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Jordan Canonical Form, I

In the last lecture, we discussed diagonalizability and showed that
there exist matrices that are not conjugate to any diagonal matrix.

For computational purposes, however, we might still like to know
what the simplest form to which a non-diagonalizable matrix is
similar.

The answer is given by what is called the Jordan canonical form,
which we now describe.

Important Note: The proofs of the results in this lecture are fairly
technical, and it is NOT necessary to follow all of the details. The
important part is to understand what the theorems say.
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Jordan Canonical Form, II

Definition

The n × n Jordan block with eigenvalue λ is the n × n matrix J
having λs on the diagonal, 1s directly above the diagonal, and
zeroes elsewhere.

Here are the general Jordan block matrices of sizes 2, 3, 4, and 5:

[
λ 1
0 λ

]
,

 λ 1 0
0 λ 1
0 0 λ

,


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

,


λ 1 0 0 0
0 λ 1 0 0
0 0 λ 1 0
0 0 0 λ 1
0 0 0 0 λ

.



Math 4571 – Lecture 25

Jordan Canonical Form, III

Definition

A matrix is in Jordan canonical form if it is a block-diagonal matrix
J1

J2
. . .

Jk

, where each J1, · · · , Jk is a Jordan block

matrix (possibly with different eigenvalues and different sizes).

Example:

The matrix

 2 0 0
0 3 0
0 0 4

 is in Jordan canonical form, with

J1 = [2], J2 = [3], J3 = [4].

Indeed, any diagonal matrix is in Jordan canonical form.
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Jordan Canonical Form, IV

Examples (continued):

The matrix

 2 1 0
0 2 0
0 0 3

 is in Jordan canonical form, with

J1 =

[
2 1
0 2

]
and J2 = [3].

The matrix


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 is in Jordan canonical form, with

J1 = [1], J2 =

[
1 1
0 1

]
, J3 = [1].

Any single Jordan block matrix J is in Jordan canonical form,
with J1 = J.
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Jordan Canonical Form, V

Examples (continued more):

The matrix


π 1 0 0
0 π 0 0
0 0 π 1
0 0 0 π

 is in Jordan canonical form,

with J1 = J2 =

[
π 1
0 π

]
.

The matrix


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 is in Jordan canonical form, with

J1 =

 0 1 0
0 0 1
0 0 0

 and J2 = [0].
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Jordan Canonical Form, VI

Our goal is to prove that every matrix is similar to a Jordan
canonical form and to give a procedure for computing the Jordan
canonical form of a matrix.

Ultimately, a non-diagonalizable linear transformation (or matrix)
fails to have enough eigenvectors for us to construct a diagonal
basis. By generalizing the definition of eigenvector, we can fill in
these “missing” basis entries.

If we then construct bases of these generalized eigenspaces in a
particularly good way, the corresponding associated matrix will be
in Jordan canonical form.
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Jordan Canonical Form, VII

To motivate our discussion, suppose that there is a basis
β = {vk−1, vk−2, . . . , v1, v0} of V such that T : V → V has

associated matrix [T ]ββ =

 λ 1 0

0
. . . 1

0 0 λ

, a Jordan block matrix.

Then Tvk−1 = λvk−1 and T (vi ) = λvi + vi+1 for each
0 ≤ i ≤ k − 2.

Rearranging, we see that (T − λI )vk−1 = 0 and
(T − λI )vi = vi+1 for each 0 ≤ i ≤ k − 2.

By an easy induction, (T − λI )k−ivi = 0 for each 0 ≤ i ≤ k.

What this means is: instead of having the elements in the
basis be eigenvectors (elements in the kernel of T − λI ), they
are instead elements in the kernel of some power of T − λI .
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Generalized Eigenvectors, I

This discussion motivates our definition of generalized eigenvectors:

Definition

For a linear operator T : V → V , a nonzero vector v satisfying
(A− λI )kv = 0 for some positive integer k and some scalar λ is
called a generalized eigenvector of T .

We take the same definition for matrices: a generalized eigenvector
for A is a nonzero vector v with (A− λI )kv = 0 for some positive
integer k and some scalar λ.
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Generalized Eigenvectors, II

Obviously, every (regular) eigenvector is also a generalized
eigenvector (simply take k = 1). But there can exist generalized
eigenvectors that are not (regular) eigenvectors.

Example: Show that v =

[
4
1

]
is a generalized 2-eigenvector for

A =

[
1 −1
1 3

]
that is not a (regular) 2-eigenvector.

