
Math 4571 (Advanced Linear
Algebra)

Lecture #27

Applications of Diagonalization and the Jordan Canonical Form
(Part 1):

Spectral Mapping and the Cayley-Hamilton Theorem

Transition Matrices and Markov Chains

The Spectral Theorem for Hermitian Operators

This material represents §4.4.1 + §4.4.4 +§4.4.5 from the course
notes.



Overview

In this lecture and the next, we discuss a variety of applications of
diagonalization and the Jordan canonical form. This lecture will
discuss three essentially unrelated topics:

A proof of the Cayley-Hamilton theorem for general matrices

Transition matrices and Markov chains, used for modeling
iterated changes in systems over time

The spectral theorem for Hermitian operators, in which we
establish that Hermitian operators (i.e., operators with
T ∗ = T ) are diagonalizable

In the next lecture, we will discuss another fundamental
application: solving systems of linear differential equations.



Cayley-Hamilton, I

First, we establish the Cayley-Hamilton theorem for arbitrary
matrices:

Theorem (Cayley-Hamilton)

If p(x) is the characteristic polynomial of a matrix A, then p(A) is
the zero matrix 0.

The same result holds for the characteristic polynomial of a linear
operator T : V → V on a finite-dimensional vector space.



Cayley-Hamilton, II

Proof:

Since the characteristic polynomial of a matrix does not
depend on the underlying field of coefficients, we may assume
that the characteristic polynomial factors completely over the
field (i.e., that all of the eigenvalues of A lie in the field) by
replacing the field with its algebraic closure.

Then by our results, the Jordan canonical form of A exists.

Let J = Q−1AQ with J in Jordan canonical form, and
p(x) = (x − λ1)d1 · · · (x − λk)dk be the char. poly. of A.

We first claim that for a d × d Jordan block matrix Ji with
associated eigenvalue λi , we have (Ji − λi I )d = 0.

To see this, let {v0, v1 . . . , vd−1} be a Jordan basis and
S = A− λi I : then vi+1 = Svi and Svd−1 = 0.

It is then easy to see that Sd is zero on all the vi .



Cayley-Hamilton, III

Proof (continued):

Now, if Ji is any d × d Jordan block in J of eigenvalue λi , the
characteristic polynomial of A is divisible by (t − λi )d , since
λi occurs as an eigenvalue with multiplicity at least d

Therefore, p(Ji ) = (Ji − λ1I )d1 · · · (Ji − λi I )di · · · (Ji − λk I )dk .

But by the calculation on the previous slide, (Ji − λi I )di = 0,
so that means p(Ji ) = 0.

We then see p(J) =

 p(J1)
. . .

p(Jn)

 = 0.

Finally, p(A) = Q[p(J)]Q−1 = Q(0)Q−1 = 0, as required.



Spectral Mapping, I

Related to the ideas in our proof is the following useful result
about eigenvalues of polynomials of operators:

Theorem (Spectral Mapping)

If T : V → V is a linear operator on an n-dimensional vector space
having eigenvalues λ1, . . . , λn (counted with multiplicity), then for
any polynomial q(x), the eigenvalues of q(T ) are q(λ1), . . . , q(λn).

The set of eigenvalues of an operator is called its spectrum.
The spectral mapping theorem, then, tells us how the spectrum of
an operator is transformed by applying a polynomial map to the
operator (whence the name). In fact, it still holds if q is any
convergent power series (e.g., the exponential).



Spectral Mapping, II

Proof:

As in the proof of Cayley-Hamilton we may assume that the
underlying field is algebraically closed.

Now let β be a basis for V such that [T ]ββ = J is in Jordan

canonical form. Then [q(T )]ββ = q(J), so it suffices to find
the eigenvalues of q(J).

Observe that if B is any upper-triangular matrix with diagonal
entries b1,1, . . . , bn,n, then q(B) is also upper-triangular and
has diagonal entries q(b1,1), . . . , q(bn,n).

Applying this to the Jordan canonical form J, we see that the
diagonal entries of q(J) are q(λ1), . . . , q(λn), and the
diagonal entries of any upper-triangular matrix are its
eigenvalues (counted with multiplicity).



Spectral Mapping, III

Example: Verify the spectral mapping theorem for A =

[
3 5
7 5

]
and q(t) = t2 − 2t.

The characteristic polynomial of A is
pA(t) = (t − 3)(t − 5)− 35 = (t − 10)(t + 2) so the
eigenvalues are λ = −2, 10.

Also, q(A) =

[
38 30
42 50

]
with characteristic polynomial

pq(A)(t) = (t − 38)(t − 50)− 1260 = (t − 8)(t − 80).

Thus, the eigenvalues of q(A) are λ = 8, 80.

Indeed, we see that q(−2) = 8 and q(10) = 80, in agreement
with the spectral mapping theorem.



