
Math 3527 (Number Theory 1)

Lecture #27

Factorization in Z[i ]:

Reducible and Irreducible Elements in Z[i ]

Prime Factorization in Z[i ]

Fermat’s Theorem on Sums of Two Squares

Pythagorean Triples

This material represents §4.4.1 from the course notes.



Irreducible Elements, I

The goal of this lecture is to study prime factorization in Z[i ] and
then discuss a few of its applications to number theory in Z.

Notation: We will reserve the letter p for a prime integer (in Z),
and we will use π to denote an irreducible element in Z[i ]. (The
use of the letter π is traditional, and should not cause confusion
with the real number π.)



Irreducible Elements, II

We first recall a few properties of the norm map on Z[i ] that we
will use frequently:

Proposition (Norm Properties)

The units in Z[i ] are {±1,±i}. Also, if N(α) = p for a prime p,
then α is irreducible.

Proof:

We previously showed α is a unit if and only if N(α) = ±1.

Since N(a + bi) = a2 + b2, there are no elements of negative
norm. It is then easy to see that N(a + bi) = 1 precisely if
a + bi is one of ±1, ±i , so these are the only units.

We also showed that N(α) = ±p where p is a prime, then α
is irreducible, which immediately gives the second statement.



Irreducible Elements, III

The norm map is an extremely important tool for understanding
factorization in Z[i ] (in fact, in some sense it is almost our only
tool!), since it allows us to transfer information from Z[i ] into Z,
whose arithmetic we understand better.

To start: observe that if π ∈ Z[i ], then π certainly divides
N(π) = π · π in Z[i ].

So if π is irreducible in Z[i ], then since irreducibles are prime
elements in a Euclidean domain, this means that π must
divide one of the (integer) prime factors of the integer N(π).

Thus, to identify the irreducible elements of Z[i ], we need to
study how primes p ∈ Z factor in Z[i ].



Irreducible Elements, IV

Proposition (Reducibility and Sums of Squares)

If p is a prime integer, then p is irreducible in Z[i ] if and only if p
is not the sum of two squares (of integers). In particular, 2 is
reducible in Z[i ], while any prime congruent to 3 modulo 4 is
irreducible in Z[i ].

Examples:

The primes 3, 7, 11, and 19 are irreducible in Z[i ] because
they are each congruent to 3 modulo 4.

The primes 5 = 22 + 12, 89 = 82 + 52, and 109 = 102 + 32

are not irreducible in Z[i ] because they can all be expressed as
the sum of two squares.
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Irreducible Elements, V

Proof:

Suppose p is a prime in Z and that p has a factorization
p = (a + bi)(c + di) for some nonunits a + bi , c + di in Z[i ].

Taking norms yields p2 = N(p) = (a2 + b2)(c2 + d2).

Now, since a + bi and c + di are not units, both a2 + b2 and
c2 + d2 must be greater than 1.

The only possibility is a2 + b2 = c2 + d2 = p, so we see that
p = a2 + b2 for some integers a and b.

Conversely, if p = a2 + b2 for some integers a and b, we
immediately have the factorization p = (a + bi)(a− bi).

For the last statement, clearly 2 = 12 + 12.

Also, every square is either 0 or 1 modulo 4, so the sum of
two squares cannot be congruent to 3 modulo 4.



Irreducible Elements, VI

It remains to analyze what happens with primes congruent to 1
modulo 4.

Examples:

We have 5 = 22 + 12 so 5 = (2 + i)(2− i) factors.

We have 13 = 32 + 22 so 13 = (3 + 2i)(3− 2i) factors.

We have 17 = 42 + 12 so 17 = (4 + i)(4− i) factors.

We have 29 = 52 + 22 so 29 = (5 + 2i)(5− 2i) factors.

We have 37 = 62 + 12 so 37 = (6 + i)(6− i) factors.

We have 41 = 52 + 42 so 41 = (5 + 4i)(5− 4i) factors.

Based on these examples (try some larger primes yourself!) it
appears that such primes always factor into a product of two
complex-conjugate irreducible factors in Z[i ].



Irreducible Elements, VII

Proposition (Factorization of 1 Mod 4 Primes)

If p is a prime integer and p ≡ 1 (mod 4), then p is a reducible
element in the ring Z[i ], and its factorization into irreducibles is
p = (a + bi)(a− bi) for some a and b with a2 + b2 = p.

