
Math 3527 (Number Theory 1)

Lecture #31

Quadratic Reciprocity and Jacobi Symbols:

Motivation for Quadratic Reciprocity

Examples of Quadratic Reciprocity

Jacobi Symbols

This material represents §5.3 + §5.4 from the course notes.



Legendre Symbols

Recall some basic properties of the Legendre symbol:

Definition

If p is an odd prime, the Legendre symbol

(
a

p

)
is defined to be

+1 if a is a quadratic residue, −1 if a is a quadratic nonresidue,
and 0 if p divides a.

Theorem (Euler’s Criterion)

If p is an odd prime, then for any residue class a, it is true that(
a

p

)
≡ a(p−1)/2 (mod p).

In particular, Euler’s criterion implies that

(
ab

p

)
=

(
a

p

)
·
(
b

p

)
.



Quadratic Reciprocity Motivation, I

Euler’s criterion provides us with a way to compute whether a
residue class a modulo p is a quadratic residue or nonresidue.

We will now examine the reverse question: given a particular value
of a, for which primes p is a a quadratic residue?

For a = 1 the answer is trivial, but for one other (less trivial) value
of a, namely a = −1 we can also answer this question immediately.



Quadratic Reciprocity Motivation, II

Proposition (−1 and Quadratic Residues)

If p is a prime, then −1 is a quadratic residue modulo p if and only
if p = 2 or p ≡ 1 (mod 4).

Proof:

Clearly −1 is a quadratic residue mod 2 (since it is equal to
1), so assume p is odd.

By Euler’s criterion, we have

(
−1

p

)
= (−1)(p−1)/2.

But the term on the right is +1 when (p − 1)/2 is even and
−1 when (p − 1)/2 is odd.

Hence (when p is odd) we see immediately that −1 is a
quadratic residue precisely when p ≡ 1 (mod 4).
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Quadratic Reciprocity Motivation, III

For other a 6= ±1 (or at least the ones that are not obvious squares
like a = 4), it is much less clear when a will be a quadratic residue.
Let’s work out some examples with primes less than 50:

For a = 2, a is a QR modulo 7, 17, 23, 31, 41, and 47, while a
is an NR modulo 3, 5, 11, 13, 19, 29, 37, and 43.

For a = 3, a is a QR modulo 11, 13, 23, 37, and 47, while a is
an NR modulo 5, 7, 17, 19, 29, 31, 41, and 43.

For a = 5, a is a QR modulo 11, 19, 29, 31, and 41, while a is
an NR modulo 3, 7, 13, 17, 23, 37, 43, and 47.

For a = 7, a is a QR modulo 3, 23, 31, 37, and 47, while a is
an NR modulo 5, 11, 13, 17, 23, and 41.

For a = 13, a is a QR modulo 3, 17, 23, and 29, while a is an
NR modulo 5, 7, 11, 19, 31, 37, 41, and 47.



Quadratic Reciprocity Motivation, IV

We can see a few patterns in these results. The easiest one to spot
is for a = 5:

5 is a quadratic residue mod 11, 19, 29, 31, and 41, while 5 is
a quadratic nonresidue mod 3, 7, 13, 17, 23, 37, 43, and 47.

Notice that the primes where 5 is a quadratic residue all have
units digits 1 or 9, while the primes where 5 is a nonresidue all
have units digits 3 or 7.

Another way of saying this is: the primes where 5 is a
quadratic residue are all 1 or 4 mod 5, while the primes where
5 is a nonresidue are all 2 or 3 mod 5.

Suspiciously, that 1 and 4 are the quadratic residues mod 5,
while 2 and 3 are the nonresidues.

This suggests searching for a similar pattern with a small
modulus in the other examples.



Quadratic Reciprocity Motivation, V

We can identify a few other patterns now:

All of the primes where 2 is a quadratic residue are either 1 or
7 modulo 8, while the primes where 2 is a nonresidue are all 3
or 5 modulo 8.