Spectral Mapping, III

Example: Verify the spectral mapping theorem for A =

[
3 5
7 5

]
and q(t) = t2 − 2t.

The characteristic polynomial of A is
pA(t) = (t − 3)(t − 5)− 35 = (t − 10)(t + 2) so the
eigenvalues are λ = −2, 10.

Also, q(A) =

[
38 30
42 50

]
with characteristic polynomial

pq(A)(t) = (t − 38)(t − 50)− 1260 = (t − 8)(t − 80).

Thus, the eigenvalues of q(A) are λ = 8, 80.

Indeed, we see that q(−2) = 8 and q(10) = 80, in agreement
with the spectral mapping theorem.



Transition Matrices, I

We next discuss how to use linear algebra to model the behavior of
iterated systems. Our treatment will be fairly simplistic, but there
are many ways to extend these basic ideas to create much better
models.

The basic setup common to many such models is that we have a
system in an initial state, and an iteration map that tells us how
the state of the system changes (evolves) over time.

We will discuss the situation where the iteration map is a linear
transformation, in which case we are studying the behavior of the
system after we apply this linear transformation repeatedly.



Transition Matrices, II

To give a specific example, consider a state with two cities A and
B whose populations flow back and forth over time.

Suppose that after one year passes, a resident of city A has a
10% chance of moving to city B and a 90% chance of staying
in city A, while a resident of city B has a 30% change of
moving to A and a 70% chance of staying in B.

We would like to know what will happen to the relative
populations of cities A and B over a long period of time.

If city A has a population of Aold and city B has a population
of Bold, then one year later, we can see that city A’s
population will be Anew = 0.9Aold + 0.3Bold, while B’s
population will be Bnew = 0.1Aold + 0.7Bold.



Transition Matrices, III

Observe that we can describe this map using matrix

multiplication:

[
Anew

Bnew

]
=

[
0.9 0.3
0.1 0.7

] [
Aold

Bold

]
.

Since the population one year into the future is obtained by

left-multiplying the population vector by M =

[
0.9 0.3
0.1 0.7

]
,

the population k years into the future can then be obtained by
left-multiplying the population vector by Mk .

By diagonalizing this matrix, we can easily compute Mk , and
thus analyze the behavior of the population as time extends
forward. (If it is not diagonalizable, we would have to resort
to using its Jordan canonical form.)



Transition Matrices, IV

In this case, M is diagonalizable: M = QDQ−1 with

D =

[
1 0
0 3/5

]
and Q =

[
3 −1
1 1

]
.

Then Mk = QDkQ−1, and as k →∞, we see that

Dk →
[

1 0
0 0

]
, so Mk → Q

[
1 0
0 0

]
Q−1 =

[
3/4 3/4
1/4 1/4

]
.

From this calculation, we can see that as time extends on, the
cities’ populations will approach the situation where 3/4 of
the residents live in city A and 1/4 of the residents live in city
B, regardless of the cities’ original populations!

Notice that this “steady-state” solution where the cities’
populations both remain constant represents an eigenvector of
the original matrix with eigenvalue λ = 1.



Transition Matrices, V

Systems in which members of a set (in our example, residents of
the cities) are identified as belonging to one of several states that
can change over time, is known as a stochastic process.

If, as in our example, the probabilities of changing from one
state to another are independent of time, the system is called
a Markov chain.

Markov chains and their continuous analogues (known as
Markov processes) arise (for example) in probability problems
involving repeated wagers or random walks, in economics
modeling the flow of goods among industries and nations, in
biology modeling the gene frequencies in populations, and in
civil engineering modeling the arrival of people to buildings.

A Markov chain model was also used for one of the original
versions of the PageRank algorithm used by Google to rank
internet search results.



Transition Matrices, VI

Definition

A square matrix whose entries are nonnegative and whose columns
sum to 1 is called a transition matrix (or a stochastic matrix).

Equivalently, a square matrix M is a transition matrix precisely
when MTv = v, where v is the column vector of all 1s.

From this description, we can see that v is an eigenvector of
MT of eigenvalue 1, and since MT and M have the same
characteristic polynomial, we conclude that M has 1 as an
eigenvalue.



Transition Matrices, VII

If it were true that M were diagonalizable and every eigenvalue
of M had absolute value less than 1 (except for the eigenvalue
1), then we could apply the same argument as we did in the
example to conclude that the powers of M approached a limit.

Unfortunately, this is not true in general: the transition matrix

M =

[
0 1
1 0

]
has M2 equal to the identity matrix, so odd

powers of M are equal to M while even powers are equal to
the identity. (In this case, the eigenvalues of M are 1 and −1.)