We will take a somewhat indirect approach to this proof.

First, we will show that there exists some integer n such that
p divides n2 + 1.

Then we will exploit this (seemingly very weak) statement to
show that p is reducible in Z[i ].



Irreducible Elements, VIII

Proof:

For the first part, let p be a prime of the form p = 4k + 1 and
let u be a primitive root modulo p (which we have shown, two
lectures ago, necessarily exists).

Then u4k ≡ 1 mod p, so u2k ≡ −1 (mod p), since its square
is 1 but it cannot equal 1 (as otherwise u would have order
≤ 2k and thus not be a primitive root).

Then uk = n is an element whose square is −1 modulo p, so
p divides the integer n2 + 1.



Irreducible Elements, IX

Proof (continued):

Now, we know p divides n2 + 1 = (n + i)(n − i) in Z[i ].

Since p is a real number, if p divides one of n ± i then taking
complex conjugates would show that p also divides the other.
But this is not possible, since then p would divide
(n + i)− (n − i) = 2i , which it clearly does not.

Therefore, p is not a prime element in Z[i ], so it must be
reducible. By the previous proposition, this means there exist
integers a and b with p = a2 + b2.

Then N(a + bi) = N(a− bi) = a2 + b2 = p, and so these two
elements are both irreducible.

Hence the factorization of p in Z[i ] is p = (a + bi)(a− bi), as
claimed.



Irreducible Elements, X: Marks The Spot

Putting the two previous results together gives us a
characterization of the irreducible elements in Z[i ]:

Theorem (Irreducibles in Z[i ])

Up to associates, the irreducible elements in Z[i ] are as follows:

1 The element 1 + i (of norm 2).

2 The primes p ∈ Z congruent to 3 modulo 4 (of norm p2).

3 The distinct irreducible factors a + bi and a− bi (each of norm
p) of p = a2 + b2 where p ∈ Z is congruent to 1 modulo 4.



Irreducible Elements, XI: This One Goes To 11

Proof:

The above propositions show that each of the listed elements
are irreducible elements, so we only need to show that there
are no others.

So suppose π = a + bi is an irreducible element in Z[i ].

Then N(π) = p1p2 · · · pk for some (integer) primes pi ∈ Z.

Since π is a prime element, it must divide one of the pi .

But we have characterized how pi factors into irreducibles in
Z[i ], so it must be associate to one of the elements on our list
above. Hence our list is complete up to associates, as claimed.



Prime Factorizations, I

Using the characterization of irreducible elements, we can describe
a method for factoring an arbitrary Gaussian integer into
irreducibles. (This is the “prime factorization” in Z[i ].)

First, find the prime factorization of N(a + bi) = a2 + b2 over
the integers Z, and write down a list of all (rational) primes
p ∈ Z dividing N(a + bi).

Second, for each p on the list, find the factorization of p over
the Gaussian integers Z[i ].

Finally, use trial division to determine which of these
irreducible elements divide a + bi in Z[i ], and to which
powers. (The factorization of N(a + bi) can be used to
determine the expected number of powers.)



Prime Factorizations, II

Example: Find the prime factorization of 4 + 22i in Z[i ].

We compute N(4 + 22i) = 42 + 222 = 22 · 53. The primes
dividing N(4 + 22i) are 2 and 5.

Over Z[i ], we find the factorizations 2 = −i(1 + i)2 and
5 = (2 + i)(2− i).

Now we just do trial division to find the correct powers of
each of these elements dividing 4 + 22i .

Since N(4 + 22i) = 22 · 53, we should get two copies of 1 + i
and three elements from {2 + i , 2− i}.
Doing the trial division yields the factorization
4 + 22i = −i · (1 + i)2 · (2 + i)3. (Note that in order to have
powers of the same irreducible element, we left the unit −i in
front of the factorization.)
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Prime Factorizations, III

Example: Find the prime factorization of 27− 19i in Z[i ].

We compute N(27− 19i) = 272 + 192 = 2 · 5 · 109.

Over Z[i ], we find the factorizations 2 = −i(1 + i)2,
5 = (2 + i)(2− i), and 109 = (10 + 3i)(10− 3i).

