
Math 4571 (Advanced Linear
Algebra)

Lecture #29

Bilinear Forms:

Bilinear Forms

Associated Matrices and Congruence

Diagonalization of Bilinear Forms

This material represents §5.1.1 + §5.1.2 from the course notes.



Overview

In this last segment of the course, we will pursue a brief
introduction to bilinear forms and quadratic forms.

Bilinear forms are simply linear transformations that are linear
in two input variables, rather than just one.

They are closely related to our other object of study:
quadratic forms.

Classically speaking, quadratic forms are homogeneous
quadratic polynomials in multiple variables (e.g.,
x2 + 2xy + y2, or xy + 2xz − y2 − 3z2).

The study of quadratic forms touches on nearly every branch
of pure mathematics: linear algebra (as we will discuss,
despite the fact that quadratic functions are avowedly not
linear!), analysis and geometry (as we will also discuss), and
even number theory and topology (as we will not discuss).



Bilinear Forms, I

We begin by defining bilinear forms.

Definition

A function Φ : V × V → F is a bilinear form on V if it is linear in
each variable when the other variable is fixed. Explicitly, this
means Φ(v1 + αv2, y) = Φ(v1,w) + αΦ(v2,w) and
Φ(v,w1 + αw2) = Φ(v,w1) + αΦ(v,w2) for arbitrary vi ,wi ∈ V
and α ∈ F .

Examples:

If V = F 2, then Φ[(a, b), (c , d)] = ac + 2bc − ad + 3bd is a
bilinear form on V .

If V = F 2, then Φ[(a, b), (c , d)] = 2ac − bc + 4ad + 8bd is a
bilinear form on V .
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Bilinear Forms, II

More Examples:

An inner product on a real vector space is a bilinear form, but
an inner product on a complex vector space is not, since it is
conjugate-linear in the second component rather than
(actually) linear.

Thus, for example, if V = C [a, b] is the space of continuous

functions on [a, b], then Φ(f , g) =
∫ b
a f (x)g(x) dx is a bilinear

form on V (since it is an inner product).

Likewise, the usual dot product on Rn is a bilinear form. More
generally, the dot product on F n is a bilinear form.

The pairing Φ(A,B) = tr(AB) on Mn×n(F ) is a bilinear form.

If V = F [x ] and a, b ∈ F , then Φ(p, q) = p(a)q(b) is a
bilinear form on V .



Bilinear Forms, III

A large class of examples of bilinear forms arise as follows: if
V = F n, then for any matrix A ∈ Mn×n(F ), the map
ΦA(v,w) = vTAw is a bilinear form on V .

Example:

The matrix A =

[
1 2
3 4

]
yields the bilinear form

ΦA

([
x1
y1

]
,

[
x2
y2

])
= [x1 y1]

[
1 2
3 4

] [
x2
y2

]
=

x1x2 + 2x1y2 + 3x2y1 + 4y1y2 .
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Associated Matrices, I

In fact, if V is finite-dimensional, then by choosing a basis of V we
can show that every bilinear form arises in the manner described on
the previous slide.

Definition

If V is a finite-dimensional vector space, β = {β1, . . . , βn} is a
basis of V , and Φ is a bilinear form on V , the associated matrix of
Φ with respect to β is the matrix [Φ]β ∈ Mn×n(F ) whose
(i , j)-entry is the value Φ(βi , βj).

This is the natural analogue of the matrix associated to a linear
transformation, for bilinear forms.



Associated Matrices, II

Example: For the bilinear form Φ((a, b), (c , d)) = 2ac + 4ad − bc
on F 2, find [Φ]β for the standard basis β = {(1, 0), (0, 1)}.

We simply calculate the four values Φ(βi , βj) for i , j ∈ {1, 2},
where β1 = (1, 0) and β2 = (0, 1).

This yields Φ(β1, β1) = 2, Φ(β1, β2) = 4, Φ(β2, β1) = −1,
and Φ(β2, β2) = 0.

