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Diagonalization:

Review of Eigenvalues and Eigenvectors

Diagonalization

The Cayley-Hamilton Theorem

This material represents §4.1-§4.2 from the course notes.
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Eigenvalues, I

Recall our definition of eigenvalues and eigenvectors for linear
transformations:

Definition

If T : V → V is a linear transformation, a nonzero vector v with
T (v) = λv is called an eigenvector of T , and the corresponding
scalar λ ∈ F is called an eigenvalue of T .

By convention, the zero vector 0 is not an eigenvector.

Definition

If T : V → V is a linear transformation, then for any fixed value of
λ ∈ F , the set Eλ of vectors in V satisfying T (v) = λv is a
subspace of V called the λ-eigenspace.
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Eigenvalues, II

Examples:

T : R2 → R2 is the map with T (x , y) = 〈2x + 3y , x + 4y〉,
then v = 〈3,−1〉 is a 1-eigenvector since T (v) = 〈3,−1〉 = v,
and w = 〈1, 1〉 is an 5-eigenvector since T (w) = 〈5, 5〉 = 5w.

If T : Mn×n(R)→ Mn×n(R) is the transpose map, then the
1-eigenspace of T consists of the symmetric matrices, while
the (−1)-eigenspace consists of the skew-symmetric matrices.

If V is the space of infinitely-differentiable functions and
D : V → V is the derivative map, then for any real r , the
function f (x) = erx is an eigenfunction with eigenvalue r
since D(erx) = rerx .

If I : R[x ]→ R[x ] is the integration map I (p) =
∫ x
0 p(t) dt,

then I has no eigenvectors, since I (p) always has a larger
degree than p, so I (p) cannot equal λp for any λ ∈ R.
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Eigenvalues, III

We can also compute eigenvalues and eigenvectors of matrices:

Definition

If A ∈ Mn×n(F ), then a nonzero vector x with Ax = λx is called a
(left) eigenvector of A, and the corresponding scalar λ ∈ F is
called an eigenvalue of A.

This procedure is essentially equivalent to computing eigenvalues
and eigenvectors of arbitrary linear transformations:

Proposition (Eigenvalues and Matrices)

Suppose V is a finite-dimensional vector space with ordered basis
β and that T : V → V is linear. Then v is an eigenvector of T
with eigenvalue λ if and only if [v]β is an eigenvector of

left-multiplication by [T ]ββ with eigenvalue λ.

The proof is immediate from our results on associated matrices.
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Eigenvalues, IV

Examples:

If A =

[
2 3
1 4

]
, then x =

[
3
−1

]
is a 1-eigenvector of A,

because Ax =

[
2 3
1 4

] [
3
−1

]
=

[
3
−1

]
= x.

If B =

 2 −4 5
2 −2 5
2 1 2

, then x =

 1
2
2

 is a 4-eigenvector of

B, because Bx =

 2 −4 5
2 −2 5
2 1 2

 1
2
2

 =

 4
8
8

 = 4x.
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Eigenvalues, V

For real matrices, eigenvalues may be non-real numbers. Because
of this, we will often implicitly assume that the underlying field is
algebraically closed (e.g., C) unless otherwise specified.

Example:

If A =

 6 3 −2
−2 0 0
6 4 2

, the vector x =

 1− i
2i
2

 is an

eigenvector of A with eigenvalue 1 + i , because

Ax =

 6 3 −2
−2 0 0
6 4 −2

 1− i
2i
2

 =

 2
−2 + 2i
2 + 2i

 = (1 + i)x.
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Eigenvalues, VI

We can exploit properties of determinants to give an explicit
procedure for calculating eigenvalues:

Definition

For an n × n matrix A, the degree-n polynomial
p(t) = det(tIn − A) is called the characteristic polynomial of A.

Proposition (Computing Eigenvalues)

If A is an n × n matrix, then the eigenvalues of A are precisely the
roots of the characteristic polynomial of A.

Proof:

First, Av = λv is equivalent to (λIn − A)v = 0.

Then by our results on determinants, there is a nonzero vector
v in the nullspace of λIn − A if and only if det(λIn − A) = 0,
which is to say, when p(λ) = 0.
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Eigenvalues, VII

Example: Find the eigenvalues of A =

[
3 1
2 4

]
.

First we compute the characteristic polynomial

det(tI − A) =

∣∣∣∣ t − 3 −1
−2 t − 4

∣∣∣∣ = t2 − 7t + 10.