Now we just do trial division to find the correct powers of
each of these elements dividing 4 + 22i .

Since N(4 + 22i) = 2 · 5 · 109, we should get one copy of
1 + i , one element from {2 + i , 2− i}, and one element from
{10 + 3i , 10− 3i}.
Doing the trial division yields the factorization
27− 19i = −i(1 + i)(2 + i)(10− 3i).
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Prime Factorizations, IV

In these two examples, the primes appearing were small enough to
factor over Z[i ] by inspection (e.g., 109 = (10 + 3i)(10− 3i)).

However, if p is large then it is not so obvious how to factor p in
Z[i ]. We briefly explain how to find this expression algorithmically.



Prime Factorizations, V

Per the proof, we first want to find n such that p divides n2 + 1.

This is equivalent to finding a square root of −1 modulo p.

In our proof, we constructed such a value using a primitive
root u: specifically, we took n = u(p−1)/4.

However, we do not usually need to expend that much effort:
in fact, if we just choose a random unit u, then as we will
show (fairly soon!), each u has a 50% chance of having
u(p−1)/2 ≡ −1 (mod p), so selecting random values will
quickly let us find one.

Assuming we do this calculation (which is very efficient using
successive squaring) to find such a u, we take n = u(p−1)/4

(mod p).



Prime Factorizations, VI

Now suppose we have n such that p divides n2 + 1.

If we factor p = ππ in Z[i ], then since π divides
n2 + 1 = (n + i)(n − i) and π is a prime element, either π
divides n + i or π divides n − i . Equivalently, either π divides
n + i or π divides n + i .

Furthermore, since p clearly does not divide n + i , we see that
exactly one of π and π divides n + i . Therefore, either π or π
is a greatest common divisor of p and n + i in Z[i ].

Thus, to find a and b such that p = a2 + b2, we can use the
Euclidean algorithm in Z[i ] to find a greatest common divisor
of p and n + i in Z[i ]: the result will be an element
π = a + bi with a2 + b2 = p.



Prime Factorizations, VII

Example: Express the prime p = 3329 as the sum of two squares.

By successive squaring we can compute 2(p−1)/2 ≡ 1 (mod p)
so u = 2 will not work, but 3(p−1)/2 ≡ −1 (mod p).

Thus, our discussion above tells us that 3(p−1)/4 ≡ 1729 is a
square root of −1 modulo p: indeed, 17292 + 1 = 898 · 3329.

Now we compute the gcd of 1729 + i and 3329 in Z[i ] using
the Euclidean algorithm:

3329 = 2(1729 + i) + (−129− 2i)

1729 + i = −13(−129− 2i) + (52− 25i)

−129− 2i = (−2− i)(52− 25i)

The last nonzero remainder is 52− 25i , and indeed we see
that 3329 = 522 + 252.
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Sums of Two Squares, I

As a corollary to our characterization of the irreducible elements in
Z[i ], we can deduce the following theorem of Fermat on when an
integer is the sum of two squares:

Theorem (Fermat’s Theorem on Sums of Two Squares)

Let n be a positive integer, and write n = 2kpn1
1 · · · p

nk
k qm1

1 · · · q
md
d ,

where p1, · · · , pk are distinct primes congruent to 1 modulo 4 and
q1, · · · , qd are distinct primes congruent to 3 modulo 4. Then n
can be written as a sum of two squares in Z if and only if all the
mi are even. Furthermore, in this case, the number of ordered
pairs of integers (A,B) such that n = A2 + B2 is equal to
4(n1 + 1)(n2 + 1) · · · (nk + 1).



Sums of Two Squares, II

Preuve (partie première):

Observe that the question of whether n can be written as the
sum of two squares n = A2 + B2 is equivalent to the question
of whether n is the norm of a Gaussian integer A + Bi .

Write A + Bi = ρ1ρ2 · · · ρr as a product of irreducibles
(unique up to units), and take norms to obtain
n = N(ρ1) · N(ρ2) · · · · · N(ρr ).

By our classification, if ρ is irreducible in Z[i ], then N(ρ) is
either 2, a prime congruent to 1 modulo 4, or the square of a
prime congruent to 3 modulo 4.