Thus, the associated matrix is [Φ]β =

[
2 4
−1 0

]
.
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Associated Matrices, III

Example: For the bilinear form Φ((a, b), (c , d)) = 2ac + 4ad − bc
on F 2, find [Φ]γ for the basis γ = {(2, 1), (−1, 4)}.

We simply calculate the four values Φ(γi , γj) for i , j ∈ {1, 2},
where γ1 = (2, 1) and γ2 = (−1, 4).

This yields Φ(γ1, γ1) = 14, Φ(γ1, γ2) = 29, Φ(γ2, γ1) = −16,
and Φ(γ2, γ2) = −10.

Thus, the associated matrix is [Φ]γ =

[
14 29
−16 −10

]
.

Notice that, as one would expect, the associated matrix changes if
we use a different basis.
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Associated Matrices, IV

Example: For the bilinear form Φ(p, q) =
∫ 1
0 p(x)q(x) dx on

P2(R), find [Φ]β for the basis β = {1, x , x2}.

We simply calculate the nine values Φ(βi , βj) for
i , j ∈ {1, 2, 3}, where β1 = 1, β2 = x , β3 = x2.

For example, Φ(β1, β3) =
∫ 1
0 1 · x2 dx =

1

3
and

Φ(β3, β2) =
∫ 1
0 x2 · x dx =

1

4
.

The resulting associated matrix is

[Φ]β =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 .
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Properties of Associated Matrices, I

Let us now record some of the properties of associated matrices:

Proposition (Associated Matrices)

Suppose that V is a finite-dimensional vector space,
β = {β1, . . . , βn} is a basis of V , and Φ is a bilinear form on V .
Then the following hold:

1 If v and w are any vectors in V , then Φ(v,w) = [v]Tβ [Φ]β[w]β.

2 The map Φ 7→ [Φ]β is an isomorphism of the space B(V ) of
bilinear forms on V with Mn×n(F ); thus dimF B(V ) = n2.

3 If ΦT is the reverse form of Φ defined via
ΦT (v,w) = Φ(w, v), then [ΦT ]β = [Φ]Tβ .

4 If γ is another basis of V and Q = [I ]γβ is the change-of-basis

matrix from β to γ, then [Φ]γ = QT [Φ]βQ.



Properties of Associated Matrices, II

Proofs:

1 If v and w are any vectors in V , then Φ(v,w) = [v]Tβ [Φ]β[w]β.

Proof: If v = βi and w = βj then the result is immediate from
the definition of matrix multiplication and the matrix [Φ]β .
The result for arbitrary v and w then follows by linearity.

2 The map Φ 7→ [Φ]β is an isomorphism of the space B(V ) of
bilinear forms on V with Mn×n(F ); thus dimF B(V ) = n2.

Proof: We can define an inverse map as follows: given a
matrix A ∈ Mn×n(F ), define a bilinear form ΦA via
ΦA(v,w) = [v]Tβ A[w]β .
It is easy to verify that this map is a well-defined linear
transformation and that it is inverse to the map given above.
The dimension calculation is immediate.



Properties of Associated Matrices, III

Proofs:

3 If ΦT is the reverse form of Φ defined via
ΦT (v,w) = Φ(w, v), then [ΦT ]β = [Φ]Tβ .

Proof: By definition we have ΦT (v,w) = [w]Tβ [Φ]β[v]β .
Since the matrix product on the right is a scalar, it is equal to
its transpose, which is [v]Tβ [Φ]Tβ [w]β .

This means [ΦT ]β and [Φ]Tβ agree, as bilinear forms, on all
pairs of vectors [v]β and [w]β in F n, so they are equal.

4 If γ is another basis of V and Q = [I ]γβ is the change-of-basis

matrix from β to γ, then [Φ]γ = QT [Φ]βQ.

Proof: By definition, [v]γ = Q[v]β .
Hence [v]Tβ QT [Φ]βQ[w]β = [v]Tγ [Φ]β[w]γ .

