- 1. Define / describe / state the following things:
 - Euclidean domains
 - The Euclidean algorithms in $\mathbb{Z}[i]$ and F[x]
 - Irreducible and prime elements
 - Unique factorization
 - The structure of R/rR
 - Units and zero divisors in R/rR
 - Multiplicative inverses of units in R/rR
 - The Chinese remainder theorem in R/rR
 - The order of a unit in a ring
 - Fermat's little theorem in R/rR

- Euler's theorem in R/rR
- Roots of polynomials
- Factorization and irreducibility in F[x]
- Finite fields
- Primitive roots in finite fields
- Primitive roots modulo m
- Residue classes in $\mathbb{Z}[i]$ modulo p
- Factorization in $\mathbb{Z}[i]$
- Sums of two squares
- Pythagorean triples
- 2. For each pair of elements, use the Euclidean algorithm in the ring R to calculate a greatest common divisor d = gcd(a, b)and also to find $x, y \in R$ such that d = ax + by.
 - (a) $a = x^4 + x$ and $b = x^3 + x$ in $\mathbb{F}_2[x]$.
 - (b) a = 11 + 24i and b = 13 i in $\mathbb{Z}[i]$.
 - (c) $a = x^3 x$ and $b = x^2 3x + 2$ in $\mathbb{R}[x]$.
 - (d) a = 9 5i and b = 3 + 2i in $\mathbb{Z}[i]$.
- 3. For each given a, p, and R, determine whether \overline{a} is a unit or a zero divisor in the ring of residue classes R/pR. If it is a unit find \overline{a}^{-1} , and if it is a zero divisor find a nonzero element \overline{b} with $\overline{a} \cdot \overline{b} = \overline{0}$.
 - (a) $a = 2 i, p = 5 + 5i, R = \mathbb{Z}[i].$
 - (b) $a = x + 3, p = x^2 2, R = \mathbb{R}[x].$
 - (c) $a = 3 + 4i, p = 7 8i, R = \mathbb{Z}[i].$
 - (d) $a = x^2 + x, p = x^4 + 1, R = \mathbb{F}_2[x].$
 - (e) $a = x^2 + x, p = x^3 + 3x + 1, R = \mathbb{F}_5[x].$
- 4. Let $R = \mathbb{F}_2[x]$ and $p = x^3 + x^2 + x + 1$.
 - (a) List the 8 residue classes in R/pR.
 - (b) Calculate $\overline{x^2} + \overline{x^2 + 1}$, $\overline{x^2} \cdot \overline{x^2 + 1}$, and $\overline{x^2 + 1}^2$ in R/pR and express the results as $\overline{ax^2 + bx + c}$ for some $a, b, c \in \mathbb{F}_2$.
 - (c) Identify all of the units and zero divisors in R/pR.
 - (d) Verify Euler's theorem for the unit $\overline{x^2 + x + 1}$ in R/pR.
 - (e) Show that \overline{x} is a primitive root in R/pR.

- 5. (The A-Zs of Chapter 4) Determine / calculate / find the following:
 - (a) The quotient and remainder when 19 + 3i is divided by 4 + i in $\mathbb{Z}[i]$.
 - (b) The quotient and remainder when x^5 is divided by $x^3 + x$ in $\mathbb{R}[x]$.
 - (c) The remainder when $x^{666} + x^{420}$ is divided by x 2 in $\mathbb{Q}[x]$.
 - (d) The solution to $(1+i)n \equiv 3 \pmod{8+i}$ in $\mathbb{Z}[i]$.
 - (e) The solution to $(x^2 + 1)p \equiv x \pmod{x^3 + x + 1}$ in $\mathbb{F}_2[x]$.
 - (f) All z with $z \equiv 2 i \pmod{3 + i}$ and $z \equiv 3 \pmod{4 + 5i}$ in $\mathbb{Z}[i]$.
 - (g) All p with $p \equiv x \pmod{x^2}$ and $p \equiv 10 \pmod{x-2}$ in $\mathbb{R}[x]$.
 - (h) The irreducible factorizations of $x^2 x + 4$ in $\mathbb{F}_2[x]$, $\mathbb{F}_3[x]$, and $\mathbb{F}_5[x]$.
 - (i) The number of residue classes in $\mathbb{F}_7[x]$ modulo $x^3 + 5x + 2$.
 - (j) The number of residue classes in $\mathbb{Z}[i]$ modulo 7 5i.
 - (k) All of the units and zero divisors in $\mathbb{F}_3[x]$ modulo $x^2 + 2x$.
 - (l) All of the units and zero divisors in $\mathbb{F}_5[x]$ modulo x^2 .
 - (m) The number of monic irreducible polynomials in $\mathbb{F}_2[x]$ of degree 7.
 - (n) The number of monic irreducible polynomials in $\mathbb{F}_7[x]$ of degree 4.
 - (o) The number of monic irreducible polynomials in $\mathbb{F}_2[x]$ of degree 10.
 - (p) Whether or not there exists a primitive root modulo (each of) 34, 35, 36, and 37.
 - (q) A primitive root modulo 3^{2020} and the total number of primitive roots modulo 3^{2020} .
 - (r) A primitive root modulo $2 \cdot 3^{2020}$ and the total number of primitive roots modulo $2 \cdot 3^{2020}$.
 - (s) A list of residue class representatives for $\mathbb{Z}[i]$ modulo 2-i.
 - (t) The prime factorization of 5 + 5i in $\mathbb{Z}[i]$.
 - (u) The prime factorization of 11 + 12i in $\mathbb{Z}[i]$.
 - (v) The prime factorization of 999 in $\mathbb{Z}[i]$.
 - (w) Which of the integers 104, 224, 420, and 666 can be written as the sum of two squares.
 - (x) Two different ways of writing the integer $450 = 2 \cdot 3^2 \cdot 5^2$ as a sum of two squares.
 - (y) Four Pythagorean right triangles with a hypotenuse of length 65.
 - (z) Two Pythagorean right triangles with a leg of length 49.

6. Prove the following:

- (a) Show that $\mathbb{F}_5[x]$ modulo $x^3 + x + 1$ is a field.
- (b) Show that $\mathbb{F}_5[x]$ modulo $x^4 + x + 1$ is not a field.
- (c) Show that $\mathbb{R}[x]$ modulo $x^2 + 2x + 8$ is a field.
- (d) Show that $x^3 + x + 1$ is irreducible and prime in $\mathbb{F}_7[x]$.
- (e) Construct, with proof, a field with exactly 125 elements.
- (f) Verify Euler's Theorem for the residue class of $x^2 + 1$ in $\mathbb{F}_2[x]$ modulo x^3 .
- (g) Verify Fermat's Little Theorem for the residue class of i in $\mathbb{Z}[i]$ modulo 2 + i.
- (h) Show that the element 4 + 5i is irreducible and prime in $\mathbb{Z}[i]$.
- (i) Show that the element $1 + \sqrt{-7}$ is irreducible in $\mathbb{Z}[\sqrt{-7}]$. [Hint: Show that there are no elements of norm 2 or 4.]
- (j) Show that the element $1 + \sqrt{-7}$ is not prime in $\mathbb{Z}[\sqrt{-7}]$. [Hint: It divides $8 = 2 \cdot 4$.]