Hence there exists such a choice of ρi with n =
∏

N(ρi ) if
and only if all the mi are even.

This establishes the first part of the theorem.



Sums of Two Squares, III

Preuve (partie deuxième):

For the counting part, since the factorization of A + Bi is
unique, to find the number of possible pairs (A,B), we need
only count the number of ways to select terms for A + Bi and
A− Bi from the factorization of n over Z[i ].

The factorization is
n = (1 + i)2k(π1π1)n1 · · · (πkπk)nk qm1

1 · · · q
md
d .

Up to associates, we must choose

A + Bi = (1 + i)k(πa11 π1
b1) · · · (πakk πk

bk )q
m1/2
1 · · · qmd/2

d ,
where ai + bi = ni for each 1 ≤ i ≤ k.

Since there are ni + 1 ways to choose the pair (ai , bi ), and 4
ways to multiply A + Bi by a unit, the total number of ways is
4(n1 + 1) · · · (nk + 1), as claimed.



Sums of Two Squares, IV

Example: Determine whether 4044 can be written as the sum of
two squares.

We factor 4044 = 22 · 3 · 337.

Since 3 is a prime congruent to 3 modulo 4 that appears in
the factorization to an odd power, our characterization
dictates that it cannot be written as the sum of two squares.

Example: Determine whether 9945 can be written as the sum of
two squares.

We factor 9945 = 32 · 5 · 13 · 17.

Since the only prime appearing in the factorization congruent
to 3 mod 4 is 3, and it has an even power, our characterization
dictates that 9945 can be written as the sum of two squares.
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Sums of Two Squares, V

Example: Find all ways to write 6649 as the sum of two squares.

We factor 6649 = 61 · 109. This is the product of two primes
each congruent to 1 modulo 4, so (per our formula) it can be
written as the sum of two squares in 16 different ways.

We compute 61 = 52 + 62 and 109 = 102 + 32 (either by the
algorithm we described or by inspection).

Then the 16 ways can be found from the different ways of
choosing one of 5± 6i and multiplying it with 10± 3i .

Explicitly: we have (5 + 6i)(10 + 3i) = 32 + 75i and
(5 + 6i)(10− 3i) = 68 + 45i , so we obtain the sixteen ways of
writing 6649 as the sum of two squares as (±32)2 + (±75)2,
(±68)2 + (±45)2, and the eight other decompositions with
the terms interchanged.
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Sums of Two Squares, VI

Example: Find 3 ways to write 7650 as the sum of two squares.

We factor 7650 = 2 · 32 · 52 · 17. Since the only prime
congruent to 3 modulo 4 (namely 3) appears with an even
exponent, 7650 can be written by the sum of two squares.

Since 5 = (2 + i)(2− i) and 17 = (4 + i)(4− i), the possible
ways can be found by multiplying 1 + i , 3, two of 2± i , and
one of 4± i .

We get (1 + i)(3)(2 + i)2(4 + i) = −33 + 81i ,
(1 + i)(3)(2 + i)2(4− i) = 9 + 87i , and
(1 + i)(3)(2 + i)(2− i)(4 + i) = 45 + 75i .

These yield 7650 = 332 + 812 = 92 + 872 = 452 + 752.

The other possible products yield sums equivalent to these.
(Indeed, we can see that there are no others using the formula
for the number of expansions and deleting the 8-fold
duplication of each solution.)
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Pythagorean Triples, I

As another application of our results, we can prove a classical
characterization of the Pythagorean triples of integers (a, b, c)
such that a2 + b2 = c2 (so named because these represent the side
lengths of a right triangle).

If a2 + b2 = c2 for integers a, b, c , note that if two of a, b, c
are divisible by a prime p, then so is the third. We can then
“reduce” the triple (a, b, c) by dividing each term by p to
obtain a new triple (a′, b′, c ′) with (a′)2 + (b′)2 = (c ′)2.

For this reason it is sufficient to characterize the primitive
Pythagorean triples with gcd(a, b, c) = 1.

For primitive triples, since a and b cannot both be odd (since
then a2 + b2 ≡ 2 (mod 4) cannot be a perfect square) we see
that exactly one of a, b is even.



