Math 3527 (Number Theory 1) Lecture #27

Modular Arithmetic in $\mathbb{Z}[i]$:

- Visualizing Residue Classes in $\mathbb{Z}[i]$ Modulo α
- Counting Residue Classes in $\mathbb{Z}[i]$ Modulo α

This material represents $\S4.4.1$ from the course notes.

The goal of this lecture is to study the residue classes in $\mathbb{Z}[i]$ modulo α : more specifically, we want to know how many residue classes there are and how to write them all down.

- As we showed previously, the collection of possible remainders r with $N(r) \leq \frac{1}{2}N(\beta)$ do give all the residue classes.
- However, the quotient and remainder arising in the division algorithm are not guaranteed to be unique: there can be more than one possible r such that $\alpha \equiv r \pmod{\beta}$ and $N(r) < \frac{1}{2}N(\beta)$.

It turns out that it is much easier to understand the modular arithmetic in $\mathbb{Z}[i]$ from a geometric point of view.

It turns out that it is much easier to understand the modular arithmetic in $\mathbb{Z}[i]$ from a geometric point of view.

In the complex plane, the Gaussian integers form the set of <u>lattice points</u>, the points whose coordinates are both integers. We can also view Gaussian integers as vectors in this lattice, since the additive structure of $\mathbb{Z}[i]$ agrees with the additive structure of vectors in the plane.

Residue Classes, III

Here is a plot of the Gaussian integers as a lattice, and the two vectors $\beta = 2 + i$ and $i\beta = -1 + 2i$:

Now consider the multiples of a given Gaussian integer β : every multiple is of the form $(x + iy)\beta = x\beta + y(i\beta)$, so it is an integer linear combination of β and $i\beta$.

Thus, drawing all of the $\mathbb{Z}[i]$ -multiples of β is the same as drawing all of the vectors that can be obtained by an integer number of "steps" each in the direction of β or $i\beta$, which produces a square tiling of the plane.

Residue Classes, V

Here are the $\mathbb{Z}[i]$ -multiples of $\beta = 2 + i$ with marked vectors $\beta = 2 + i$ and $i\beta = -1 + 2i$.

Using this geometric interpretation, we can give a method for finding residue class representatives:

- Geometrically, two Gaussian integers will be congruent modulo β if and only if they are located in the same position within two different squares.
- Thus, if we take the collection of lattice points inside any one of these squares, it will yield a <u>fundamental region</u> for the Gaussian integers modulo β.
- The elements in the fundamental region will be unique representatives for the residue classes modulo β .

Residue Classes, VII

<u>Example</u>: Here is a fundamental region for $\mathbb{Z}[i]$ modulo $\beta = 2 + i$ and a marked set of representatives 0, *i*, 2*i*, 1 + i, 1 + 2i:

As shown in the figures, there is a fundamental region for $\mathbb{Z}[i]$ modulo 2 + i containing the 5 points 0, *i*, 2i, 1 + i, and 1 + 2i.

- Hence, every element of $\mathbb{Z}[i]$ is congruent modulo 2 + i to 0, i, 2i, 1 + i, or 1 + 2i.
- We conclude that there are 5 residue classes modulo 2 + i. (Recall that we showed this earlier using a different approach.)

Residue Classes, IX

<u>Example</u>: Here is a fundamental region for $\mathbb{Z}[i]$ modulo $\beta = 1 + i$ and a marked set of representatives 0, *i*:

In the examples above, we showed that there were 5 residue classes modulo 2 + i and 2 residue classes modulo 1 + i. Notice that N(2 + i) = 5 and that N(1 + i) = 2.

In general, it turns out that there are exactly $N(\beta)$ residue classes modulo β for any nonzero β . We will prove this fact using (of all things) a theorem from elementary geometry! In the examples above, we showed that there were 5 residue classes modulo 2 + i and 2 residue classes modulo 1 + i. Notice that N(2 + i) = 5 and that N(1 + i) = 2.