Similarly, all of the primes where 3 is a quadratic residue are
either 1 or 11 modulo 12, while the primes where 3 is a
nonresidue are all 5 or 7 modulo 12. However, there is
nothing obvious about how these residues are related, unlike
in the case a = 5.

We can also see that the primes where 13 is a quadratic
residue are 3, 4, or 10 modulo 13, and the primes where 13 is
a nonresidue are 2, 5, 6, 7, 8, or 11 modulo 13. Notice that 3,
4, and 10 are all quadratic residues modulo 13, while 2, 5, 6,
7, 8, and 11 are nonresidues.



Quadratic Reciprocity Motivation, VI

Some of the patterns are still elusive.

It seems that we have found natural patterns for a = 5 and
a = 13: for these two primes, it appears that a is a quadratic
residue modulo p if and only if p is a quadratic residue
modulo a.

Another way of saying this is that

(
5

p

)
= 1 if and only if(p

5

)
= 1, and similarly for 13.

However, we have not yet found such a “reciprocity” relation
for a = 3 and a = 7.



Quadratic Reciprocity Motivation, VII

Let us try looking at negative integers, to see if results are more
obvious there:

For a = −3, a is a QR modulo 7, 13, 19, 31, and 37, while a
is an NR modulo 5, 11, 17, 23, 29, 41, and 47.

We see here that the primes where a is a QR are all 1 mod 3,
while the ones where a is an NR are all 2 mod 3.

Notice that 1 is a quadratic residue modulo 3, and 2 is a
quadratic nonresidue.

For a = −7, a is a QR modulo 11, 23, 29, and 37, while a is
an NR modulo 3, 5, 13, 17, 19, 31, 41, and 47.

Again, we see a pattern: the primes where a is a QR are all 1,
2, or 4 mod 7, while the ones where a is an NR are all 3, 5, or
6 mod 7.

Notice that the quadratic residues modulo 7 are 1, 2, and 4,
while the nonresidues are 3, 5, and 6.



Quadratic Reciprocity Motivation, VIII: Are We Motivated Yet?

Let us summarize the information we have gathered so far:

From a = 5, it seems

(
5

p

)
= 1 if and only if

(p
5

)
= 1.

From a = 13, it seems

(
13

p

)
= 1 if and only if

( p

13

)
= 1.

From a = −3, it seems

(
−3

p

)
= 1 if and only if

(p
3

)
= 1.

From a = −7, it seems

(
−7

p

)
= 1 if and only if

(p
7

)
= 1.

In each case, we have a “reciprocity relation” between the

values of the two Legendre symbols

(
p

q

)
and

(
q

p

)
.

But the reciprocity relation appears to be different for the
primes 5 and 13 versus the primes 3 and 7.



Quadratic Reciprocity Motivation, IX: Now 100% Motivated!

Based on our previous ideas of looking for simple congruence
relations, notice that 3 and 7 are both 3 modulo 4, while 5 and 13
are both 1 modulo 4.

If p ≡ 1 (mod 4), it appears that

(
p

q

)
·
(
q

p

)
= 1, if q 6= p is

any odd prime. Note that this is symmetric in p and q, so this
should actually hold if p or q is 1 modulo 4.

In the other case, where p, q ≡ 3 (mod 4), it appears that(
−p
q

)
·
(
q

p

)
= 1, if q 6= p is any odd prime.

Since

(
−p
q

)
=

(
−1

q

)
·
(
p

q

)
, and we know

(
−1

q

)
= −1,

we can rewrite this relation as

(
p

q

)
·
(
q

p

)
= −1.



Quadratic Reciprocity, I

Thus, it appears that

(
p

q

)
·
(
q

p

)
is equal to 1 if p or q is 1 mod

4, and is −1 if both p and q are 3 mod 4.

This is precisely Gauss’s Law of Quadratic Reciprocity:

Theorem (Gauss’s Law of Quadratic Reciprocity)

If p and q are distinct odd primes, then(
p

q

)
·
(
q

p

)
= (−1)(p−1)(q−1)/4.