We compute (A− 2I )v =

[
1 1
−1 −1

] [
4
1

]
=

[
5
−5

]
, and

since this is not zero, v is not a 2-eigenvector.

However, (A− 2I )2v =

[
1 1
−1 −1

] [
5
−5

]
=

[
0
0

]
, and so

v is a generalized 2-eigenvector, with k = 2.
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Generalized Eigenvectors, III

Like the (regular) eigenvectors, the generalized λ-eigenvectors
(together with the zero vector) also form a subspace.

Proposition (Generalized Eigenspaces)

For a linear operator T : V → V , the set of vectors v satisfying
(T − λI )kv = 0 for some positive integer k is a subspace of V .
This subspace is called the generalized λ-eigenspace of T .

Proof: We verify the subspace criterion.

[S1]: Clearly, the zero vector satisfies the condition.

[S2]: If v1 and v2 have (T − λI )k1v1 = 0 and
(T − λI )k2v2 = 0, then (T − λI )max(k1,k2)(v1 + v2) = 0.

[S3]: If (T − λI )kv = 0, then (T − λI )k(cv) = 0 as well.
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Generalized Eigenvectors, IV

Although it may seem that we have also generalized the idea of an
eigenvalue, in fact generalized eigenvectors can only have their
associated constant λ be an eigenvalue of T :

Proposition (Eigenvalues for Generalized Eigenvectors)

If T : V → V is a linear operator and v is a nonzero vector
satisfying (T − λI )kv = 0 for some positive integer k and some
scalar λ, then λ is an eigenvalue of T . Furthermore, the eigenvalue
associated to a generalized eigenvector is unique.
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Generalized Eigenvectors, V

Proof:

Let k be the smallest positive integer for which
(T − λI )kv = 0. Then by assumption, w = (T − λI )k−1v is
not the zero vector, but (T − λI )w = 0.

Thus, w is an eigenvector of T with corresponding eigenvalue
λ. In particular this means λ is an eigenvalue of T .

For uniqueness, we show that T − µI (hence also (T − µI )n)
is one-to-one on the generalized λ-eigenspace for any µ 6= λ.

Suppose v 6= 0 is in the generalized λ-eigenspace and
(T − µI )v = 0. Let k be minimal with (T − λI )kv = 0.

Then w = (T − λI )k−1v is nonzero and (T − λI )w = 0.

Also, we see that (T − µI )w = (T − µI )(T − λI )k−1v =
(T − λI )k−1(T − µI )v = (T − λI )k−10 = 0.

Then w would be a nonzero vector in both the λ-eigenspace
and the µ-eigenspace, which is impossible.



Math 4571 – Lecture 25

Computing Generalized Eigenvectors, I

From the definition of generalized eigenvector alone, it may seem
from the definition that the value k with (λI − T )kv = 0 may be
arbitrarily large. But in fact, it is always the case that we can
choose k ≤ dim(V ) when V is finite-dimensional:

Theorem (Computing Generalized Eigenspaces)

If T : V → V is a linear operator and V is finite-dimensional, then
the generalized λ-eigenspace of T is equal to ker(T − λI )dim(V ). In
other words, if (T − λI )kv = 0 for some positive integer k, then in
fact (T − λI )dim(V )v = 0.
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Computing Generalized Eigenvectors, II

Proof:

Let S = T − λI and define Wi = ker(S i ) for each i ≥ 1.

Observe that W1 ⊆W2 ⊆W3 ⊆ · · · , since if S iv = 0 then
S i+kv = 0 for each k ≥ 1.

We claim that if Wi = Wi+1, then all Wi+k are also equal to
Wi for all k ≥ 1: in other words, that if two consecutive terms
in the sequence are equal, then all subsequent terms are equal.

So suppose that Wi = Wi+1, and let v be any vector in Wi+2.
Then 0 = S i+2v = S i+1(Sv), meaning that Sv is in
ker(S i+1) = Wi+1 = Wi = ker(S i ). Therefore, S i (Sv) = 0, so
that v is actually in Wi+1.

Therefore, Wi+2 = Wi+1. By iterating this argument we
conclude that Wi = Wi+1 = Wi+2 = · · · as claimed.
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Computing Generalized Eigenvectors, III

Proof (continued):

Returning to the original argument, observe that
dim(W1) ≤ dim(W2) ≤ · · · ≤ dim(Wk) ≤ dim(V ) for each
k ≥ 1.

