
Math 4571 (Advanced Linear
Algebra)

Lecture #28

Applications of Diagonalization and the Jordan Canonical Form
(Part 2):

Systems of Linear Differential Equations

The Eigenvalue Method

Matrix Exponentials

This material represents §4.4.2 + §4.4.3 from the course notes.



Systems of Differential Equations, I

In this lecture, we discuss how to use diagonalization and the
Jordan canonical form to solve systems of ordinary linear
differential equations with constant coefficients. We begin by
outlining the basic setup and terminology:

A differential equation is merely an equation involving a
derivative (or several derivatives) of a function or functions,
such as y ′ + y = 0, y ′′ + z ′′ = x2y ′, or ln(y ′)− x sin(2y) = π.

Most differential equations are hard to solve[citation needed].

We treat systems of ordinary linear differential equations:
there is one independent variable x with various functions
y1(x), . . . , yn(x) to be determined, and each equation is linear
in the yi with functions of x as the coefficients.

For example, y ′′ + xy ′ + exy = 0 is a linear differential
equation, but yy ′ = x is not since it contains the product yy ′.



Systems of Differential Equations, II

We first observe that given any system of differential equations, we
can convert it to a system of first-order differential equations
(involving only first derivatives) by defining new variables.

For example, we can convert the single equation
y ′′′ + x2y ′ = 0 into a system of first-order equations by
defining new variables z = y ′ and w = y ′′ = z ′.

Then observe w ′ = y ′′′ = −x2y ′.

Hence, the single equation y ′′′ + x2y ′ = 0 is equivalent to the
system y ′ = z , z ′ = w , w ′ = −x2z .

Notice that each equation now only involves first derivatives.



Systems of Differential Equations, III

By rearranging the equations and defining new variables
appropriately we can put any system of linear differential equations
into the form

y ′1 = a1,1(x) · y1 + a1,2(x) · y2 + · · ·+ a1,n(x) · yn + q1(x)

...
...

y ′n = an,1(x) · y1 + an,2(x) · y2 + · · ·+ an,n(x) · yn + qn(x)

for some functions ai ,j(x) and qi (x) for 1 ≤ i , j ≤ n.



Systems of Differential Equations, IV

We can write this system more compactly using matrices: if

A =

 a1,1(x) · · · a1,n(x)
...

. . .
...

an,1(x) · · · an,n(x)

, q =

 q1(x)
...

qn(x)

, and

y =

 y1(x)
...

yn(x)

 so that y′ =

 y ′1(x)
...

y ′n(x)

, we can write the system

(vastly!) more compactly as

y′ = Ay + q.

Note the similarities to our use of matrices to solve systems of
linear equations.



Systems of Differential Equations, V

We say that the system is homogeneous if q = 0, and it is
nonhomogeneous otherwise.

Just like with systems of linear equations, the solution space
to a homogeneous system forms a vector space (indeed, it is
the kernel of an appopriate linear transformation).

Solving a homogeneous system, therefore, amounts to finding
a basis for this solution space.

Finding the general solution to the system then requires only
finding a single solution to the nonhomogeneous equation,
and adding the general homogeneous solution to it.



Systems of Differential Equations, VI

As mentioned previously, it is quite hard to solve general systems.
We will now restrict to the special case of homogeneous systems
whose coefficients are constants (i.e., scalars). In this case we have
the following preliminary result:

Theorem (Homogeneous Systems)

If the n × n coefficient matrix A is constant and I is any interval,
then the set of solutions y to the homogeneous system y′ = Ay on
I is an n-dimensional vector space.

The proof of this theorem is a standard result from the analysis of
differential equations. (The underlying field can be R or C.)



Eigenvalue Method, I

All of this is very nice, but does not really help us solve actual
systems. Our starting point is the following observation:

Observation

If v =

 c1
...

cn

 is an eigenvector of A with eigenvalue λ, then

y =

 c1
...

cn

 eλx is a solution to y′ = Ay.

