
Math 3527 (Number Theory 1)

Lecture #32

Applications of Quadratic Reciprocity:

Finding p For Which a is a Quadratic Residue

Primes Dividing Quadratic Polynomials

Berlekamp’s Root-Finding Algorithm

Solovay-Strassen Compositeness Test

This material represents §5.5 from the course notes.



Quadratic Reciprocity

In the last lecture, we discussed quadratic reciprocity for Legendre
symbols and then generalized it to Jacobi symbols:

Theorem (Quadratic Reciprocity for Jacobi Symbols)

If b = p1p2 · · · pk is a product of odd primes and a is odd, then

1

(
−1

b

)
= (−1)(b−1)/2. Equivalently,

(
−1

b

)
is +1 if b ≡ 1

(mod 4) and is −1 if b ≡ 3 (mod 4).

2

(
2

b

)
= (−1)(b

2−1)/8. Equivalently,

(
2

b

)
is +1 if b ≡ 1, 7

(mod 8) and is −1 if b ≡ 3, 5 (mod 8).

3 If a and b are odd, relatively prime positive integers, then(a

b

)
·
(

b

a

)
= (−1)(a−1)(b−1)/4.



When Is a a QR Mod p?, I

Our first application of quadratic reciprocity is determining (given
a particular value of a) for which primes p is a a quadratic residue.

To outline the procedure, if we want to compute

(
a

p

)
for a

fixed a, first we find the prime factorization of a = q1q2 · · · qk .

Then since

(
a

p

)
=

(
q1

p

)(
q2

p

)
· · ·

(
qk

p

)
, we just need to

evaluate each individual Legendre symbol

(
qi

p

)
.

If there is a −1 or 2 term, we can handle those directly.

For the odd prime terms, quadratic reciprocity converts the

question to determining the Legendre symbol

(
p

qi

)
.

We can do this by listing all of the quadratic residues and
nonresidues modulo qi for each of the fixed values qi .



When Is a a QR Mod p?, II

Example: When is 17 a quadratic residue modulo p?

First, we observe that 17 is a quadratic residue modulo p = 2.

For odd primes, since 17 ≡ 1 (mod 4), quadratic reciprocity

says that

(
17

p

)
=

( p

17

)
.

But since the quadratic residues modulo 17 are

1, 2, 4, 8, 9, 13, 15, 16, this means that
( p

17

)
= +1 precisely

when p ≡ 1, 2, 4, 8, 9, 13, 15, or 16 (mod 17).

Thus, we conclude that 17 is a quadratic residue modulo p
precisely when p = 2, or when p ≡ 1, 2, 4, 8, 9, 13, 15, or 16
(mod 17).



When Is a a QR Mod p?, II

Example: When is 17 a quadratic residue modulo p?

First, we observe that 17 is a quadratic residue modulo p = 2.

For odd primes, since 17 ≡ 1 (mod 4), quadratic reciprocity

says that

(
17

p

)
=

( p

17

)
.

But since the quadratic residues modulo 17 are

1, 2, 4, 8, 9, 13, 15, 16, this means that
( p

17

)
= +1 precisely

when p ≡ 1, 2, 4, 8, 9, 13, 15, or 16 (mod 17).

Thus, we conclude that 17 is a quadratic residue modulo p
precisely when p = 2, or when p ≡ 1, 2, 4, 8, 9, 13, 15, or 16
(mod 17).



When Is a a QR Mod p?, III

Example: When is 3 a quadratic residue modulo p?

First, we observe that 3 is a quadratic residue modulo p = 2.

For odd primes, we want to find

(
3

p

)
by using quadratic

reciprocity to convert the question to one about

(
3

p

)
.

However, the relationship between those two Legendre
symbols will depend on the value of p mod 4.

Specifically, if p ≡ 1 (mod 4), then

(
3

p

)
=

(p

3

)
, while if

p ≡ 3 (mod 4), then

(
3

p

)
= −

(p

3

)
.

So we will look at the two possible cases p ≡ 1 (mod 4) and
p ≡ 3 (mod 4) separately.



