorphism between
the spaces of quadratic forms and bilinear pairings.

In particular, any homogeneous quadratic function on F n (i.e.,
any polynomial function all of whose terms have total degree
2) is a quadratic form on F n.

For variables x1, . . . , xn, such a function has the general form
Q =

∑
1≤i≤j≤n ai ,jxixj .

The associated matrix A for the corresponding bilinear form

has entries ai ,j = aj ,i =

{
ai ,i for i = j

ai ,j/2 for i 6= j
.



Quadratic Forms, VIII

Examples:

The function Q(x1, x2) = 7x21 − 4x1x2 + 3x22 is a quadratic
form on F 2. The matrix for the associated symmetric bilinear

form is

[
7 −2
−2 3

]
.

The function Q(x1, x2, x3) = x21 + 2x1x3 − 3x2x3 + 4x23 is a
quadratic form on F 3. When char(F ) 6= 2, the matrix for the

associated symmetric bilinear form is

 1 0 1
0 0 −3

2
1 −3

2 4

.

The function Q(x1, . . . , xn) = x21 + 2x22 + 3x23 + · · ·+ nx2n is a
quadratic form on F n. Its associated matrix is the diagonal
matrix with entries 1, 2, . . . , n.



Quadratic Forms Over Rn, I

We will now specialize to the specific case of quadratic forms on a
finite-dimensional real vector space.

Our reason for this is that quadratic forms in this setting behave
particularly nicely, and we will be able to describe several concrete
applications to analysis and geometry (both of which naturally take
place in Rn.

In the situation where V is a finite-dimensional vector space over
F = R, by choosing a basis we may assume that V = Rn for
concreteness.



Quadratic Forms Over Rn, II

We have discussed a procedure for diagonalization already, but we
can give another one here:

By the real spectral theorem, any real symmetric matrix is
orthogonally diagonalizable, meaning that if S is any real
symmetric matrix, then there exists an orthogonal matrix Q
(with QT = Q−1) such that QSQ−1 = D is diagonal.

Now, since QT = Q−1, if we take R = QT then this condition
is the same as saying RTSR = D is diagonal.

But this is precisely the condition we require in order to
diagonalize a symmetric bilinear form!

Hence: we may diagonalize a quadratic form over R by
computing the (regular) diagonalization of the corresponding
matrix: this is quite efficient as it only requires finding
eigenvalues and eigenvectors.



Quadratic Forms Over Rn, III

One particular reason we will want to use the spectral approach to
diagonalize a quadratic form over Rn is that the orthogonal change
of basis has much nicer geometric properties.

Specifically, the underlying diagonalization represents
“completing the square” in the quadratic form via an
orthogonal change of variables (i.e., one arising from an
orthonormal basis).

Geometrically, this corresponds to a rotation of the standard
coordinate axes, possibly also with a reflection.

Such transformations (as discussed on a past homework) are
isometries, and so they preserve lengths and angles, which is
not the case for other possible choices of diagonalization.



Quadratic Forms Over Rn, IV

Example: Find an orthogonal change of basis that diagonalizes the
quadratic form Q(x , y , z) = 5x2 + 4xy + 6y2 + 4yz + 7z2 over R3.

We simply diagonalize the matrix for the corresponding

bilinear form, which is A =

 5 2 0
2 6 2
0 2 7

 . The characteristic

polynomial is p(t) = det(tI3 − A) = t3 − 18t2 + 99t − 162 =
(t − 3)(t − 6)(t − 9), so the eigenvalues are λ = 3, 6, 9.

Computing a basis for each eigenspace yields eigenvectors 2
−2
1

,

 −2
−1
2

,

 1
2
2

 for λ = 3, 6, 9.



Quadratic Forms Over Rn, V

Example: Diagonalize Q(x , y , z) = 5x2 + 4xy + 6y2 + 4yz + 7z2.

Hence we may take Q =
1

3

 2 −2 1
−2 −1 2
1 2 2

, so that

QT = Q−1 and QAQ−1 =

 3 0 0
0 6 0
0 0 9

 = D.