To see this just differentiate y = eλxv with respect to x : this yields
y′ = λeλxv = λy = Ay.



Eigenvalue Method, II

Example: For A =

[
2 3
1 4

]
, find a solution to y′ = Ay.

Observe v1 =

[
3
−1

]
is an eigenvector with eigenvalue 1.

We can write the system y′ = Ay explicitly as

y ′1 = 2y1 + 3y2

y ′2 = y1 + 4y2.

So we claim

[
y1
y2

]
=

[
3
−1

]
et is a solution to the system.

Indeed, if y1 = 3et and y2 = −et , then in fact
y ′1 = 3et = 2y1 + 3y2 and y ′2 = −et = y1 + 4y2, as claimed.



Eigenvalue Method, II
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Eigenvalue Method, III

For each eigenvector, we obtain a solution to the system.

In the event that A has n linearly independent eigenvectors
(which is to say, if A is diagonalizable), we will therefore
obtain n solutions to the differential equation.

If these solutions are linearly independent, then since we know
the solution space is n-dimensional, we would be able to
conclude that our solutions are a basis for the solution space.
This turns out to be true.

Theorem (Eigenvalue Method)

If A has n linearly independent eigenvectors v1, v2, . . . , vn with
associated eigenvalues λ1, λ2, . . . , λn, then the general solution to
the matrix differential system y′ = Ay is given by
y = C1eλ1xv1 + C2eλ2xv2 + · · ·+ Cneλnxv2, where C1, · · · ,Cn are
arbitrary constants.



Eigenvalue Method, IV

Proof:

Since the solution space is n-dimensional, we need only show
that these vectors are linearly independent.

To do this, we calculate the Wronskian W , the determinant of
the matrix whose ith column is the vector
(yi , y

′
i , y
′′
i , . . . , y

(n−1)
i ). If the functions were linearly

dependent, then the rows would be linearly dependent and so
the determinant would be zero.

After factoring out the exponentials from each column, we
obtain W = e(λ1+···+λn)x det(M), where M is the matrix
whose columns are the eigenvectors vi .

Since the eigenvectors are linearly independent, det(M) 6= 0.
This means W 6= 0 so the solution vectors are linearly
independent, hence are a basis.



Eigenvalue Method, V

Thus, if the coefficient matrix is diagonalizable, we can produce
the general solution to the system using this method.

Example: Find all functions y1, y2 with

{
y ′1 = y1 − 3y2
y ′2 = y1 + 5y2

}
.

We compute the eigenvectors of the coefficient matrix.

With A =

[
1 −3
1 5

]
we get eigenvectors

[
−3
1

]
,

[
−1
1

]
corresponding to the two eigenvalues λ = 2, 4 respectively.

Thus, the general solution to the system is[
y1
y2

]
= C1

[
−3
1

]
e2x + C2

[
−1
1

]
e4x .

Equivalently, y1 = −3C1e2x − C2e4x , y2 = C1e2x + C2e4x .



Eigenvalue Method, V
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Eigenvalue Method, VI

If the real coefficient matrix has nonreal eigenvalues, by taking
appropriate linear combinations and using Euler’s identity
e iθ = cos(θ) + i sin(θ) we can produce real-valued solutions.

More explicitly, suppose that A has a nonreal eigenvalue
λ = a + bi with eigenvector v = w1 + iw2.

Then λ = a− bi will have eigenvector v = w1 − iw2.

We see 1
2(eλxv + eλxv) = eax(w1 cos(bx)−w2 sin(bx) and

1
2i (eλxv − eλxv) = eax(w1 sin(bx) + w2 cos(bx) are then both
real-valued, and have the same span.



Eigenvalue Method, VI

Example: Find all functions y1, y2 with

{
y ′1 = 2y1 − y2
y ′2 = y1 + 2y2

}
.

We compute the eigenvectors of the coefficient matrix.