When Is a a QR Mod p?, III

Example: When is 3 a quadratic residue modulo p?

First, we observe that 3 is a quadratic residue modulo p = 2.

For odd primes, we want to find

(
3

p

)
by using quadratic

reciprocity to convert the question to one about

(
3

p

)
.

However, the relationship between those two Legendre
symbols will depend on the value of p mod 4.

Specifically, if p ≡ 1 (mod 4), then

(
3

p

)
=

(p

3

)
, while if

p ≡ 3 (mod 4), then

(
3

p

)
= −

(p

3

)
.

So we will look at the two possible cases p ≡ 1 (mod 4) and
p ≡ 3 (mod 4) separately.



When Is a a QR Mod p?, IV

Example (continued): When is 3 a quadratic residue modulo p?

Note
(p

3

)
is +1 if p ≡ 1 (mod 3), and −1 if p ≡ 2 (mod 3).

Therefore, if p ≡ 1 (mod 4), then

(
3

p

)
= +1 only when

p ≡ 1 (mod 4) and p ≡ 1 (mod 3).

Putting these congruences together yields p ≡ 1 (mod 12).

In the other case where p ≡ 3 (mod 4), we see that(
3

p

)
= +1 only when p ≡ 3 (mod 4) and p ≡ 2 (mod 3).

Putting these congruences together yields p ≡ 11 (mod 12).

Thus, we conclude that 3 is a quadratic residue modulo p
precisely when p = 2, or when p ≡ 1 or 11 (mod 12).



When Is a a QR Mod p?, V

Example: When is 6 a quadratic residue modulo p?

We want to compute

(
6

p

)
=

(
2

p

)
·
(

3

p

)
, for p 6= 2, 3.

From the previous example,

(
3

p

)
= +1 when p ≡ 1 or 11

(mod 12), and

(
3

p

)
= −1 when p ≡ 5 or 7 (mod 12).

From our basic evaluations,

(
2

p

)
= +1 when p ≡ 1 or 7

(mod 8), and

(
2

p

)
= −1 when p ≡ 3 or 5 (mod 8).



When Is a a QR Mod p?, V

Example: When is 6 a quadratic residue modulo p?

We want to compute

(
6

p

)
=

(
2

p

)
·
(

3

p

)
, for p 6= 2, 3.

From the previous example,

(
3

p

)
= +1 when p ≡ 1 or 11

(mod 12), and

(
3

p

)
= −1 when p ≡ 5 or 7 (mod 12).

From our basic evaluations,

(
2

p

)
= +1 when p ≡ 1 or 7

(mod 8), and

(
2

p

)
= −1 when p ≡ 3 or 5 (mod 8).



When Is a a QR Mod p?, VI

Example (continued): When is 6 a quadratic residue modulo p?

Thus,

(
6

p

)
= +1 in the following cases:

Case 1:

(
3

p

)
=

(
2

p

)
= +1. This requires p ≡ 1, 11 (mod

12) and p ≡ 1, 7 (mod 8). Solving these simultaneous
congruences yields p ≡ 1, 23 (mod 24).

Case 2:

(
3

p

)
=

(
2

p

)
= −1. This requires p ≡ 5, 7 (mod 12)

and p ≡ 3, 5 (mod 8). Solving these simultaneous
congruences yields p ≡ 5, 19 (mod 24).

Therefore, 6 is a quadratic residue modulo p precisely when
p ≡ 1, 5, 19, 23 (mod 24).



Primes Dividing Quadratics, I

Our second application is to characterize the prime numbers that
can divide the values taken by a quadratic polynomial.

This should be unexpected, because polynomials can combine
addition and multiplication in arbitrary ways.

There is no especially compelling reason, a priori, to think
that the primes dividing the values of, say, the polynomial
q(x) = x2 + x + 7, should have any identifiable structure at
all: for all we know, the set of primes dividing an integer of
the form n2 + n + 7 could be totally arbitrary.



Primes Dividing Quadratics, II

Example: Characterize the primes dividing an integer of the form
n2 + n + 7, for n an integer.