The eigenvalues are then the zeroes of this polynomial. Since
t2 − 7t + 10 = (t − 2)(t − 5) we see that the zeroes are t = 2

and t = 5, meaning that the eigenvalues are 2 and 5 .

Once we have found the eigenvalues, it is easy to compute a basis
of each eigenspace, since that is the same as finding a basis for the
nullspace of λI − A.
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Eigenvalues, VIII

Example: Find a basis for each eigenspace of A =

[
2 2
3 1

]
.

We compute p(t) = det(tI −A) = t2− 3t− 4 = (t− 4)(t + 1)
so the eigenvalues are λ = −1, 4.

For λ = −1, we want the kernel of −I − A =

[
−3 −2
−3 −2

]
.

The row-echelon form is

[
−3 −2
0 0

]
, so the (−1)-eigenspace

is 1-dimensional and is spanned by

[
−2
3

]
.

Similarly, for λ = 4, the nullspace of 4− A =

[
2 −2
−3 3

]
is

1-dimensional and is spanned by

[
1
1

]
.
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Eigenvalues, IX

Here are some other useful facts about eigenvalues and
eigenvectors (proofs of all of these facts are in the notes, along
with numerous extra examples of calculations):

If A is a real matrix and v is an eigenvector with a complex
eigenvalue λ, then the complex conjugate v is an eigenvector
with eigenvalue λ.

The product of the eigenvalues of A is the determinant of A.

The sum of the eigenvalues of A equals the trace of A.

If λ is an eigenvalue of the matrix A which appears exactly k
times as a root of the characteristic polynomial, then the
dimension of the eigenspace corresponding to λ is at least 1
and at most k .
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Diagonalization, I

Our motivation for discussing eigenvalues and eigenvectors is to
characterize when a linear transformation can be diagonalized:

Definition

A linear operator T : V → V on a finite-dimensional vector space
V is diagonalizable if there exists a basis β of V such that the
associated matrix [T ]ββ is a diagonal matrix.

By writing down explicitly what this means, we see that T is
diagonalizable if and only if the vectors in the basis β are all
eigenvectors of T .
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Diagonalization, II

We can also formulate diagonalization for matrices:

If A is an n × n matrix, then A is the associated matrix of
T : F n → F n given by left-multiplication by A.

Then we say A is diagonalizable when T is diagonalizable.

By our results on change of basis, this is equivalent to saying
that there exists an invertible matrix Q ∈ Mn×n(F ), namely

the change-of-basis matrix Q = [I ]βγ , for which

Q−1AQ = [I ]βγ [T ]γγ [I ]γβ = [T ]ββ is a diagonal matrix.

Definition

An n × n matrix A ∈ Mn×n(F ) is diagonalizable over F if there
exists an invertible n × n matrix Q ∈ Mn×n(F ) for which Q−1AQ
is a diagonal matrix.
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Interlude on Similarity, I

More compactly, A is diagonalizable if it is similar to a diagonal
matrix. Similarity also respects most other properties:

Proposition (Characteristic Polynomials and Similarity)

If A and B are similar, then they have the same characteristic
polynomial, determinant, trace, and eigenvalues (and their
eigenvalues have the same multiplicities).

Proof:

Suppose B = Q−1AQ. Then det(tI − B)
= det(Q−1(tI )Q − Q−1AQ) = det(Q−1(tI − A)Q)
= det(Q−1) det(tI − A) det(Q) = det(tI − A).

Thus, A and B have the same characteristic polynomial.

The determinant, trace, and eigenvalues are all obtained from
the characteristic polynomial, so they are also equal.
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Interlude on Similarity, II

The eigenvectors for similar matrices are also closely related:

Proposition (Eigenvectors and Similarity)

If B = Q−1AQ, then v is an eigenvector of B with eigenvalue λ if
and only if Qv is an eigenvector of A with eigenvalue λ.

Proof:

The case where v = 0 is trivial so assume v 6= 0.

First suppose v is an eigenvector of B with eigenvalue λ.

Then A(Qv) = Q(Q−1AQ)v = Q(Bv) = Q(λv) = λ(Qv),
meaning that Qv is an eigenvector of A with eigenvalue λ.

Now suppose Qv is an eigenvector of A with eigenvalue λ.

Then Bv = Q−1A(Qv) = Q−1λ(Qv) = λ(Q−1Qv) = λv, so
v is an eigenvector of B with eigenvalue λ.
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Diagonalization, III

Back to our discussion of diagonalization. We now give a
characterization of diagonalizable transformations. First step:

Theorem (Independent Eigenvectors)

If v1, v2, . . . , vn are eigenvectors of T associated to distinct
eigenvalues λ1, λ2, . . . , λn, then v1, v2, . . . , vn are linearly
independent.