With A =

[
2 −1
1 2

]
we get eigenvectors

[
i
1

]
,

[
−i
1

]
corresponding to the two eigenvalues λ = 2± i respectively.

The general solution is[
y1
y2

]
= C1

[
−i
1

]
e(2+i)x + C2

[
−i
1

]
e(2−i)x .

Replacing the complex-valued solutions with real-valued ones
yields an equivalent form[

y1
y2

]
= D1

[
sin(x)
cos(x)

]
e2x + D2

[
− cos(x)

sin(x)

]
e2x .



Eigenvalue Method, VI
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e2x .



Eigenvalue Method, VII

If the coefficient matrix is not diagonalizable, we cannot construct
a basis for the solution space using the method we have described.
Perhaps unsurprisingly, there is a way to fill in the missing basis
elements using generalized eigenvectors, which we merely outline:

Suppose we have a chain of generalized λ-eigenvectors
{vk , . . . , v1, v0}, where vi−1 = (T − λI )vi.

We leave it as an algebra exercise to show that the elements
eλx [v0], eλx [xv0 + v1], eλx [ x

2

2 v0 + xv1 + v2], ... ,

eλx [ x
k

k! v0 + xk−1

(k−1)!v1 + · · ·+ vk ], are linearly independent
solutions to the system.

By our results on constructing the Jordan canonical form, we
can always construct a chain basis for F n. Then the vectors
described above will give a corresponding basis for the
solution space.



Eigenvalue Method, VIII

Example: Find all functions y1, y2 with

{
y ′1 = 5y1 − 9y2
y ′2 = 4y1 − 7y2

}
.

The coefficient matrix A =

[
5 −9
4 −7

]
has eigenvalues

λ = −1,−1 and is not diagonalizable.

One may check that v0 =

[
3
2

]
, v1 =

[
2
1

]
give a chain

basis for A.

Thus, applying the formula yields the general solution[
y1
y2

]
= C1

[
3
2

]
e−x + C2

[[
3
2

]
xe−x +

[
2
1

]
e−x

]
.



Eigenvalue Method, VIII
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.



Matrix Exponentials, I

We now describe another (initially quite different, but later quite
similar) method for using diagonalization and the Jordan canonical
form to solve a homogeneous system of linear differential equations
with constant coefficients.

As motivation, if we consider the differential equation y ′ = ky
with the initial condition y(0) = C , it is not hard to verify
that the general solution is y(x) = ekxC .

We would like to find some way to extend this result to an
n × n system y′ = Ay with initial condition y(0) = c.

The natural way would be to try to define the “exponential of
a matrix” eA in such a way that eAt has the property that
d
dt [eAt ] = AeAt : then y(t) = eAtc will have
y′(t) = AeAtc = Ay.



Matrix Exponentials, II

In fact, we can simply write down a definition for the exponential
of a matrix as a power series:

Definition (Matrix Exponential)

If A ∈ Mn×n(C), we define the exponential of A, denoted eA, to be

the infinite sum eA =
∞∑
n=0

An

n!
= In + A +

A2

2!
+

A3

3!
+ · · ·+ An

n!
+ · · · .

The definition is motivated by the Taylor series for the

exponential function; namely, ez =
∑∞

n=0

zn

n!
.

In order for this definition to make sense, we need to know
that the infinite sum actually converges. (Spoiler: it does.)



Matrix Exponentials, III

Theorem (Exponential Solutions)

For any matrix A, the infinite series eA =
∞∑
n=0

An

n!
converges

absolutely, in the sense that the series in each of the entries of the
matrix converges absolutely. Furthermore, the unique solution to
the initial value problem y′ = Ay with y(a) = y0 is given by
y(t) = eA(t−a)y0.

The idea of the proof is to bound the sizes of the entries in the
infinite sum and show that each sum converges. The second part
then follows by differentiating term-by-term and comparing the
new series to the original. (The full proof is in the notes.)