Thus, since the dimensions are all nonnegative integers, we
must have dim(Wk) = dim(Wk+1) for some k ≤ dim(V ), as
otherwise we would have
1 ≤ dim(W1) < dim(W2) < · · · < dim(Wk), but this is not
possible since dim(Wk) would then exceed dim(V ). Then
Wk = Wk+1 = Wk+2 = · · · = Wdim(V ) = Wdim(V )+1 = · · · .
Finally, if v is a generalized eigenvector, then it lies in some
Wi , but since the sequence of subspaces Wi stabilizes at
Wdim(V ), we conclude that v is contained in

Wdim(V ) = ker(Sdim(V )) = ker(T − λI )dim(V ), as claimed.
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Computing Generalized Eigenvectors, IV

The Theorem gives us a completely explicit way to find the vectors
in a generalized eigenspace: first find all eigenvalues λ for T , and
then compute the kernel of (T − λI )dim(V ) for each eigenvalue λ.

We will show later that it is not generally necessary to raise
T − λI to the full power dim(V ): in fact, it is sufficient to
compute the kernel of (T − λI )di , where di is the multiplicity
of λ as a root of the characteristic polynomial.

The advantage of taking the power as dim(V ), however, is
that it does not depend on T or λ in any way.



Math 4571 – Lecture 25

Computing Generalized Eigenvectors, V

Example: Find the generalized eigenspaces of A =

 2 0 0
−1 2 1
1 −1 0

.

The characteristic polynomial is det(tI − A) = (t − 1)2(t − 2)
so the eigenvalues are λ = 1, 1, 2.

For the generalized 1-eigenspace, we must compute the

nullspace of (A− I )3 =

 1 0 0
−1 0 0
1 0 0

.

Upon row-reducing, we see that the generalized 1-eigenspace
has dimension 2 and is spanned by (0, 1, 0) and (0, 0, 1).

Note here that neither of the generalized 1-eigenvectors is a
1-eigenvector, and (in fact) the 1-eigenspace of A is only
1-dimensional. This means A is not diagonalizable.
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Computing Generalized Eigenvectors, VI

Example: Find the generalized eigenspaces of A =

 2 0 0
−1 2 1
1 −1 0

.

For the generalized 2-eigenspace, we must compute the

nullspace of (A− 2I )3 =

 0 0 0
−1 2 3
1 −3 −4

.

Upon row-reducing, we see that the generalized 2-eigenspace
has dimension 1 and is spanned by (1,−1, 1).

In the example, observe that V does not have a basis of
eigenvectors of A since the 1-eigenspace is only 1-dimensional.

Nonetheless, V does possess a basis of generalized eigenvectors.
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Basis of Generalized Eigenvectors, I

Our goal is now to prove that there always exists a basis of
generalized eigenvectors for V . Like in our argument for (regular)
eigenvectors, we first prove that generalized eigenvectors
associated to different eigenvalues are linearly independent.

Theorem (Independence of Generalized Eigenvectors)

If v1, v2, . . . , vn are generalized eigenvectors of T associated to
distinct eigenvalues λ1, λ2, . . . , λn, then v1, v2, . . . , vn are linearly
independent.

The proof is essentially the same as for regular eigenvectors, with a
bit of added complexity.
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Basis of Generalized Eigenvectors, II

Proof: Induction on n. Base case n = 1 is trivial.

Now suppose a1v1 + · · ·+ anvn = 0 for generalized
eigenvectors v1, . . . , vn with distinct λ1, λ2, . . . , λn.

Suppose (T − λ1I )kv1 = 0. Apply (T − λ1I )k to both sides:
0 = T (0) = a1(T − λ1I )kv1 + · · ·+ an(T − λ1I )kvn =
a2(T − λ1I )kv2 + · · ·+ an(T − λ1I )kvn.

Notice that (T − λ1I )kvj lies in the generalized λj -eigenspace,
for each j : if (T − λj I )avj = 0, then (T − λj I )a[(T − λ1I )kvj ]
= (T − λ1I )k [(T − λj I )avj ] = (T − λ1I )k0 = 0.

Hence by the inductive hypothesis, aj(T − λ1I )kvj must be
zero. If aj 6= 0, then vj would be in both the generalized
λj -eigenspace and the generalized λ1-eigenspace (impossible).