It is not hard to see that n2 + n + 7 is always odd, so 2 is
never a divisor.

Now suppose that p is an odd prime and that n2 + n + 7 ≡ 0
(mod p).

We multiply by 4 and complete the square to obtain
(2n + 1)2 ≡ −27 (mod p).

Since p is odd, there will be a solution for n if and only if −27
is a square modulo p. If p = 3, this clearly holds, so now
assume p ≥ 5.



Primes Dividing Quadratics, II

Example: Characterize the primes dividing an integer of the form
n2 + n + 7, for n an integer.

It is not hard to see that n2 + n + 7 is always odd, so 2 is
never a divisor.

Now suppose that p is an odd prime and that n2 + n + 7 ≡ 0
(mod p).

We multiply by 4 and complete the square to obtain
(2n + 1)2 ≡ −27 (mod p).

Since p is odd, there will be a solution for n if and only if −27
is a square modulo p. If p = 3, this clearly holds, so now
assume p ≥ 5.



Primes Dividing Quadratics, III

Example (continued): Characterize the primes dividing an integer
of the form n2 + n + 7, for n an integer.

We compute

(
−27

p

)
=

(
−1

p

)
·
(

3

p

)3

=

(
−1

p

)
·
(

3

p

)
.

Since

(
−1

p

)
= +1 for p ≡ 1 (mod 4) and

(
3

p

)
= +1 when

p ≡ 1 or 11 (mod 12), we can see that

(
−3

p

)
= +1 precisely

when p ≡ 1 (mod 6).

Thus, by the above, we conclude that a prime p divides an
integer of the form n2 + n + 7 either when p = 3 or when
p ≡ 1 (mod 6).



Primes Dividing Quadratics, IV

Example: Characterize the primes dividing an integer of the form
n2 + 2n + 6, for n an integer.

Observe that 2 is a divisor when n = 0, so we may now
restrict our attention to odd primes p.

Completing the square yields (n + 1)2 ≡ −5 (mod p), which is
equivalent to saying −5 is a quadratic residue modulo p.
Clearly this has a solution when p = 5, so also assume p 6= 5.

Then, to characterize these values we want to determine when(
−5

p

)
=

(
−1

p

)
·
(

5

p

)
is equal to +1.



Primes Dividing Quadratics, IV

Example: Characterize the primes dividing an integer of the form
n2 + 2n + 6, for n an integer.

Observe that 2 is a divisor when n = 0, so we may now
restrict our attention to odd primes p.

Completing the square yields (n + 1)2 ≡ −5 (mod p), which is
equivalent to saying −5 is a quadratic residue modulo p.
Clearly this has a solution when p = 5, so also assume p 6= 5.

Then, to characterize these values we want to determine when(
−5

p

)
=

(
−1

p

)
·
(

5

p

)
is equal to +1.



Primes Dividing Quadratics, V

Example (continued): Characterize the primes dividing an integer
of the form n2 + 2n + 6, for n an integer.

By quadratic reciprocity, we see

(
5

p

)
=

(p

5

)
, so

(
5

p

)
= +1

for p ≡ 1, 4 (mod 5) and

(
5

p

)
≡ −1 for p ≡ 2, 3 (mod 5).

Also,

(
−1

p

)
= +1 precisely when p ≡ 1 (mod 4).

Then, by combining the appropriate cases with the Chinese

remainder theorem, we see

(
−5

p

)
= +1 precisely when

p ≡ 1, 3, 7, 9 (mod 20).

Thus, the prime p divides an integer of the form n2 + n + 7
either when p = 2 or p = 5 or when p ≡ 1, 3, 7, 9 (mod 20).



Berlekamp’s Root-Finding, I

Our third application of our results is to describe a fast
root-finding algorithm for polynomials modulo p.

So let q(x) = xn + an−1xn−1 + · · ·+ a0 be an element of
Fp[x ]: we would like to describe a method for calculating a
root of q(x) in Fp, if there is one.