Therefore the desired change of basis is x ′ =
1

3
(2x − 2y + z),

y ′ =
1

3
(−2x − y + 2z), z ′ =

1

3
(x + 2y + 2z).

With this change of basis it is not hard to verify that, indeed,
Q(x , y , z) = 3(x ′)2 + 6(y ′)2 + 9(z ′)2.



Conics and Quadrics, I

One application of the existence of such a diagonalization is to
classify the conic sections in R2, and the quadric surfaces in R3.
These curves (in R2) and surfaces (in R3)

For conics in R2, the general equation is
Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.

By diagonalizing, we may eliminate the xy term, and so the
quadratic terms can be put into the form Ax2 + Cy2.

We then have various cases depending on the signs of A and
C . The end result (after doing some more algebra) is that
every conic is either degenerate (e.g., a point, a line, two
lines), or an ellipse, a parabola, or hyperbola.



Conics and Quadrics, II

Now we consider quadric surfaces in R3.

Like with conics, we may eliminate cross-terms by
diagonalizing, which yields a reduced equation
Ax2 + By2 + Cz2 + Dx + Ey + Fz + G = 0.

We can then perform a similar analysis (based on how many
of A,B,C are zero and the relative signs of the nonzero
coefficients and the linear terms) to obtain all of the possible
quadric surfaces in R3.

In addition to the “degenerate” surfaces (e.g., a point, a
plane, two planes), after rescaling the variables, one obtains 9
different quadric surfaces: the ellipsoid, the
elliptic/parabolic/hyperbolic cylinders, the hyperboloid of one
sheet, the elliptical cone, the hyperboloid of two sheets, the
elliptic paraboloid, and the hyperbolic paraboloid.



Conics and Quadrics, III

It is worth using a computer graphing system, like Mathematica or
Desmos, to plot all of these surfaces. Here are equations for the
nine possible quadric surfaces in R3:

Ellipsoid: x2 + y2 + z2 = 1.

Elliptic cylinder: x2 + y2 = 1.

Parabolic cylinder: y = x2.

Hyperbolic cylinder: x2 − y2 = 1.

Hyperboloid of two sheets: x2 + y2 − z2 = −1.

Elliptical cone: x2 + y2 − z2 = 0.

Hyperboloid of one sheet: x2 + y2 − z2 = 1.

Elliptic paraboloid z = x2 + y2.

Hyperbolic paraboloid: z = x2 − y2.



Quadratic Varieties, I

All of the conics and quadric surfaces are examples of
algebraic varieties, which are the solution sets of polynomial
equations in several variables.

If we have a general quadratic variety (i.e., a quadratic
polynomial equation in n variables), we can make an
appropriate translation and rescaling to convert it to the form
Q(x1, . . . , xn) = 1 or 0, where Q is a quadratic form.

By diagonalizing the corresponding quadratic form using an
orthonormal change of basis (which corresponds to a rotation
of the coordinates axes and possibly also a reflection), we can
then determine the shape of the variety’s graph in Rn.



Quadratic Varieties, II

Example: Diagonalize the quadratic form
Q(x , y) = 2x2 − 4xy − y2. Use the result to describe the shape of
the conic section Q(x , y) = 1 in R2.

The matrix associated to the corresponding bilinear form is

A =

[
2 −2
−2 −1

]
.

The characteristic polynomial is
p(t) = det(tI2 − A) = t3 − t + 6 with eigenvalues λ = 3,−2.

We need to diagonalize A using an orthonormal basis of
eigenvectors. Since the eigenvalues are distinct, we simply
compute a basis for each eigenspace: doing so yields
eigenvectors (−2, 1) and (1, 2) for λ = 3,−2 respectively.



Quadratic Varieties, II

Example: Diagonalize the quadratic form
Q(x , y) = 2x2 − 4xy − y2. Use the result to describe the shape of
the conic section Q(x , y) = 1 in R2.

The matrix associated to the corresponding bilinear form is

A =

[
2 −2
−2 −1

]
.

The characteristic polynomial is
p(t) = det(tI2 − A) = t3 − t + 6 with eigenvalues λ = 3,−2.