Thus aj = 0 for all j ≥ 2. Then a1v1 = 0 so a1 = 0 as well, so
the vi are linearly independent.
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Basis of Generalized Eigenvectors, III

Next, we would like to compute the exact dimensions of the
generalized eigenspaces.

To do this, we will first establish a result regarding associated
matrices that will make the calculations easier:

Theorem (Upper-Triangular Associated Matrix)

Suppose T : V → V is a linear operator on a finite-dimensional
vector space such that the scalar field of V contains all eigenvalues
of T . If λ is an eigenvalue of T having multiplicity d, then there
exists a basis β of V such that [T ]ββ is upper-triangular and the
last d entries on the diagonal are equal to λ.
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Basis of Generalized Eigenvectors, IV

Proof:

Induct on n = dim(V ). Base case n = 1 is trivial.

For the inductive step, let λ be any eigenvalue of T .

Define W = im(T − λI ): since λ is an eigenvalue of T ,
ker(T − λI ) has positive dimension, so dim(W ) < dim(V ).

We claim that the map S : W → V given by S(w) = T (w)
has im(S) contained in W , so that S will be a linear operator
on W (to which we can then apply the inductive hypothesis).

To see this, let w ∈W . Then S(w) = (T − λI )w + λw, and
both (T − λI )w and λw are in W : since W is a subspace, we
conclude that S(w) also lies in W .
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Basis of Generalized Eigenvectors, V

Proof (continued):

Now since S is a linear operator on W = im(T − λI ), by
hypothesis there exists a basis γ = {w1, . . . ,wk} for W such
that the matrix [S ]γγ is upper-triangular and all eigenvalues λ
appear at the end.

Extend γ to a basis β = {w1, . . . ,wk , vk+1, . . . , vn} of V . We

claim that [T ]ββ also has the desired properties.

The upper k × k portion of [T ]ββ is the matrix [S ]γγ which is
upper-triangular by hypothesis. Furthermore, for each vi we
can write T (vi ) = (T − λI )vi + λvi , and (T − λI )vi is in W ,
hence is a linear combination of {w1, . . . ,wk}.
Thus, [T ]ββ is upper-triangular, as claimed. Also, by
construction, all of the eigenvalues λ will appear at the end of
the diagonal.
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Basis of Generalized Eigenvectors, VI

Proof (continued more):

It remains to see that we actually end up with d entries λ on
the diagonal when we are finished.

To see this, first observe that the diagonal entries of [T ]ββ are
the eigenvalues of T (counted with multiplicity).

Also observe that det(tI − T ) = det(tI − S) · (t − λ)dim(Eλ),
where Eλ is the λ-eigenspace of T . Thus, all eigenvalues of S
will also lie in the scalar field of V .

Thus, if we have not yet obtained d diagonal entries equal to
λ, then the operator S will still have λ as an eigenvalue, so we
will generate at least one additional λ on the diagonal in the
next step of the construction.

Hence we must obtain exactly d entries of λ at the end of the
diagonal, as claimed.
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Basis of Generalized Eigenvectors, VII

We now exploit this particular matrix representation to compute
the dimension of the generalized λ-eigenspace.

Theorem (Dimension of Generalized Eigenspace)

If V is finite-dimensional, T : V → V is linear, and λ is a scalar,
then the dimension of the generalized λ-eigenspace is equal to the
multiplicity d of λ as a root of the characteristic polynomial of T ,
and in fact the generalized λ-eigenspace is the kernel of (T − λI )d .

Example: Suppose the characteristic polynomial of T is
p(t) = t3(t − 2)2. Then:

The generalized 0-eigenspace has dimension 3 and is ker(T 3).

The generalized 2-eigenspace has dimension 2 and is
ker(T − 2I )2.
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Basis of Generalized Eigenvectors, VIII

Proof:

Suppose λ has multiplicity d as a root of the char. polynomial.

Apply the Theorem just proven to select a basis β for which
[T ]ββ is upper-triangular and has the last d diagonal entries
equal to λ. (The remaining diagonal entries are the other
eigenvalues of T , which by hypothesis are not equal to λ.)

Then, for B = A− λI , we see that B =

[
D ∗
0 U

]
, where D

is upper-triangular with nonzero entries on the diagonal, U is
a d × d upper-triangular matrix with zeroes on the diagonal,
and ∗ is some matrix whose entries are irrelevant.
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Basis of Generalized Eigenvectors, IX

Proof (continued):

If B =

[
D ∗
0 U

]
, then Bdim(V ) =

[
Ddim(V ) ∗

0 Udim(V )

]
.