Proof (induction on n, base case n = 1 is trivial):

For the inductive step, suppose a1v1 + · · ·+ anvn = 0 for
eigenvectors v1, . . . , vn with distinct λ1, λ2, . . . , λn.

Applying T − λ1I to both sides yields
a2(λ2 − λ1)v2 + a3(λ3 − λ1)v3 + · · ·+ an(λn − λ1)vn = 0.

By induction, all of the coefficients ai (λi − λ1) must be zero,
so all of the ai = 0 for 2 ≤ i ≤ n. But then we just get
a1v1 = 0 so a1 = 0 also. Thus the vi are independent.
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Diagonalization, IV

Now we can establish our diagonalizability criterion for matrices:

Theorem (Diagonalizability Criterion)

A matrix A ∈ Mn×n(F ) is diagonalizable (over F ) if and only if the
characteristic polynomial factors into a product of linear terms in
F [x ] and, for each eigenvalue λ, the dimension of the λ-eigenspace
is equal to the multiplicity of λ as a root of the characteristic
polynomial.

More informally, a matrix is diagonalizable if and only if all of the
roots of the characteristic polynomial are in F (rather than some
larger field) and all of the eigenspaces have the “maximal possible”
dimension according to the multiplicity of that eigenvalue as a root.
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Diagonalization, V

Proof:

If A is diagonalizable, then the diagonal entries are the
eigenvalues of A, so they must all lie in the scalar field F .

For each λi let bi be the dimension of the λi -eigenspace and
di be the multiplicity as a root of the char. polynomial.

Then, since eigenvectors with different eigenvalues are linearly
independent, V = F n has a basis of eigenvectors if and only if
the sum Σbi is equal to n.

But as we also proved, bi ≤ di for each i .

Also, Σdi is the sum of the exponents of all the linear terms
appearing in the factorization of the char. polynomial. This is
at most n (the degree of the char. polynomial) and equals n
only when all of the terms in the factorization are linear.

Therefore, Σbi = n if and only if bi = di for each i and all of
the terms in the factorization are linear.
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Diagonalization, VI

In particular, we can give an easy-to-test sufficient condition for
diagonalizability:

Corollary

If A ∈ Mn×n(F ) has n distinct eigenvalues in F , then A is
diagonalizable over F .

Proof:

Every eigenvalue must occur with multiplicity 1 as a root of
the characteristic polynomial, since there are n eigenvalues
and the sum of their multiplicities is also n.

Then the dimension of each eigenspace is equal to 1 (since it
is always between 1 and the multiplicity)

Hence by the diagonalizability theorem, A is diagonalizable.
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Diagonalization, VII

Example: For T : R2 → R2 given by T (x , y) = 〈−2y , 3x + 5y〉,
show that T is diagonalizable and find a diagonalizing basis.

The associated matrix is A =

[
0 −2
3 5

]
.

For the characteristic polynomial, we compute
det(tI − A) = t2 − 5t + 6 = (t − 2)(t − 3), so the eigenvalues
are therefore λ = 2, 3. Since the eigenvalues are distinct we
know that T is diagonalizable.

A short calculation yields that 〈1,−1〉 is a basis for the
2-eigenspace, and that 〈−2, 3〉 is a basis for the 3-eigenspace.

Thus, for β = {〈1,−1〉 , 〈−2, 3〉} , we can see that

[T ]ββ =

[
2 0
0 3

]
is diagonal.
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Diagonalization, VIII

Example: Determine if A =

 1 −1 −1
0 1 −1
0 0 1

 is diagonalizable.

We compute det(tI − A) = (t − 1)3 since tI − A is
upper-triangular, and the eigenvalues are λ = 1, 1, 1.

The 1-eigenspace is the nullspace of I − A =

 0 1 1
0 0 1
0 0 0

,

which (since the matrix is already in row-echelon form) is

1-dimensional and spanned by

 1
0
0

.

Since the eigenspace for λ = 1 is 1-dimensional but the
eigenvalue appears 3 times as a root of the characteristic
polynomial, the matrix A is not diagonalizable.
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Diagonalization, IX

Example: For A =

 1 −1 0
0 2 0
0 2 1

, determine whether there exists

a diagonal matrix D and an invertible matrix Q with D = Q−1AQ,
and if so, find them.

We compute det(tI − A) = (t − 1)2(t − 2), so the eigenvalues
are λ = 1, 1, 2.