Matrix Exponentials, IV

The theorem on the previous slide says that we can use matrix
exponentials to solve initial value problems. Of course, this
requires actually being able to evaluate the matrix exponential,
which we now describe.

When the matrix is diagonalizable, we can do this easily:
explicitly, if A = Q−1DQ, then eA = Q−1eDQ (just conjugate
all the terms in the power series).

Furthermore, again from the power series definition, if

D =

 λ1
. . .

λn

, then eD =

 eλ1

. . .

eλn

.

Thus, by using the diagonalization, we can compute the
exponential of the original matrix A, and thereby use it to
solve the differential equation y′ = Ay.



Matrix Exponentials, V

Example: Find all functions y1, y2 with

{
y ′1 = 2y1 − y2
y ′2 = −2y1 + 3y2

}
.

The coefficient matrix A =

[
2 −1
−2 3

]
has distinct

eigenvalues λ = 1, 4 so it is diagonalizable: with

Q =

[
1 1
1 −2

]
, we see Q−1AQ = D =

[
1 0
0 4

]
.

Thus, eAt = QeDtQ−1 = Q

[
et 0
0 e4t

]
Q−1 =

1

3

[
2et + e4t et − e4t

2et − 2e4t et + 2e4t

]
.

Then

[
y1
y2

]
=

1

3

[
2et + e4t et − e4t

2et − 2e4t et + 2e4t

] [
C1

C2

]
is the

general solution, for arbitrary constants C1 and C2.



Matrix Exponentials, V
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Matrix Exponentials, VI

Much like the situation with the eigenvalue method, things are
more difficult if the matrix is not diagonalizable.

We must replace the diagonalization with the Jordan
canonical form, and it is a bit less obvious how to
exponentiate a non-diagonal matrix.

Recall that if A = Q−1JQ, then eA = Q−1eJQ. Then, since
exponentiation works block-by-block in a block-diagonal
matrix, it is enough to describe how to compute the
exponential of each Jordan block separately.



Matrix Exponentials, VII

Proposition (Exponential of Jordan Block)

We have eJx =


eλx xeλx x2

2 eλx · · · xd−1

(d−1)!e
λx

eλx xeλx
. . .

...
. . .

. . . x2

2 eλx

eλx xeλx

eλx

, where J

is the d × d Jordan block matrix with eigenvalue λ.



Matrix Exponentials, VIII

Proof:

Write J = λI + N. As we showed earlier, Nd is the zero
matrix, and NI = IN since I is the identity matrix.

Applying the binomial expansion yields
(Jx)k = xk(λI + N)k =

xk
[
λk I +

(k
1

)
λk−1N1 + · · ·+

( k
k−d
)
λk−dNd + · · ·

]
, but since

Nd is the zero matrix, only the terms up through Nd−1 are
nonzero. (Note that we are using the fact that IN = NI , since
the binomial theorem does not hold for general matrices.)

It is then a straightforward (if somewhat lengthy) computation
to plug these expressions into the infinite sum defining eJx

and evaluate the infinite sum to obtain the stated result.



Matrix Exponentials, IX

Example: Solve the initial-value problem

y′(t) =


2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 1

 y, where y(0) =


1
2
−4
3

.

Observe that A is already in Jordan canonical form.

Hence eAt =


e2t te2t t2e2t/2 0
0 e2t te2t 0
0 0 e2t 0
0 0 0 et

, so the solution is

y(t) = eAt


1
2
−4
3

 =


e2t + 2te2t + 2t2e2t

2e2t − 4te2t

−4e2t

3et

 .



Matrix Exponentials, IX
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Summary

We discussed the basic terminology for systems of linear
differential equations.

We outlined the eigenvalue method for solving systems of
homogeneous linear differential equations with constant
coefficients.

We defined matrix exponentials and showed how to use them to
solve systems of homogeneous linear differential equations with
constant coefficients.

Next lecture: Bilinear Forms