Transition Matrices, VIII

Fortunately, the argument does apply to many transition matrices:

Theorem (Markov Chains)

If M is a transition matrix, then every eigenvalue λ of M has
|λ| ≤ 1. Furthermore, if some power of M has all entries positive,
then the only eigenvalue of M of absolute value 1 is λ = 1, and the
1-eigenspace has dimension 1. In such a case, the “matrix limit”
lim
k→∞

Mk exists and has all columns equal to a “steady-state”

solution of the Markov chain whose transition matrix is M.



Transition Matrices, IX

Examples:

For A =

[
1/2 1/3
1/2 2/3

]
, the eigenvalues are λ = 1, 1/6, and

the matrix limit lim
k→∞

Ak =

[
2/5 2/5
3/5 3/5

]
as can be verified

by diagonalizing A. (Note (2/5, 3/5) is a 1-eigenvector of A.)

For B =

 1/4 1/3 1/5
1/2 2/3 1/5
1/4 0 3/5

, eigenvalues λ = 1, 31±
√
1201

120 ,

and lim
k→∞

Bk =
1

28

 8 8 8
15 15 15
5 5 5

 as can be verified by

diagonalizing. (Note (8, 15, 5)/28 is a 1-eigenvector of B.)



Transition Matrices, IX

Examples:

For A =

[
1/2 1/3
1/2 2/3

]
, the eigenvalues are λ = 1, 1/6, and

the matrix limit lim
k→∞

Ak =

[
2/5 2/5
3/5 3/5

]
as can be verified

by diagonalizing A. (Note (2/5, 3/5) is a 1-eigenvector of A.)

For B =

 1/4 1/3 1/5
1/2 2/3 1/5
1/4 0 3/5

, eigenvalues λ = 1, 31±
√
1201

120 ,

and lim
k→∞

Bk =
1

28

 8 8 8
15 15 15
5 5 5

 as can be verified by

diagonalizing. (Note (8, 15, 5)/28 is a 1-eigenvector of B.)



Hermitian Operators, I

We now use establish fundamental result about the
diagonalizability of self-adjoint operators known as the spectral
theorem. First, we define the necessary family of operators:

Definition

If T : V → V is a linear transformation and T ∗ exists, we say that
T is Hermitian (or self-adjoint) if T ∗ = T , and we say that T is
skew-Hermitian if T ∗ = −T .

Examples:

Left-multiplication by a real symmetric matrix is Hermitian.

Left-multiplication by a real skew-symmetric matrix is
skew-Hermitian.

The identity transformation is Hermitian.



Hermitian Operators, II

We extend this definition to matrices in the natural way:

A matrix A is (skew)-Hermitian if A = [T ]ββ for some basis β
of V and some (skew)-Hermitian linear transformation T .

As we showed before, the matrix associated to T ∗ is A∗, the
conjugate-transpose of A, so A is Hermitian precisely when
A = A∗ and A is skew-Hermitian precisely when A = −A∗.

In particular, if A is a matrix with real entries, then A is
Hermitian if and only if A = AT (i.e., A is a symmetric
matrix), and A is skew-Hermitian if and only if A = −AT

(i.e., A is a skew-symmetric matrix).



Hermitian Operators, III

Hermitian linear operators (and Hermitian matrices) have a variety
of very nice properties. Here are some fundamental ones:

Theorem (Properties of Hermitian Operators)

Suppose V is a finite-dimensional inner product space and
T : V → V is Hermitian. Then the following hold:

1 For any v ∈ V , 〈T (v), v〉 is a real number.

2 All eigenvalues of T are real numbers.

3 Eigenvectors of T with different eigenvalues are orthogonal.

4 Every generalized eigenvector of T is an eigenvector of T .



Hermitian Operators, IV

Proofs:
1 For any v ∈ V , 〈T (v), v〉 is a real number.

We have 〈T (v), v〉 = 〈v,T ∗(v)〉 = 〈v,T (v)〉 = 〈T (v), v〉.
Thus, 〈T (v), v〉 is equal to its complex conjugate, hence is real.

2 All eigenvalues of T are real numbers.

Proof: Suppose λ is an eigenvalue with eigenvector v 6= 0.
Then 〈T (v), v〉 = 〈λv, v〉 = λ 〈v, v〉 is real.
Since v is not the zero vector we conclude that 〈v, v〉 is a
nonzero real number, so λ = 〈T (v), v〉 / 〈v, v〉 is also real.

3 Eigenvectors of T with different eigenvalues are orthogonal.

Proof: Suppose that Tv1 = λ1v1 and Tv2 = λ2v2. Then
λ1 〈v1, v2〉 = 〈Tv1, v2〉 = 〈v1,T ∗v2〉 = 〈v1, λ2v2〉 = λ2 〈v1, v2〉
since λ2 is real. But since λ1 6= λ2, this means 〈v1, v2〉 = 0.



Hermitian Operators, V

Proofs:
4 Every generalized eigenvector of T is an eigenvector of T .