Equivalently,

(
p

q

)
·
(
q

p

)
= 1 if p or q is 1 (mod 4), and(

p

q

)
·
(
q

p

)
= −1 if p and q are both 3 (mod 4).
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q
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q

p
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p

q

)
·
(
q

p

)
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(
p

q

)
·
(
q

p

)
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p

q
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·
(
q

p
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Quadratic Reciprocity, II

We can summarize a bit of the history of quadratic reciprocity:

The law of quadratic reciprocity was stated (without proof) by
Euler in 1783, and the first correct proof was given by Gauss
in 1796.

Gauss actually published six different proofs of quadratic
reciprocity during his lifetime, and two more were found
among his notes.

Indeed, Gauss remarked on several occasions that this theorem
was one of his favorite results; given Gauss’s prodigious
mathematical output, this is a very strong statement!

Most proofs of quadratic reciprocity are fairly technically involved,
so we will not present the proof here (the proof takes about 3 full
pages in the notes).



Quadratic Reciprocity, III

Example: Verify quadratic reciprocity for p = 17 and q = 19.

Using Euler’s criterion, we evaluate(
17

19

)
≡ 17(19−1)/2 ≡ 179 ≡ 1 (mod 19). Indeed, 17 is a

square modulo 19, since 17 ≡ 62 (mod 19).

We also evaluate

(
19

17

)
≡ 19(17−1)/2 ≡ 198 ≡ 1 (mod 17).

Indeed, 19 is a square modulo 17, since 19 ≡ 62 (mod 17).

This agrees with quadratic reciprocity, since 17 is congruent

to 1 modulo 4, and

(
17

19

)
·
(

19

17

)
= 1 as claimed.
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Quadratic Reciprocity, IV

Example: Verify quadratic reciprocity for p = 23 and q = 43.

Using Euler’s criterion, we evaluate(
23

43

)
≡ 23(43−1)/2 ≡ 2321 ≡ 1 (mod 43). Indeed, 23 is a

square modulo 43, since 23 ≡ 182 (mod 43).

We also evaluate

(
43

23

)
≡ 43(23−1)/2 ≡ (−3)11 ≡ −1 (mod

23). One can verify by writing down all of the quadratic
residues modulo 23 that 43 ≡ 20 is not among them.

This agrees with quadratic reciprocity, since both 23 and 43

are congruent to 3 modulo 4, and

(
23

43

)
·
(

43

23

)
= −1 as

claimed.



Quadratic Reciprocity, IV
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Quadratic Reciprocity, V

We will also note one additional “basic evaluation”:

Proposition (2 and Quadratic Residues)

If p is an odd prime,

(
2

p

)
= (−1)(p

2−1)/8. Equivalently,

(
2

p

)
= 1

if p ≡ 1, 7 (mod 8), and

(
2

p

)
= −1 if p ≡ 3, 5 (mod 8).

Examples:

2 is a quadratic residue modulo the primes 7, 17, 23, 31, 41,
47, 71, 73, ... , since these primes are all congruent to 1 or 7
mod 8.

2 is a quadratic nonresidue modulo the primes 3, 5, 11, 13,
19, 29, 37, 43, 59, 61, 67, ... , since these primes are all
congruent to 3 or 5 mod 8.



Quadratic Reciprocity, V
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Quadratic Reciprocity, VI

We can use quadratic reciprocity to give another method for
computing Legendre symbols.

The idea is that if we want to compute

(
p

q

)
where p < q,

then by invoking quadratic reciprocity we can equivalently

calculate the value of

(
q

p

)
.

But now because q > p,

(
q

p

)
=

(
r

p

)
where r is the

remainder upon dividing q by p. We have therefore reduced
the problem to one of calculating a Legendre symbol with
smaller terms.

By repeating this “flip and reduce” procedure, we can
eventually winnow the terms down to values we can evaluate
by inspection.



Quadratic Reciprocity, VII

Example: Determine whether 31 is a quadratic residue modulo 47.