This means that QT [Φ]βQ and [Φ]γ agree, as bilinear forms,
on all pairs of vectors [v]β and [w]β in F n, so they are equal.



Congruence and Diagonalization, I

The last result of the proposition above tells us how bilinear forms
behave under change of basis: rather than the more familiar
conjugation relation B = QAQ−1, we instead have a slightly
different relation B = QTAQ.

Definition

If A,B ∈ Mn×n(F ), we say that A is congruent to B if there exists
an invertible Q ∈ Mn×n(F ) such that B = QTAQ.

The matrices B and C are congruent if and only if they represent
the same bilinear form in different bases.

Specifically, the translation is B = [Φ]β and C = [Φ]γ , with
Q = [I ]γβ being the corresponding change-of-basis matrix.



Congruence and Diagonalization, II

Just like with matrices, we can also ask: for which basis β will the
associated matrix to the bilinear form Φ be as simple as possible?

The matrix version of this question is: given a matrix B, what
is the simplest matrix C to which B is congruent?

With matrices, the simplest possible answer is a diagonal
matrix: that is of course still the simplest possible answer here.

So now we investigate which bilinear forms can be diagonalized.



Congruence and Diagonalization, III

Definition

If V is finite-dimensional, a bilinear form Φ on V is diagonalizable
if there exists a basis β of V such that [Φ]β is a diagonal matrix.

Extremely Important Warning:

Although we use the same word, diagonalizability for bilinear forms
is not the same as diagonalizability for linear transformations!

Make sure to keep straight the difference between the
corresponding matrix versions: two matrices are similar when we
can write B = Q−1AQ, whereas they are congruent when we can
write B = QTAQ.
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Congruence and Diagonalization, IV

Examples:

The bilinear form Φ[(a, b), (c, d)] = ac + 4bd is
diagonalizable using the standard basis β = {(1, 0), (0, 1)}

since [Φ]β =

[
1 0
0 4

]
is a diagonal matrix.

The bilinear form Φ[(a, b), (c, d)] = 2ac − 2ad − 2bc − bd is
diagonalizable. If we use the standard basis β, the associated

matrix is [Φ]β =

[
2 −2
−2 −1

]
, which is not diagonal.

However, using instead the basis γ = {(1, 2), (2,−1)}, we

obtain [Φ]β =

[
−10 0

0 15

]
, which is diagonal.



Diagonalizability and Symmetry, I

It turns out that when char(F ) 6= 2, there is an easy criterion for
diagonalizability.

Definition

A bilinear form Φ on V is symmetric if Φ(v,w) = Φ(w, v) for all
v,w ∈ V . Equivalently, Φ is symmetric when ΦT = Φ.

Theorem (Diagonalization of Bilinear Forms)

Let V be a finite-dimensional vector space over a field F of
characteristic not equal to 2. Then a bilinear form on V is
diagonalizable if and only if it is symmetric.
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Diagonalizability and Symmetry, II

Proof:

For the forward direction, by taking associated matrices, we
see immediately that if V is finite-dimensional with basis β,
then Φ is a symmetric bilinear form if and only if [Φ]β is equal
to its transpose, which is to say, when it is a symmetric
matrix.

Now observe that if Φ is diagonalizable, then [Φ]β is a
diagonal matrix hence symmetric, and thus Φ must be
symmetric. This yields the forward direction.



Diagonalizability and Symmetry, III

Proof (continued):

For the reverse direction, we use induction on n = dimF V .
The base case n = 1 is trivial.

Now suppose the result holds for all spaces of dimension less
than n, and let Φ be symmetric on V .

If Φ is the zero form, then clearly Φ is diagonalizable.
Otherwise, suppose Φ is not identically zero: we claim there
exists a vector x with Φ(x, x) 6= 0.