We show by induction that if (T − λI )kw = 0 then in fact
(T − λI )w = 0, so w is in fact an eigenvector.
For the base case we take k = 2, so that (λI − T )2w = 0.
Then since λ is an eigenvalue of T and therefore real, we have

0 =
〈
(T − λI )2w,w

〉
= 〈(T − λI )w, (T − λI )∗w〉
=

〈
(T − λI )w, (T ∗ − λI )w

〉
= 〈(T − λI )w, (T − λI )w〉

and thus the inner product of (T − λI )w with itself is zero, so
(T − λI )w must be zero.
For the inductive step, observe that (T − λI )k+1w = 0 implies
(T − λI )k [(T − λI )w] = 0, and therefore by the inductive
hypothesis this means (T − λI ) [(T − λI )w] = 0, or
equivalently, (T − λI )2w = 0. Applying the result for k = 2
from above yields (T − λI )w = 0, as required.



Spectral Theorem, I

Using these basic properties, we can prove that Hermitian
operators are diagonalizable, and in fact that they are
diagonalizable in a particularly nice way:

Theorem (Spectral Theorem)

Suppose V is a finite-dimensional inner product space over R or C
and T : V → V is a Hermitian linear transformation. Then V has
an orthonormal basis β of eigenvectors of T , so in particular, T is
diagonalizable.

The equivalent formulation for Hermitian matrices is: every
Hermitian matrix A can be written as A = U−1DU where D is a
real diagonal matrix and U is a unitary matrix (i.e., a matrix
satisfying U∗ = U−1).



Spectral Theorem, II

Proof:

By our properties, every eigenvalue of T is real hence lies in
the scalar field.

Then every generalized eigenvector of T is an eigenvector of
T , and so since V has a basis of generalized eigenvectors, it
has a basis of eigenvectors and is therefore diagonalizable.

For the orthonormal basis, start with a basis for each
eigenspace, and then apply Gram-Schmidt, yielding an
orthonormal basis for each eigenspace.

Since T is diagonalizable, the union of these bases is a basis
for V : furthermore, each of the vectors has norm 1, and they
are all orthogonal by the orthogonal result above.

Thus, the union is an orthonormal basis of eigenvectors of T .



Spectral Theorem, III

We will make a few remarks about the spectral theorem:

The converse of this theorem is not quite true: if V has an
orthonormal basis of eigenvectors of T , then T is not
necessarily Hermitian.

The correct general converse theorem is that V has an
orthonormal basis of eigenvectors of T if and only if T is a
normal operator, meaning that T ∗T = TT ∗.

The spectral theorem shows that V is the direct sum of the
eigenspaces of T , meaning that the action of T on V can be
decomposed into simple pieces (acting as scalar
multiplication), with one piece coming from each piece of the
spectrum. (This is the reason for the name of the theorem.)

Most of these results also extend to skew-Hermitian operators
upon noting that T is skew-Hermitian iff iT is Hermitian.



Spectral Theorem, IV

As a corollary, we obtain the following extremely useful
computational fact:

Corollary (Real Symmetric Matrices Are Diagonalizable)

Every real symmetric matrix has real eigenvalues and is
diagonalizable over the real numbers.

Proof: This follows immediately from the spectral theorem since a
real symmetric matrix is Hermitian.



Spectral Theorem, V

Examples:

The real symmetric matrix A =

[
3 6
6 8

]
has eigenvalues

λ = −1, 12 and has A = UDU−1 where D =

[
−1 0
0 12

]
and

U =
1√
13

[
−3 2
2 3

]
.

The Hermitian matrix A =

[
6 2− i

2 + i 2

]
has eigenvalues

λ = 1, 7 and has A = UDU−1 where D =

[
1 0
0 7

]
and

U =
1√
30

[
5 2− i

2 + i −5

]
.



Spectral Theorem, V
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Spectral Theorem, VI

As a final remark, we will note that although real symmetric
matrices are diagonalizable (and complex Hermitian matrices are
diagonalizable), it is not true that complex symmetric matrices are
always diagonalizable.

Non-Example:

The complex symmetric matrix

[
1 i
i −1

]
is not

diagonalizable.

This follows from the observation that its trace and
determinant are both zero, but since it is not the zero matrix,

the only possibility for its Jordan form is

[
0 1
0 0

]
.

Since its Jordan form is not diagonal, it is not diagonalizable.
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Summary

We proved the general Cayley-Hamilton theorem and the related
spectral mapping theorem.

We discussed transition matrices and Markov chains, and some of
their applications to modeling the behavior of iterated systems.

We established some basic properties of Hermitian operators, and
then proved the spectral theorem and deduced the important
consequence that real symmetric matrices are diagonalizable.

Next lecture: Applications of the Jordan Canonical Form (part 2)