As a starting point, we will consider the case where q(x)
factors completely into linear terms (so that there are no
irreducible factors of degree greater than 1).

So suppose that q(x) = (x − r1)(x − r2) · · · (x − rn) in Fp[x ].

We can detect if one of the ri is equal to zero (then q will
have constant term 0), and also if any of the ri are equal
(then q will have a common factor with its derivative q′).

So now also assume that all of the ri are distinct and nonzero.



Berlekamp’s Root-Finding, II

We have q(x) = (x − r1)(x − r2) · · · (x − rn) with distinct ri 6= 0.

By Euler’s criterion in Fp, r (p−1)/2 ≡
(

r

p

)
mod p.

This tells us that the roots of x (p−1)/2 − 1 in Fp are precisely
the quadratic residues, while the roots of x (p−1)/2 + 1 in Fp

are precisely the quadratic nonresidues.

Thus, the greatest common divisor of x (p−1)/2 − 1 with q(x)
will be equal to the product of all the terms x − ri where ri is
a quadratic residue.

Likewise, the greatest common divisor of x (p−1)/2 + 1 with
q(x) will be equal to the product of all the terms x − ri where
ri is a quadratic nonresidue.

This means that at least one root is a quadratic residue, and
another is a quadratic nonresidue, then we will obtain a
partial factorization of q(x).



Berlekamp’s Root-Finding, III

The argument we gave can give us a partial factorization. The
next insight is that we can repeat this procedure:

Specifically, we perform the same calculation with q(x − a) for
an arbitrary a ∈ Fp.

This will work because the roots of this polynomial are simply
the values a + r1, ... , a + rn.

Since a can be arbitrary, and half of the residue classes modulo
p are quadratic residues, we would expect to obtain at least
one quadratic residue and one nonresidue with probability
roughly 1− 2/2n, which is always at least 1/2 when n ≥ 2.

Thus, if there are at least two roots of this polynomial, we
expect to find a partial factorization with probability at least
1/2 for each attempt.

By iteratively applying this method for each factor, we can
quickly calculate the polynomial’s full list of roots.



Berlekamp’s Root-Finding, IV

Here is a more formal description of this method:

Algorithm (Berlekamp’s Root-Finding Algorithm)

Let q(x) ∈ Fp[x ] and suppose that q(x) = (x − r1) · · · (x − rn) for
some distinct ri ∈ Fp.

Choose a random a ∈ Fp and compute the gcd of q(x − a)
with x (p−1)/2 − 1 and x (p−1)/2 + 1 in Fp[x ].

If one of these gcds is a constant, choose a different value of a
and start over.

Otherwise, if both gcds have positive degree, then each gcd
gives a nontrivial factor of q(x).

Repeat the factorization procedure on each gcd, until the full
factorization of q(x) is found.



Berlekamp’s Root-Finding, V

We make a few more remarks about this algorithm:

The first step in the Euclidean algorithm’s gcd calculation can
be performed efficiently using successive squaring modulo
q(x − a): explicitly, to find the remainder upon dividing
x (p−1)/2 by q(x − a), we use successive squaring (of powers of
x) modulo q(x − a).

As we noted above, the probability of failure on any given
attempt should be (heuristically) roughly 2−(n−1), which
means that even in the worst case for a polynomial of degree
2, we have a 50% chance of success on each attempt.

Overall, this algorithm can be implemented in O(n2 log p)
time. For large n, then, it is still fairly slow, but if n is small
and p is large, it is much more efficient than a brute-force
search for the roots.



Berlekamp’s Root-Finding, VI

As a specific application, Berlekamp’s method is quite efficient for
computing square roots modulo p for arbitrary primes p.

During our analysis of the Rabin cryptosystem, we showed
that if p ≡ 3 (mod 4), then a(p+1)/4 is a square root of a
modulo p, so in this case there is a simple formula for
computing square roots.

However, if p ≡ 1 (mod 4) there is not such a nice formula,
and so Berlekamp’s method is a viable alternative.