Row-reduction shows {(1, 0, 0), (0, 0, 1)} is a basis for the
1-eigenspace and {(−1, 1, 2)} is a basis for the 2-eigenspace.

Since 2 + 1 = 3, A is diagonalizable. We take Q to be the
matrix whose columns are eigenvectors and D to be diagonal
with the corresponding eigenvalues:

Q =

 1 0 −1
0 0 1
0 1 2

 and D =

 1 0 0
0 1 0
0 0 2

 has D = Q−1AQ.
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Diagonalization, X: Are We There Yet?

Having a diagonalization of a matrix allows us to do certain
computations very quickly.

For example, if A is diagonalizable with D = Q−1AQ, then it
is very easy to compute any power of A.

Explicitly, since we can rearrange to write A = QDQ−1, then
Ak = (QDQ−1)k = Q(Dk)Q−1, since the conjugate of the
kth power is the kth power of a conjugate.

But since D is diagonal, Dk is simply the diagonal matrix
whose diagonal entries are the kth powers of the diagonal
entries of D.
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Diagonalization, XI: Apparently Not....

Example: If A =

[
−2 −6
3 7

]
, find a formula for Ak .

First, we (try to) diagonalize A. Since
det(tI − A) = (t − 1)(t − 4), the eigenvalues are 1 and 4.
Since these are distinct, A is diagonalizable.

Computing the eigenvectors shows D = Q−1AQ where

D =

[
1 0
0 4

]
, Q =

[
−2 −1
1 1

]
, Q−1 =

[
−1 −1
1 2

]
.

Then Dk =

[
1 0
0 4k

]
, so Ak = QDkQ−1

= Q

[
1 0
0 4k

]
Q−1 =

[
2− 4k 2− 2 · 4k
−1 + 4k −1 + 2 · 4k

]
.
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Cayley-Hamilton, I: But Wait, There’s More!

By diagonalizing a given matrix, we can often prove theorems in a
much simpler way.

Definition

If T : V → V is a linear operator and
p(x) = a0 + a1x + · · ·+ anxn is a polynomial, we define
p(T ) = a0I + a1T + · · ·+ anT n. If A is an n × n matrix, we
similarly define p(A) = a0In + a1A + · · ·+ anAn.

Since conjugation preserves sums and products, it is easy to see
that Q−1p(A)Q = p(A−1AQ) for any invertible Q.
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Cayley-Hamilton, II: We’re Almost Done

Using diagonalization, we can establish a useful fact relating a
matrix and its characteristic polynomial.

Theorem (Cayley-Hamilton)

If p(x) is the characteristic polynomial of a matrix A, then p(A) is
the zero matrix.

Example:

For the matrix A =

[
2 2
3 1

]
, we have p(t) = t2 − 3t − 4.

We can compute A2 =

[
10 6
9 7

]
, and then indeed we have

A2−3A−4I2 =

[
10 6
9 7

]
−
[

6 6
9 3

]
−
[

4 0
0 4

]
=

[
0 0
0 0

]
.
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Cayley-Hamilton, III: The Last Actual Slide

Proof (if A is diagonalizable):

If A is diagonalizable, then let D = Q−1AQ with D diagonal,
and let p(x) be the characteristic polynomial of A.

Then, because raising D to a power just raises all of its
diagonal entries to that power, we can see that

p(D) = p


 λ1

. . .

λn


 =

 p(λ1)
. . .

p(λn)


will just yield the zero matrix, since p(λi ) = 0 for each i
because the λi are the eigenvalues of A (which are roots of p).

Now by conjugating each term and adding the results, we see
that 0 = p(D) = p(Q−1AQ) = Q−1 [p(A)] Q.

Conjugating back yields p(A) = Q · 0 · Q−1 = 0, as claimed.
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Cayley-Hamilton, IV: Just Kidding

In the case where A is not diagonalizable, the proof of the
Cayley-Hamilton theorem is substantially more difficult.

Our goal over the next few lectures is to discuss what can be done
with non-diagonalizable matrices.

We will show (with suitable assumptions about the eigenvalues of
the matrix) that such matrices can still be “nearly” diagonalized by
putting them into what is called the Jordan canonical form.
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Summary

We reviewed eigenvalues, eigenvectors, and eigenspaces, and
methods for computing these things.

We discussed diagonalization of matrices and linear
transformations, and showed that a matrix is diagonalizable if and
only if all of its eigenspaces have the “maximum possible”
dimension.

We proved the Cayley-Hamilton theorem (that a matrix satisfies its
characteristic polynomial).

Next lecture: Generalized Eigenvectors.