By hypothesis, Φ is not identically zero so suppose that
Φ(v,w) 6= 0. If Φ(v, v) 6= 0 or Φ(w,w) 6= 0 we may take
x = v or x = w. Otherwise, we have
Φ(v+w, v+w) = Φ(v, v)+2Φ(v,w)+Φ(w,w) = 2Φ(v,w) 6= 0
by the assumption that Φ(v,w) 6= 0 and 2 6= 0 in F (here is
where we require the characteristic not to equal 2), and so we
may take x = v + w.



Diagonalizability and Symmetry, IV

Proof (continued more):

Now that we have x with Φ(x, x) 6= 0, consider the linear
functional T : V → F given by T (v) = Φ(x, v).

Since T (x) = Φ(x, x) 6= 0, we see that im(T ) = F , so
dimF ker(T ) = n − 1 by the nullity-rank theorem.

Then the restriction of Φ to ker(T ) is clearly a symmetric
bilinear form on ker(T ), so by induction, there exists a basis
{β1, . . . , βn−1} of ker(T ) such that the restriction of Φ is
diagonalized by this basis, so that Φ(βi , βj) = 0 for i 6= j .

Now set βn = x and observe that since x 6∈ ker(T ), the set
β = {β1, . . . , βn−1, βn} is a basis of V .

Since Φ(x, βi ) = Φ(βi , x) = 0 for all i < n by definition of T ,
we conclude that β diagonalizes Φ, as required.



Diagonalizability and Symmetry, V

We will note that the assumption that char(F ) 6= 2 in the theorem
above cannot be removed.

Explicitly, if F = F2 is the field with 2 elements, then if Φ is

the bilinear form on F 2 with associated matrix A =

[
0 1
1 0

]
,

then Φ is symmetric but cannot be diagonalized.

Explicitly, suppose Q =

[
a b
c d

]
: then QTAQ =[

a c
b d

] [
0 1
1 0

] [
a b
c d

]
=

[
0 ad + bc

ad + bc 0

]
, so

the only possible diagonalization of Φ would be the zero
matrix, but that is impossible because Φ is not the zero form.

In this example we can see that Φ(x, x) = 0 for all x ∈ F 2,
which causes the inductive argument to fail.



Diagonalizability and Symmetry, V

As an immediate corollary, we see that every symmetric matrix is
congruent to a diagonal matrix in characteristic 6= 2:

Corollary

If char(F ) 6= 2, then every symmetric matrix over F is congruent
to a diagonal matrix.

Proof: The result follows immediately by diagonalizing the
corresponding bilinear form.



Computing Diagonalizations, I

In principle, the proof we gave is entirely constructive, since it
provides a recursive way to generate a diagonalizing basis β.
However, as a practical matter, we would like to have a more
computationally useful algorithm.

In fact, we can give an explicit procedure for writing a symmetric
matrix S in the form D = QTSQ that is similar to the algorithm
for computing the inverse of a matrix.



Computing Diagonalizations, II

We will use some facts about elementary row and column
operations on matrices:

Recall that if E is an elementary row matrix (obtained by
performing an elementary row operation on the identity
matrix), then EA is the matrix obtained by performing that
elementary row operation on A.

Likewise, if C is an elementary column matrix, then AC is the
matrix obtained by performing that elementary column
operation on A.

Hence if E is an elementary row matrix, then EAET is the
matrix obtained by performing the elementary row operation
on A (given by E ) and then the corresponding elementary
column operation (given by ET ).



Computing Diagonalizations, III

Now suppose that D = QTSQ where Q is invertible.

Since Q is invertible, it is a product E1 · · ·Ed of elementary
row matrices by our results on row-reduction.

Then QTSQ = ET
d · · ·ET

1 SE1 · · ·Ed is obtained from S by
performing a sequence of these paired row-column operations.

Our theorem on diagonalization above ensures that there is a
sequence of these operations that will yield a diagonal matrix.



