
Math 3527 (Number Theory 1)

Lecture #30

Quadratic Residues and Legendre Symbols:

Quadratic Congruences

Quadratic Residues and Nonresidues

Legendre Symbols

This material represents §5.2 from the course notes.



Quadratic Congruences, I

In the last lecture, we discussed general polynomial congruences.
We now narrow our focus to quadratic congruences mod m. By
using the methods from last lecture, we may essentially reduce this
problem to solving quadratic congruences modulo p where p is a
prime.

So let f (x) = ax2 + bx + c , and consider the general
quadratic congruence f (x) ≡ 0 (mod p).

If p = 2 then this congruence is easy to solve, so we can also
assume p is odd.

If a ≡ 0 (mod p), then the congruence f (x) ≡ 0 (mod p)
reduces to a linear congruence, which we can easily solve.

So we can also assume a 6≡ 0 (mod p): then a is invertible
modulo p.



Quadratic Congruences, II

Now that we have handled the troublesome cases, we can solve the
quadratic equation the usual way by completing the square.

Explicitly, with f (x) = ax2 + bx + c , we can write
4af (x) = (2ax + b)2 + (4ac − b2).

Since 4a is invertible modulo p, the congruence f (x) ≡ 0
(mod p) is equivalent to (2ax + b)2 ≡ (b2 − 4ac) (mod p).

Solving for x then amounts to finding all solutions to y2 ≡ D
(mod p), where y = 2ax + b and D = b2 − 4ac.

This is merely the quadratic formula: x =
−b ±

√
b2 − 4ac

2a
(the hard part is computing the square root).



Quadratic Residues, I

We would like first like to determine whether the congruence
y2 ≡ D (mod p) has a solution at all.

Definition

If a is a unit modulo m, we say a is a quadratic residue modulo m
if there is some b such that b2 ≡ a (mod m). If there is no such b,
then we say a is a quadratic nonresidue modulo m.

It is a matter of taste whether to include nonunits in the definition
of quadratic residues/nonresidues. We will only consider units.

By definition, y2 ≡ D (mod p) has a solution for y precisely when
D is a quadratic residue modulo p (or when D = 0).



Quadratic Residues, II

Examples:

Modulo 3, there is one quadratic residue 1 and one quadratic
nonresidue 2.

Modulo 5, the quadratic residues are 1 and 4, while the
quadratic nonresidues are 2 and 3.

Modulo 13, the quadratic residues are 1, 4, 9, 3, 12, and 10,
while the quadratic nonresidues are 2, 5, 6, 7, 8, and 11.

Modulo 21, the quadratic residues are 1, 4, and 16, while the
quadratic nonresidues are 2, 5, 8, 10, 11, 13, 17, 19, and 20.

Modulo 25, the quadratic residues are 1, 6, 11, 16, 21, 4, 9,
14, 19, and 24, while the quadratic nonresidues are 2, 7, 12,
17, 22, 3, 8, 13, 18, and 23.



Quadratic Residues, III

Here are some of the basic properties of quadratic residues:

Proposition (Properties of Quadratic Residues)

Let p be an odd prime. Then the following hold:

1 A unit a is a quadratic residue modulo pd for d ≥ 1 if and
only if a is a quadratic residue modulo p.

2 If m is any odd positive integer, then a unit a is a quadratic
residue modulo m if and only if a is a quadratic residue
modulo p for each prime p dividing m.

3 The quadratic residues modulo p are 12, 22, ... , (p−1
2 )2.

Hence, half of the invertible residue classes modulo p are
quadratic residues (the other half are nonresidues).

4 If u is a primitive root modulo p, then a is a quadratic residue
modulo p if and only if a ≡ u2k (mod p) for some integer k.



Quadratic Residues, IV

Proofs:

1 A unit a is a quadratic residue modulo pd for d ≥ 1 if and
only if a is a quadratic residue modulo p.

Proof: Clearly, if there exists a b such that a ≡ b2 (mod pd)
then a ≡ b2 (mod p), so the forward direction is trivial.
For the other direction, suppose a is a unit and there exists
some b with a ≡ b2 (mod p).
For q(x) = x2 − a, we then want to apply Hensel’s lemma to
lift the solution x ≡ b (mod p) of the congruence q(x) ≡ 0
(mod p) to a solution modulo pd .
We can do this as long as q′(b) 6= 0 (mod p): but q′(b) = 2b,
and this is nonzero because b 6≡ 0 (mod p) and p is odd.