We need to diagonalize A using an orthonormal basis of
eigenvectors. Since the eigenvalues are distinct, we simply
compute a basis for each eigenspace: doing so yields
eigenvectors (−2, 1) and (1, 2) for λ = 3,−2 respectively.



Quadratic Varieties, III

Example: Describe the shape of 2x2 − 4xy − y2 = 1 in R2.

From the previous slide, we may diagonalize A via the

orthogonal matrix Q =
1√
5

[
−2 1
1 2

]
, and the resulting

diagonalization is Q(x , y , z) = 3(x ′)2 − 2(y ′)2.

In particular, since the change of basis is orthonormal, in the
new coordinate system the equation Q(x , y , z) = 1 reads
simply as 3(x ′)2 − 2(y ′)2 = 1.

By rescaling again, with x ′′ =
√

3x ′, y ′′ =
√

2y ′, this is
equivalent to (x ′′)2 − (y ′′)2 = 1, which is a hyperbola.



Quadratic Varieties, IV

Example: Diagonalize the quadratic form
Q(x , y , z) = 2x2 + 4xy − 20xz + 11y2 + 16yz + 5z2. Use the result
to describe the shape of the quadric surface Q(x , y , z) = 1 in R3.

The matrix associated to the corresponding bilinear form is

A =

 2 2 −10
2 11 8
−10 8 5

.

The characteristic polynomial is p(t) = det(tI3 − A) =
t3 − 18t2 − 81t + 1458 = (t + 9)(t − 9)(t − 18) with
eigenvalues λ = 9, 18,−9.

We need to diagonalize A using an orthonormal basis of
eigenvectors. Since the eigenvalues are distinct, we simply
compute a basis for each eigenspace: doing so yields
eigenvectors (−2,−2, 1), (−1, 2, 2), (2,−1, 2), for
λ = 9, 18,−9 respectively.



Quadratic Varieties, IV

Example: Diagonalize the quadratic form
Q(x , y , z) = 2x2 + 4xy − 20xz + 11y2 + 16yz + 5z2. Use the result
to describe the shape of the quadric surface Q(x , y , z) = 1 in R3.

The matrix associated to the corresponding bilinear form is

A =

 2 2 −10
2 11 8
−10 8 5

.

The characteristic polynomial is p(t) = det(tI3 − A) =
t3 − 18t2 − 81t + 1458 = (t + 9)(t − 9)(t − 18) with
eigenvalues λ = 9, 18,−9.

We need to diagonalize A using an orthonormal basis of
eigenvectors. Since the eigenvalues are distinct, we simply
compute a basis for each eigenspace: doing so yields
eigenvectors (−2,−2, 1), (−1, 2, 2), (2,−1, 2), for
λ = 9, 18,−9 respectively.



Quadratic Varieties, IV

Example: Describe 2x2 + 4xy − 20xz + 11y2 + 16yz + 5z2 = 1.

From the previous slide, we may diagonalize A via the

orthogonal matrix Q =
1

3

 −2 −1 2
−2 2 −1
1 2 2

, and the

resulting diagonalization is
Q(x , y , z) = 9(x ′)2 + 18(y ′)2 − 9(z ′)2.

In particular, since the change of basis is orthonormal, in the
new coordinate system the equation Q(x , y , z) = 1 reads
simply as 9(x ′)2 + 18(y ′)2 − 9(z ′)2 = 1.

By rescaling again, with x ′′ = 3x ′, y ′′ = 3
√

2y ′, z ′′ = 3z ′, this
is equivalent to (x ′′)2 + (y ′′)2 − (z ′′)2 = 1, which is a

hyperboloid of one sheet .



Summary

We introduced the notion of a quadratic form on a vector space,
and discussed in detail the relationship between quadratic forms
and symmetric bilinear forms.

We discussed diagonalization of quadratic forms, and in particular
considerer the case of diagonalizing quadratic forms over R.

We examined quadratic varieties in Rn and discussed how to use
our results to classify them.

Next (and final!) lecture: Quadratic Forms (Part 2)