Computing Diagonalizations, IV

We may find the proper sequence of operations by performing these
“paired” operations using a method similar to row-reduction:

Using the (1,1)-entry, we apply row operations to clear out all
the entries in the first column below it. (If this entry is zero,
we add an appropriate multiple of another row to the top row
to make it nonzero.)

This will also clear out the column entries to the right of the
(1,1)-entry, yielding a matrix whose first row and column are
now diagonalized.

Now restrict attention to the smaller (n − 1)× (n − 1) matrix
excluding the first row and column, and repeat the procedure
recursively until the matrix is diagonalized.

Then we may obtain the matrix QT = ET
d · · ·ET

1 I by applying
all of the elementary row operations (in the same order)
starting with the identity matrix.



Computing Diagonalizations, V

We may keep track of these operations using a “double matrix” as
in the algorithm for computing the inverse of a matrix: on the left
we start with the symmetric matrix S , and on the right we start
with the identity matrix I .

At each step, we select a row operation and perform it, and
its corresponding column operation, on the left matrix. We
also perform the row operation (but only the row operation!)
on the right matrix.

When we are finished, we will have transformed the
double-matrix [S |I ] into the double-matrix [D|QT ], and we
will have QTSQ = D.



Computing Diagonalizations, VI

Example: For S =

[
1 3
3 −4

]
, find an invertible matrix Q and

diagonal matrix D such that QTSQ = D.

We set up the double matrix and perform row/column
operations as listed (to emphasize again, we perform the row
and then the corresponding column operation on the left side,
but only the row operation on the right side):[

1 3
3 −4

∣∣∣∣ 1 0
0 1

]
R2−3R1−→
C2−3C1

[
1 0
0 −13

∣∣∣∣ 1 0
−3 1

]
The matrix on the left is now diagonal.

Thus, we may take D =

[
1 0
0 −13

]
with QT =

[
1 0
−3 1

]
and thus Q =

[
1 −3
0 1

]
.

Indeed, one may double-check that QTSQ = D, as claimed.



Computing Diagonalizations, VI
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[
1 0
0 −13

]
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[
1 0
−3 1

]
and thus Q =

[
1 −3
0 1

]
.

Indeed, one may double-check that QTSQ = D, as claimed.



Computing Diagonalizations, VII

Example: For S =

 1 2 3
2 1 0
3 0 2

, find an invertible matrix Q and

diagonal matrix D such that QTSQ = D.

We set up the double matrix and do row/column operations: 1 2 3
2 1 0
3 0 2

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 R2−2R1−→
C2−2C1

 1 0 3
0 −3 −6
3 −6 2

∣∣∣∣∣∣
1 0 0
−2 1 0
0 0 1

 R3−3R1−→
C3−3C1

 1 0 0
0 −3 −6
0 −6 −7

∣∣∣∣∣∣
1 0 0
−2 1 0
−3 0 1

 R3−2R2−→
C3−2C2

 1 0 0
0 −3 0
0 0 5

∣∣∣∣∣∣
1 0 0
−2 1 0
1 −2 1





Computing Diagonalizations, VIII: Is Enough

Example: (continued)

The last matrix was 1 0 0
0 −3 0
0 0 5

∣∣∣∣∣∣
1 0 0
−2 1 0
1 −2 1


The matrix on the left is now diagonal.

Thus, we may take D =

 1 0 0
0 −3 0
0 0 5

 with

QT =

 1 0 0
−2 1 0
1 −2 1

 and thus Q =

 1 −2 1
0 1 −2
0 0 1

.

Indeed, one may double-check that QTSQ = D, as claimed.



Summary

We introduced the notion of a bilinear form on a vector space, and
established some of their basic properties.

We discussed the matrix associated to a bilinear form and how
change of basis leads to the congruence relation on matrices.

We discussed diagonalization of bilinear forms, proved that a
bilinear form is diagonalizable if and only if it is symmetric, and
gave an algorithm for computing diagonalizations.

Next lecture: Quadratic Forms (Part 1)