Quadratic Residues, IV

2 If m is any odd positive integer, then a unit a is a quadratic
residue modulo m if and only if a is a quadratic residue
modulo p for each prime p dividing m.

Proof: By the Chinese Remainder Theorem, there is a solution
to x2 ≡ a (mod m) if and only if there is a solution to x2 ≡ a
(mod pd) for each prime power pd appearing in the prime
factorization of m.
But by (1), there is a solution to x2 ≡ a (mod pd) if and only
if there is a solution to x2 ≡ a (mod p).
In other words, a is a quadratic residue modulo m if and only if
a is a quadratic residue modulo p for each prime p dividing m,
as claimed.



Quadratic Residues, V

3 The quadratic residues modulo p are 12, 22, ... , (p−1
2 )2.

Hence, half of the invertible residue classes modulo p are
quadratic residues (the other half are nonresidues).

Proof: If p is prime, then p|(a2 − b2) implies p|(a− b) or
p|(a + b): thus, a2 ≡ b2 (mod p) is equivalent to a ≡ ±b
(mod p).
We conclude that 12, 22, ... , ( p−1

2 )2 are distinct modulo p.

The other squares ( p+1
2 )2, ... , (p − 1)2 are equivalent to these

in reverse order, since k2 ≡ (p − k)2 (mod p).

Examples:
The quadratic residues mod 11 are 12, 22, 32, 42, 52 (1, 4, 9, 5, 3).
The quadratic residues mod 13 are 12, 22, 32, 42, 52, 62.



Quadratic Residues, VI

4 If u is a primitive root modulo p, then a is a quadratic residue
modulo p if and only if a ≡ u2k (mod p) for some integer k.

Proof: Clearly, if a ≡ u2k (mod p) then a ≡ (uk)2 is a
quadratic residue.
Conversely, suppose a is a quadratic residue, with a ≡ b2 (mod
p). Then because u is a primitive root, we can write b ≡ uk

(mod p) for some k : then a ≡ b2 ≡ u2k (mod p), as required.

This says the quadratic residues are the even powers of the
primitive root while the quadratic nonresidues are the odd powers.

Example: 2 is a primitive root mod 11, and the quadratic residues
mod 11 are 22 ≡ 4, 24 ≡ 5, 26 ≡ 9, 28 ≡ 3, and 210 ≡ 1.



Quadratic Residues, VII

The items in the proposition allow us to write down the quadratic
residues modulo p using various descriptions.

Our next goal is to find an efficient way to decide whether a given
residue class a modulo p is a quadratic residue or a quadratic
nonresidue.



Legendre Symbols, I

We now introduce notation that will help us distinguish between
quadratic residues and quadratic nonresidues:

Definition

If p is an odd prime, the Legendre symbol

(
a

p

)
is defined to be

+1 if a is a quadratic residue, −1 if a is a quadratic nonresidue,
and 0 if p divides a.

The notation for the Legendre symbol is somewhat unfortunate,
since it is the same as that for a standard fraction. When

appropriate, we may write

(
a

p

)
L

to emphasize that we are

referring to a Legendre symbol rather than a fraction.



Legendre Symbols, II

Examples:

We have

(
2

7

)
= +1,

(
3

7

)
= −1, and

(
0

7

)
= 0, since 2 is a

quadratic residue and 3 is a quadratic nonresidue modulo 7.

We have

(
3

13

)
=

(
−3

13

)
= +1, and

(
2

13

)
= 1, since 3 and

−3 are quadratic residues modulo 13, while 2 is not.

We have

(
16

17

)
=

(
132

17

)
= +1 since both 16 = 42 and 132

are quadratic residues modulo 17.



Legendre Symbols, III

We now give an easy way to calculate the Legendre symbol.

Theorem (Euler’s Criterion)

If p is an odd prime, then for any residue class a, it is true that(
a

p

)
≡ a(p−1)/2 (mod p).