Pythagorean Triples, II

We can give a fairly simple characterization of all the primitive
Pythagorean triples:

Theorem (Primitive Pythagorean Triples)

Every primitive Pythagorean triple, of positive integers (a, b, c)
with a2 + b2 = c2 with gcd(a, b, c) = 1 and a even, is of the form
(a, b, c) = (2st, s2− t2, s2 + t2), for some relatively prime integers
s > t of opposite parity. Conversely, any such triple is Pythagorean
and primitive.

It is easy to see that (2st)2 + (s2 − t2)2 = (s2 + t2)2 simply by
multiplying out, and it is likewise not difficult to see that if s and t
are relatively prime and have opposite parity, then
gcd(s2 − t2, s2 + t2) = 1 so this triple is primitive.



Pythagorean Triples, III

Proof:

To show (a, b, c) must be of the desired form, suppose
a2 + b2 = c2 and factor in Z[i ] as (a + bi)(a− bi) = c2.

We claim that a + bi and a− bi are relatively prime in Z[i ]:
any gcd must divide 2x and 2y , hence divide 2. However,
a + bi is not divisible by the prime 1 + i , since a and b are of
opposite parity.

Hence, since a + bi and a− bi are relatively prime and have
product equal to a square, by the uniqueness of prime
factorization in Z[i ], there exists some s + it ∈ Z[i ] and some
unit u ∈ {1, i ,−1,−i} such that a + bi = u(s + ti)2.

Thus, a + bi = u
[
(s2 − t2) + (2st)i

]
. Since a is even, b is

odd, and both are positive, we see u = −i and s > t.

Then a = 2st, b = s2 − t2, and c = s2 + t2, as claimed.



Pythagorean Triples, IV

Here are the first few primitive Pythagorean triples:

s t Side Lengths

2 1 3, 4, 5

3 2 5, 12, 13

4 1 8, 15, 17

4 3 7, 24, 25

5 2 20, 21, 29

5 4 9, 40, 41

6 1 12, 35, 37

6 5 11, 60, 61

s t Side Lengths

7 2 28, 45, 53

7 4 33, 56, 65

7 6 13, 84, 85

8 1 16, 63, 65

8 3 48, 55, 73

8 5 39, 80, 89

8 7 15, 112, 113



Pythagorean Triples, V

For non-primitive triples, we can just scale primitive triples by an
arbitrary integer:

Corollary (Arbitrary Pythagorean Triples)

Every Pythagorean triple of positive integers (a, b, c) with
a2 + b2 = c2 is of the form
(a, b, c) = (2kst, k(s2 − t2), k(s2 + t2)), for some relatively prime
integers s > t of opposite parity and some integer k.

For example, taking k = 2, s = 2, t = 1 produces the
non-primitive triple (6, 8, 10).



Pythagorean Triples, VI

Example: Find all Pythagorean triangles with a side of length 51.

We break into cases based on the possible values of k.

If k = 1, then if 51 is the hypotenuse we get s2 + t2 = 51.
But since 51 = 3 · 17 is divisible by a prime congruent to 3
mod 4 to an odd power, 51 is not the sum of two squares.

If 51 is a leg we get s2 − t2 = 51, so that (s − t)(s + t)
= 1 · 51 = 3 · 17, with solutions s = 26, t = 25 (sides
51− 1300− 1301) and s = 10, t = 7 (sides 51− 140− 149).

If k = 3, if 51 is the hypotenuse we get s2 + t2 = 17 with
solution s = 4, t = 1 (sides 24− 45− 51).

If 51 is a leg we get s2 − t2 = 17; factoring gives
(s − t)(s + t) = 1 · 17 so s = 9, t = 8 (sides 51− 432− 435).

If k = 17 then we want a side of length 3, which can only be
the leg with s = 2, t = 1 (sides 51− 68− 85).

Since k = 51 cannot occur, we have found all possibilities.
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Summary

We discussed the relationship between irreducible elements in Z[i ]
and sums of two squares.

We characterized the irreducible elements in Z[i ] and described a
prime factorization algorithm in Z[i ].

We proved Fermat’s characterization of the integers that are the
sum of two squares, and described methods for computing all ways
of writing an integer as a sum of two squares.

We studied Pythagorean triples and described how to find them all.

Next lecture: Solving Polynomial Congruences.