We will also mention, in particular, that using a = 0 will never
work for computing square roots modulo p if p ≡ 1 (mod 4),
since the two square roots will always be both quadratic
residues or both quadratic nonresidues because −1 is a
quadratic residue modulo p.



Berlekamp’s Root-Finding, VII

Example: Find the roots of x2 ≡ 3 (mod 13).

First, we can compute

(
3

13

)
= +1 (either via Euler’s

criterion or by using quadratic reciprocity), so 3 does have
square roots modulo 13.

To compute them we let q(x) = x2 − 3 modulo p = 13, and
use Berlekamp’s algorithm.

As noted previously, a = 0 will not work, so we try a = 1:
then q(x − a) = x2 − 2x − 2.

Using successive squaring, we can calculate
x (p−1)/2 = x6 ≡ 3x + 10 (mod 13).



Berlekamp’s Root-Finding, VII

Example: Find the roots of x2 ≡ 3 (mod 13).

First, we can compute

(
3

13

)
= +1 (either via Euler’s

criterion or by using quadratic reciprocity), so 3 does have
square roots modulo 13.

To compute them we let q(x) = x2 − 3 modulo p = 13, and
use Berlekamp’s algorithm.

As noted previously, a = 0 will not work, so we try a = 1:
then q(x − a) = x2 − 2x − 2.

Using successive squaring, we can calculate
x (p−1)/2 = x6 ≡ 3x + 10 (mod 13).



Berlekamp’s Root-Finding, VIII

Example: Find the roots of x2 ≡ 3 (mod 13).

This means x (p−1)/2 − 1 ≡ 3x + 9 (mod 13), and so the first
step of the Euclidean algorithm reads
x (p−1)/2 ≡ [quotient] · q(x − a) + (3x + 9).

Performing the next step shows that 3x + 9 does indeed divide
x2 − 2x − 2 modulo 13 (the quotient is 9x + 7).

Solving for the first root (i.e., solving 3n + 9 ≡ 0 (mod 13))
yields n ≡ −3 ≡ 10 (mod 13).

This means n = 10 is a root of q(x − 1), and therefore
n − 1 = 9 is a root of the original polynomial q(x).

Indeed, we can check that 92 ≡ 3 (mod 13). Therefore, the
two roots are r ≡ ±9 (mod 13).



Berlekamp’s Root-Finding, IX

Example: Find the roots of x2 ≡ 11 (mod 2017).

First, we can compute

(
11

2017

)
= +1 (either via Euler’s

criterion or by using quadratic reciprocity), so 11 does have
square roots modulo the prime 2017.

To compute them we let q(x) = x2 − 11 modulo p = 2017.

As noted above, a = 0 will not work, so we try a = 1, so that
q(x − a) = x2 − 2x − 10.

Using successive squaring, we can calculate
x (p−1)/2 = x1008 ≡ 307x + 1710 (mod 2017).



Berlekamp’s Root-Finding, IX

Example: Find the roots of x2 ≡ 11 (mod 2017).

First, we can compute

(
11

2017

)
= +1 (either via Euler’s

criterion or by using quadratic reciprocity), so 11 does have
square roots modulo the prime 2017.

To compute them we let q(x) = x2 − 11 modulo p = 2017.

As noted above, a = 0 will not work, so we try a = 1, so that
q(x − a) = x2 − 2x − 10.

Using successive squaring, we can calculate
x (p−1)/2 = x1008 ≡ 307x + 1710 (mod 2017).



Berlekamp’s Root-Finding, X

Example: Find the roots of x2 ≡ 11 (mod 2017).

This means x (p−1)/2 − 1 ≡ 307x + 1709 (mod 2017), and so
the first step of the Euclidean algorithm reads
x (p−1)/2 ≡ [quotient] · q(x − a) + (307x + 1709).

Performing the next step shows that 307x + 1709 does indeed
divide x2 − 2x − 10 modulo 2017 (the quotient is
1360x + 668).

Solving for the first root (i.e., solving 307n + 1709 ≡ 0 (mod
2017)) yields n ≡ 1361 (mod 2017).