Euler’s criterion gives a very efficient way to compute any
Legendre symbol, because we can very rapidly evaluate a(p−1)/2

modulo p using successive squaring.



Legendre Symbols, IV

Proof:

If p|a then the result is trivial (since both sides are 0 mod p),
so assume a is a unit and let u be a primitive root.

If a is a quadratic residue, then by item (4) of our
Proposition, we know that a = u2k for some integer k .

Then a(p−1)/2 ≡ (u2k)(p−1)/2 = (up−1)k ≡ 1k = 1 =

(
a

p

)
(mod p), as required.

If a is a quadratic nonresidue, then again by item (4) of the
proposition above, we know a = u2k+1 for some integer k.

We observe that u(p−1)/2 ≡ −1 (mod p), since its square is 1
but it cannot be 1 since u is a primitive root.

Then a(p−1)/2 ≡ (u2k+1)(p−1)/2 = (up−1)k · u(p−1)/2 ≡

u(p−1)/2 ≡ −1 =

(
a

p

)
(mod p), again as required.



Legendre Symbols, V

Example: Calculate the Legendre symbol

(
12

17

)
.

We simply compute 12(17−1)/2 ≡ 128 ≡ −1 (mod 17).

Thus,

(
12

17

)
= −1.

Example: Calculate the Legendre symbol

(
13

101

)
.

We simply compute 13(101−1)/2 ≡ 1350 ≡ 1 (mod 101).

Thus,

(
13

101

)
= 1.

Example: Determine whether 14 is a quadratic residue modulo 23.

We want to evaluate

(
14

23

)
. But by Euler’s criterion this is

14(23−1)/2 ≡ 1411 ≡ −1 (mod 23).

This means 14 is a quadratic nonresidue modulo 23.



Legendre Symbols, V
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Legendre Symbols, V
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Legendre Symbols, VI

We can extend these calculations to determine the quadratic
residues and nonresidues for other moduli:

Example: Determine whether 2 is a quadratic residue or nonresidue
modulo 73.

Note that 73 is not prime, so we cannot use Euler’s criterion
directly. But because 73 is a prime power, we know that the
quadratic residues modulo 7 are the same as the quadratic
residues modulo 73.

By Euler’s criterion,

(
2

7

)
≡ 23 ≡ 1 (mod 7), so 2 is a

quadratic residue modulo 7 hence also a quadratic residue
modulo 73.



Legendre Symbols, VI
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Legendre Symbols, VII

Example: Determine whether 112 is a quadratic residue or
nonresidue modulo 675.

Note that 675 = 3352, so by our results, 112 is a quadratic
residue modulo 675 if and only if it is a quadratic residue
modulo 3 and modulo 5.

We have

(
112

3

)
=

(
1

3

)
≡ 1 (mod 3), so 112 is a quadratic

residue modulo 3.

However,

(
112

5

)
=

(
2

5

)
≡ 22 ≡ −1 (mod 5), so 112 is a

quadratic nonresidue modulo 5.

Therefore, 112 is a quadratic nonresidue modulo 675.



Legendre Symbols, VII
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Legendre Symbols, VIII

Euler’s criterion also yields an extremely useful corollary about the
product of Legendre symbols:

Corollary (Multiplicativity of Legendre Symbols)

If p is a prime, then for any a and b,

(
ab

p

)
=

(
a

p

)
·
(
b

p

)
.

Proof:

Simply use Euler’s criterion to write(
ab

p

)
= (ab)(p−1)/2 = a(p−1)/2b(p−1)/2 =

(
a

p

)
·
(
b

p

)
.

Equivalently, the product of two quadratic residues is a quadratic
residue, the product of a quadratic residue and nonresidue is a
nonresidue, and (much more unexpectedly) the product of two
quadratic nonresidues is a quadratic residue.



Summary

We defined the quadratic residues (and nonresidues) and
established some of their basic properties.

We defined the Legendre symbol, which allows us to detect
quadratic residues and nonresidues

We proved Euler’s criterion, which provides a method for
calculating Legendre symbols efficiently.

Next lecture: Quadratic Reciprocity