We want to find

(
31

47

)
. Notice that 31 and 47 are both

prime, so we can apply quadratic reciprocity.

By quadratic reciprocity, since both 47 and 31 are primes
congruent to 3 (mod 4), we have(

31

47

)
= −

(
47

31

)
= −

(
16

31

)
= −1, since 16 = 42 is clearly

a quadratic residue.

Since the Legendre symbol evaluates to −1, 31 is not a
quadratic residue modulo 47.



Quadratic Reciprocity, VII
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Quadratic Reciprocity, VIII

Example: Determine whether 357 is a quadratic residue mod 661.

We want to find

(
357

661

)
. Although 661 is prime, 357 is not,

so we cannot apply quadratic reciprocity directly.

Instead, we must first factor the top number: since

357 = 3 ·7 ·17, we know

(
357

661

)
=

(
3

661

)
·
(

7

661

)
·
(

17

661

)
.

Then we can evaluate each of those Legendre symbols
separately using quadratic reciprocity, since 661 is a prime
congruent to 1 (mod 4) and 3, 7, and 17 are all prime.



Quadratic Reciprocity, VIII
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=
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Quadratic Reciprocity, VIII

This yields(
3

661

)
=

(
661

3

)
=

(
1

3

)
= +1(

7

661

)
=

(
661

7

)
=

(
3

7

)
= −

(
7

3

)
= −

(
1

3

)
= −1(

17

661

)
=

(
661

17

)
=

(
−2

17

)
=

(
−1

17

)
·
(

2

17

)
= +1

Thus,

(
357

661

)
=

(
3

661

)
·
(

7

661

)
·
(

17

661

)
= −1, so 357 is

not a quadratic residue modulo 661.



Quadratic Reciprocity, IX

Although this procedure can be applied to evaluate Legendre
symbols with arbitrarily large numbers, we run into several
computational issues.

Specifically, we need to factor the top number every time we
“flip and reduce”, since quadratic reciprocity for Legendre
symbols only makes sense when both terms are primes.

We also need to remove factors of 2 and −1 once we reduce,
although this is much more trivial since we know the values of(
−1

p

)
and

(
2

p

)
for all primes p.

What we will do now is generalize the Legendre symbol to
composite moduli, so as to provide a way around this issue of
needing to factor the top number.



Jacobi Symbols, I

Here is our generalization of the Legendre symbol:

Definition

Let b be a positive odd integer with prime factorization
b = p1p2 · · · pk for some (not necessarily distinct) primes pk . The

Jacobi symbol
(a
b

)
is defined as(a

b

)
=

(
a

p1

)
L

(
a

p2

)
L

· · ·
(

a

pk

)
L

, where

(
a

pk

)
L

denotes the

Legendre symbol.

If b is itself prime, then the Jacobi symbol is simply the Legendre

symbol. We will therefore just write
(a
b

)
since we may now always

assume it is referring to the Jacobi symbol.



Jacobi Symbols, II

Examples:

We have

(
2

15

)
=

(
2

3

)
·
(

2

5

)
= (−1) · (−1) = +1.

We have

(
11

45

)
=

(
11

3

)2

·
(

11

5

)
= (−1)2 · (+1) = −1.

We have

(
77

33

)
=

(
77

3

)
·
(

77

11

)
= (−1) · 0 = 0.

We have

(
91

75

)
=

(
91

3

)2

·
(

91

5

)
= (+1)2 · (+1) = +1.



Jacobi Symbols, III

Here are some properties of Jacobi symbols:

Proposition (Properties of Jacobi Symbols)

Suppose b and b′ are positive odd integers and a, a′ are integers.
Then the following hold:

1

(a
b

)
is +1, −1, or 0, and it is 0 if and only if gcd(a, b) > 1.

2 If a is a quadratic residue modulo b and is relatively prime to

b, then
(a
b

)
= +1.

3 The Jacobi symbol is multiplicative on top and bottom:(
aa′

b

)
=

(a
b

)
·
(
a′

b

)
and

( a

bb′

)
=

(a
b

)
·
( a

b′

)
.