This means n = 1361 is a root of q(x − 1), and therefore
n − 1 = 1360 is a root of the original polynomial q(x).

Indeed, we can check that 13602 ≡ 11 (mod 2017).
Therefore, the two roots are r ≡ ±1360 (mod 2017).



Berlekamp’s Root-Finding, XI

Although we have quoted this result for polynomials q(x) that
factor as a product of linear terms, we can in fact reduce the
general problem of finding roots for arbitrary polynomials in Fp[x ]
to this case.

Explicitly, first we remove any repeated irreducible factors
from q using its derivative, and then we apply the
factorization algorithm above to the greatest common divisor
of q(x) and xp − x .

Since xp− x is the polynomial whose roots are all the elements
of Fp, the greatest common divisor of q(x) and xp − x will be
the product of all the linear terms in the factorization of q(x),
which is the factor of q(x) that contains all its roots.

Thus, to find roots of q(x), we need only find the roots of the
greatest common divisor of q(x) and xp − x , and we can do
this using the algorithm described above.



Solovay-Strassen, I

Our fourth and final application of quadratic reciprocity is to give
another compositeness test. Here is the basic idea:

By Euler’s criterion, if p is prime then a(p−1)/2 ≡
(

a

p

)
mod p.

Initially, we used this test to give a method for computing the

Legendre symbol

(
a

p

)
.

But we also have another way to compute this symbol,

namely, by evaluating the Jacobi symbol

(
a

p

)
using the “flip

and reduce” procedure provided by quadratic reciprocity.

If we then compare the results of these two methods, we see

that if a(p−1)/2 6≡
(

a

p

)
modulo p, then p is not prime.



Solovay-Strassen, II

This is precisely the idea of the Solovay-Strassen test:

Test (Solovay-Strassen)

If m is an odd integer such that a(m−1)/2 6≡
( a

m

)
modulo m, then

m is composite.

We remark that in order for the test to be useful, we need to

calculate the Jacobi symbol
( a

m

)
using quadratic reciprocity.

Thus, we will want to select a to be an odd residue class that is
greater than 1.



Solovay-Strassen, III

This compositeness test was developed by Solovay and Strassen in
1978 (thereby slightly predating our version of Miller-Rabin).

Like with the Fermat and Miller-Rabin tests, this is a
compositeness test only: each individual application for a
single value of a can only produce the results “m is
composite” or “no result”.

In practice, the Solovay-Strassen test is used probabilistically,
like with the Miller-Rabin test: we apply the test many times
to the integer m, and if it passes sufficiently many times, we
say m is probably prime.

It can be shown that any given residue has at least a 1/2
probability of showing that m is composite, so the probability
that a composite integer m can pass the test k times with
randomly-chosen residues a is at most 1/2k .



Solovay-Strassen, IV

Example: Use Solovay-Strassen to decide whether 561 is prime.
(Note that 561 is a Carmichael number, and passes the Fermat
test for every residue class.)

We try a = 5: we have 5(m−1)/2 ≡ 5280 ≡ 67 (mod 561),

whereas

(
5

561

)
=

(
561

5

)
=

(
1

5

)
= 1.

Since these are unequal, we conclude that 561 is composite.

As usual with our compositeness tests, we don’t obtain any
information about the factorization of 561; all we know is that
it is composite.



Solovay-Strassen, IV

Example: Use Solovay-Strassen to decide whether 561 is prime.
(Note that 561 is a Carmichael number, and passes the Fermat
test for every residue class.)

We try a = 5: we have 5(m−1)/2 ≡ 5280 ≡ 67 (mod 561),

whereas

(
5

561

)
=

(
561

5

)
=

(
1

5

)
= 1.

Since these are unequal, we conclude that 561 is composite.

As usual with our compositeness tests, we don’t obtain any
information about the factorization of 561; all we know is that
it is composite.



Solovay-Strassen, V

Example: Use Solovay-Strassen with a = 137 to decide whether
35113 is prime.

With m = 35113, we have 137(m−1)/2 ≡ 13717556 ≡ 1 (mod
2701).