By a straightforward induction argument, the power Uk has
zeroes in the k rows above the diagonal.

Thus, Ud is the zero matrix, so Udim(V ) is also the zero
matrix, since d ≤ dim(V ).

The generalized λ-eigenspace then has dimension equal to the
nullity of (A− λI )dim(V ) = Bdim(V ), but since Ddim(V ) is
upper-triangular with nonzero entries on the diagonal, we see
that the nullity of Bdim(V ) is exactly d .

Finally, the statement that the generalized λ-eigenspace is the
kernel of (T − λI )d follows from the observation that Ud is
actually the zero matrix.
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Basis of Generalized Eigenvectors, X

Example: Find the dimensions of the generalized eigenspaces of

A =


0 0 1 0
0 2 −3 1
0 1 −2 1
0 0 −1 1

, and then verify the result by finding a

basis for each generalized eigenspace. Also, decide whether or not
A is diagonalizable.

Some computation produces det(tI − A) = t3(t − 1). Thus,
the eigenvalues of A are λ = 0, 0, 0, 1.

By the Theorem, the dimension of the generalized
0-eigenspace is 3 and the dimension of the generalized
1-eigenspace is 1.
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Basis of Generalized Eigenvectors, XI

Example (continued):

For the generalized 0-eigenspace, the nullspace of

A3 =


0 0 0 0
0 1 −1 0
0 0 0 0
0 −1 1 0

 has basis


1
0
0
0

 ,


0
1
1
0

 ,


0
0
0
1

.

For the generalized 1-eigenspace, the nullspace of

I − A =


1 0 −1 0
0 −1 3 −1
0 −1 3 −1
0 0 1 0

 has basis vector


0
1
0
−1

.

The matrix A is not diagonalizable because there is not a
basis of (regular) eigenvectors, as the 0-eigenspace only has
dimension 1 (it is spanned by (1, 0, 0, 0), as can be seen by
row-reducing A).
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Basis of Generalized Eigenvectors, XII

At last, we can show that any finite-dimensional (complex) vector
space has a basis of generalized eigenvectors:

Theorem (Spectral Decomposition)

If V is finite-dimensional, T : V → V is linear, and all eigenvalues
of T lie in the scalar field of V , then V has a basis of generalized
eigenvectors of T .

The structure of this argument is essentially the same as in the
characterization of diagonalizable transformations: we show that
the union of the bases for each generalized eigenspace gives a basis
for V .
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Basis of Generalized Eigenvectors, XIII: Triskaidekaphobia

Proof:

Suppose the eigenvalues of T are λi with respective
multiplicities di as roots of the characteristic polynomial, and
let βi = {vi ,1, . . . , vi ,di} be a basis for the generalized
λi -eigenspace for each 1 ≤ i ≤ k.

We claim that β = β1 ∪ · · · ∪ βk is a basis for V .

By the previous theorem, the number of elements in βi is di :
then β contains

∑
i di = dim(V ) vectors, so to show β is a

basis it suffices to prove that β is linearly independent.



Math 4571 – Lecture 25

Basis of Generalized Eigenvectors, XIV: Really, More?

Proof (continued):

So suppose we have a dependence a1,1v1,1 + · · ·+ ak,jvk,j = 0.
Let wi =

∑
j ai ,jvi ,j : observe that wi lies in the generalized

λi -eigenspace and that w1 + w2 + · · ·+ wk = 0.

If any of the wi were nonzero, then we would have a nontrivial
linear dependence between generalized eigenvectors of T
having distinct eigenvalues, which is impossible.

Therefore, each wi = 0, meaning that
ai ,1vi ,1 + · · ·+ ai ,divi ,di = 0. But then since βi is linearly
independent, all of the coefficients ai ,j must be zero.

We conclude that β is linearly independent and is therefore a
basis for V .
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Summary

We discussed Jordan-block matrices and the Jordan canonical
form, as motivation for generalized eigenvectors.

We defined generalized eigenvectors and established some of their
basic properties.

We proved that the dimension of the generalized λ-eigenspace is
the multiplicity of λ as a root of the characteristic polynomial.

We showed that if all eigenvalues of T lie in the scalar field of V ,
then V has a basis of generalized eigenvectors.

Next lecture: The Jordan Canonical Form