Jacobi Symbols, IV

Proofs:

1

(a
b

)
is +1, −1, or 0, and it is 0 if and only if gcd(a, b) > 1.

Proof: This is immediate from the properties of the Legendre
symbol, since each Legendre symbol is always +1, −1, or 0
Furthermore, there is a 0 term if and only if one of the prime
divisors of b also divides a.

2 If a is a quadratic residue modulo b and is relatively prime to

b, then
(a
b

)
= +1.

Proof: If a ≡ r2 (mod b), then
( a
b

)
=

(
r2

b

)
=

( r

b

)2

= +1,

since
( r

b

)
is either +1 or −1 by the assumption that a (hence

r) is relatively prime to b.



Jacobi Symbols, V

3 The Jacobi symbol is multiplicative on top and bottom:(
aa′

b

)
=

(a
b

)
·
(
a′

b

)
and

( a

bb′

)
=

(a
b

)
·
( a

b′

)
.

Proof: Suppose b = p1 · · · pk and b′ = q1 · · · qk .

Then

(
aa′

b

)
=

(
aa′

p1

)
L

· · ·
(
aa′

pk

)
L

=(
a

p1

)
L

(
a′

p1

)
L

· · ·
(

a

pk

)
L

(
a′

pk

)
L

=(
a

p1

)
L

· · ·
(

a

pk

)
L

(
a′

p1

)
L

· · ·
(
a′

pk

)
L

=
( a
b

)(
a′

b

)
, where we

used the multiplicativity of the Legendre symbol in the middle.
Also,( a

bb′

)
=

(
a

p1

)
L

· · ·
(

a

pk

)
L

(
a

q1

)
L

· · ·
(

a

qk

)
L

=
( a
b

)
·
( a

b′

)
by definition of the Jacobi symbol.



Jacobi Symbols, VI

Item (2) in the Proposition tells us that the Jacobi symbol, like the
Legendre symbol, evaluates to +1 on quadratic residues.

However, unlike the Legendre symbol, which only evaluates to
+1 on squares, the Jacobi symbol can also evaluate to +1 on
quadratic nonresidues!

In other words, the converse to item (2) is not longer true: it

is not (!) the case that
(a
b

)
= +1 implies that a is a

quadratic residue modulo b.

For example,

(
2

15

)
= +1 as computed above, but 2 is not a

quadratic residue modulo 15 because the only quadratic
residues modulo 15 are 1 and 4.



Jacobi Symbols, VII

We might ask: why not instead define the Jacobi symbol
(a
b

)
to

be +1 if a is a quadratic residue and −1 if a is a quadratic
nonresidue?

The reason we do not take this as the definition is that this
new symbol is not multiplicative: with a composite modulus,
the product of two quadratic nonresidues can still be a
quadratic nonresidue.

For example, the quadratic residues modulo 15 are 1 and 4,
while the quadratic nonresidues are 2, 7, 8, 11, 13, 14. Now
observe that 2 · 7 = 14 (mod 15), but all three of 2, 7, and 14
are quadratic nonresidues.



Jacobi Symbols, VIII

Ultimately, the problem is that a composite modulus has “different
types” of quadratic nonresidues.

To illustrate, an element a can be a quadratic nonresidue
modulo 15 in three ways: (i) it could be a quadratic
nonresidue mod 3 and a quadratic residue mod 5 [namely,
a = 11, 14], (ii) a quadratic residue mod 3 and a quadratic
nonresidue mod 5 [namely, a = 7, 13], or (iii) a quadratic
nonresidue mod 3 and a quadratic nonresidue mod 5 [namely,
a = 2, 8].

The product of two quadratic nonresidues each in the same
class above will be a quadratic residue modulo 15 (since it will
be a quadratic residue mod 3 and mod 5), but the product of
quadratic nonresidues from different classes will still be a
quadratic nonresidue mod 15 (since it will be a quadratic
nonresidue modulo 3 or modulo 5).