Also, we have

(
137

35113

)
=

(
35113

137

)
=

(
41

137

)
=

(
137

41

)
=(

14

41

)
=

(
2

41

)
·
(

7

41

)
= +1 ·

(
41

7

)
=

(
−1

7

)
= −1.

Since these are unequal, we conclude that 35113 is composite.



Solovay-Strassen, V

Example: Use Solovay-Strassen with a = 137 to decide whether
35113 is prime.

With m = 35113, we have 137(m−1)/2 ≡ 13717556 ≡ 1 (mod
2701).

Also, we have

(
137

35113

)
=

(
35113

137

)
=

(
41

137

)
=

(
137

41

)
=(

14

41

)
=

(
2

41

)
·
(

7

41

)
= +1 ·

(
41

7

)
=

(
−1

7

)
= −1.

Since these are unequal, we conclude that 35113 is composite.



Generalizations of Quadratic Reciprocity, I

To close out this lecture, we will briefly mention a few tidbits
about some generalizations of quadratic reciprocity.

If you have been following the structure of the course so far, here
is what we did:

We studied factorization and modular arithmetic over the
integers.

Then we studied factorization and modular arithmetic in
residue rings of Z[i ] and Fp[x ].

Now we have finished studying quadratic residues and
quadratic reciprocity in Z/mZ.

The natural next step is then to study quadratic residues and
quadratic reciprocity in residue rings of Z[i ] and Fp[x ].



Generalizations of Quadratic Reciprocity, I

To close out this lecture, we will briefly mention a few tidbits
about some generalizations of quadratic reciprocity.

If you have been following the structure of the course so far, here
is what we did:

We studied factorization and modular arithmetic over the
integers.

Then we studied factorization and modular arithmetic in
residue rings of Z[i ] and Fp[x ].

Now we have finished studying quadratic residues and
quadratic reciprocity in Z/mZ.

The natural next step is then to study quadratic residues and
quadratic reciprocity in residue rings of Z[i ] and Fp[x ].



Generalizations of Quadratic Reciprocity, II

There are several possible ways to generalize quadratic reciprocity:

One natural avenue for generalization is to seek a version of
the Legendre symbol that detects when a given element is a
square modulo a prime, in more general rings.

Another avenue is to generalize to higher degree: to seek a
version of the Legendre symbol that detects when a given
element is a cube, fourth power, etc., modulo a prime.

There are generalizations in each of these directions, and
although we do not have the tools to discuss many of them,
the program of finding and classifying these various
“reciprocity laws” motivated much of the development of
algebraic number theory in the early 20th century.



Generalizations of Quadratic Reciprocity, III

Here are the generalizations that we discuss in §5.6:

In §5.6.1, we discuss how to define quadratic residues and a
general quadratic residue symbol for an arbitrary Euclidean
domain. Then we generalize Euler’s criterion.

In §5.6.2, we prove quadratic reciprocity over Z[i ].

In §5.6.3, we describe an extension of quadratic reciprocity
over Z[i ] called “quartic reciprocity”, so named because it
detects 4th powers.

Finally, §5.6.4, we discuss quadratic reciprocity over Fp[x ] and
also a much more general version known as dth-power
reciprocity.



Summary

We discussed several applications of quadratic reciprocity:

Characterizing the primes p for which a is a quadratic residue
modulo p

Characterizing primes dividing values of a quadratic
polynomial

Berlekamp’s factorization algorithm

The Solovay-Strassen primality test.

We gave a brief overview of some generalizations of quadratic
reciprocity.



It’s The End, For Real!

We’re now at the end of the course (except of course for the final).

I hope you enjoyed learning number theory with me this semester
as much as I enjoyed teaching it. It is a subject near and dear to
me (I am, after all, a number theorist!) and I hope you will take
away at least a bit of appreciation for the subject.

If you did in fact enjoy the course, I would greatly appreciate it if
you took the time to fill out the TRACE evaluations and mention
that fact.

Thanks, and good luck on the final!