Quadratic Reciprocity for Jacobi, I

Our next main result is that the Jacobi symbol also obeys the law
of quadratic reciprocity:

Theorem (Quadratic Reciprocity for Jacobi Symbols)

If b = p1p2 · · · pk is a product of odd primes and a is odd, then

1

(
−1

b

)
= (−1)(b−1)/2. Equivalently,

(
−1

b

)
is +1 if b ≡ 1

(mod 4) and is −1 if b ≡ 3 (mod 4).

2

(
2

b

)
= (−1)(b

2−1)/8. Equivalently,

(
2

b

)
is +1 if b ≡ 1, 7

(mod 8) and is −1 if b ≡ 3, 5 (mod 8).

3 If a and b are odd, relatively prime positive integers, then(a
b

)
·
(
b

a

)
= (−1)(a−1)(b−1)/4.



Quadratic Reciprocity for Jacobi, II

We will not go into the details of these proofs, but they are
essentially just applications of the definition of the Jacobi symbol
in terms of the Legendre symbol.

We can use the Jacobi symbol to compute Legendre symbols using
the “flip and invert” technique discussed earlier. The advantage of
the Jacobi symbol is that we no longer need to factor the top
number: we only need to remove factors of −1 and 2.



Quadratic Reciprocity for Jacobi, III

Example: Determine whether 247 is a quadratic residue modulo
the prime 1009.

We have

(
247

1009

)
=

(
1009

247

)
=

(
21

247

)
= −

(
247

21

)
=

−
(

16

21

)
= −1, where at each stage we either used quadratic

reciprocity (to “flip”) or reduced the top number modulo the
bottom.

Thus, the Jacobi symbol

(
247

1009

)
is −1. But since 1009 is

prime, the Jacobi symbol is the same as the Legendre symbol.

Therefore, 247 is a quadratic nonresidue modulo 1009.



Quadratic Reciprocity for Jacobi, III

Example: Determine whether 247 is a quadratic residue modulo
the prime 1009.

We have

(
247

1009

)
=

(
1009

247

)
=

(
21

247

)
= −

(
247

21

)
=

−
(

16

21

)
= −1, where at each stage we either used quadratic

reciprocity (to “flip”) or reduced the top number modulo the
bottom.

Thus, the Jacobi symbol

(
247

1009

)
is −1. But since 1009 is

prime, the Jacobi symbol is the same as the Legendre symbol.

Therefore, 247 is a quadratic nonresidue modulo 1009.



Quadratic Reciprocity for Jacobi, IV

Example: Determine whether 1593 is a quadratic residue modulo
the prime 2017.

We have(
1593

2017

)
=

(
2017

1593

)
=

(
424

1593

)
=

(
2

1593

)3

·
(

53

1593

)
=

(
53

1593

)
=

(
1593

53

)
=

(
3

53

)
= −

(
53

3

)
= −

(
2

3

)
= +1.

Since 2017 is prime, the Jacobi symbol is the same as the
Legendre symbol, so 1593 is a quadratic residue modulo 2017.



Quadratic Reciprocity for Jacobi, IV

Example: Determine whether 1593 is a quadratic residue modulo
the prime 2017.

We have(
1593

2017

)
=

(
2017

1593

)
=

(
424

1593

)
=

(
2

1593

)3

·
(

53

1593

)
=

(
53

1593

)
=

(
1593

53

)
=

(
3

53

)
= −

(
53

3

)
= −

(
2

3

)
= +1.

Since 2017 is prime, the Jacobi symbol is the same as the
Legendre symbol, so 1593 is a quadratic residue modulo 2017.



Summary

We motivated the statement of the law of quadratic reciprocity,
and illustrated the law using some examples.

We defined the Jacobi symbol and showed that it also obeys the
law of quadratic reciprocity.

We described how to use Jacobi symbols to evaluate Legendre
symbols using quadratic reciprocity.

Next (and final) lecture: Applications of Quadratic Reciprocity