In general, it turns out that there are exactly $N(\beta)$ residue classes modulo β for any nonzero β . We will prove this fact using (of all things) a theorem from elementary geometry!

Theorem (Pick's Theorem)

If R is a polygon in the plane whose vertices are all lattice points, then the area of R is given by the formula $A = I + \frac{1}{2}B - 1$, where I is the number of lattice points in the interior of R and B is the number of lattice points on the boundary of R.

A <u>boundary point</u> is a point on one of the sides of R, while an <u>interior point</u> is a point not on one of the sides of R.

Number of Residue Classes, II

Pick's Theorem is easiest to see with an example: this polygon has 9 boundary points and 5 interior points, and by drawing triangles around it, one can verify its area is $\frac{17}{2} = 5 + \frac{9}{2} - 1$:

We can use Pick's theorem to give an easy computation of the number of residue classes in $\mathbb{Z}[i]$ modulo β :

Theorem (Number of Residue Classes in $\mathbb{Z}[i]$ Mod β)

If β is a nonzero Gaussian integer, the number of distinct residue classes in $\mathbb{Z}[i]$ modulo β is equal to $N(\beta)$.

We can use Pick's theorem to give an easy computation of the number of residue classes in $\mathbb{Z}[i]$ modulo β :

Theorem (Number of Residue Classes in $\mathbb{Z}[i]$ Mod β)

If β is a nonzero Gaussian integer, the number of distinct residue classes in $\mathbb{Z}[i]$ modulo β is equal to $N(\beta)$.

Examples:

- The number of residue classes in $\mathbb{Z}[i]$ modulo 3 + 4i is N(3 + 4i) = 25.
- The number of residue classes in $\mathbb{Z}[i]$ modulo 7 7i is N(7 7i) = 98.
- The number of residue classes in $\mathbb{Z}[i]$ modulo 42 + 16i is N(42 + 16i) = 2020.

Number of Residue Classes, IV

Proof:

- Consider a fundamental region for $\mathbb{Z}[i]$ modulo β .
- By our geometric arguments above, every Gaussian integer has a unique representative modulo β that lies in the square whose vertices are 0, β, iβ, and β + iβ in the complex plane.
- Each interior point of this square yields one residue class.
- The boundary points of the square come in pairs (on opposite edges) each yielding one residue class, except for the four vertices (0, β, iβ, β + iβ) which are all equivalent.
- So there are $I + \frac{B-4}{2} + 1 = I + \frac{1}{2}B 1$ total residue classes.
- But by Pick's Theorem, this is precisely the area of the fundamental region. Since this region is a square with side length $|\beta|$, the area is simply $|\beta|^2 = N(\beta)$.

To list all of the residue classes modulo $\beta \in \mathbb{Z}[i]$, we need only give a list of $N(\beta)$ inequivalent residue classes, which must therefore be exhaustive. (To generate this list, we can draw a fundamental region for $\mathbb{Z}[i]$ modulo β .) To list all of the residue classes modulo $\beta \in \mathbb{Z}[i]$, we need only give a list of $N(\beta)$ inequivalent residue classes, which must therefore be exhaustive. (To generate this list, we can draw a fundamental region for $\mathbb{Z}[i]$ modulo β .)

Example: Find representatives for the residue classes modulo 2 + 2i in $\mathbb{Z}[i]$.

- We have N(2+2i) = 8 so there are 8 residue classes.
- It is then not hard to verify that the 8 values 0, 1, 2, 3, i, 1 + i, 2 + i, and 3 + i are all pairwise distinct modulo 2 + 2i. Thus, these are representatives of all of the residue classes.

Summary

We described a way to visualize and enumerate the residue classes in $\mathbb{Z}[i]$ modulo α geometrically as the distinct points in a fundamental region in the complex plane.

We then proved that there are exactly $N(\alpha)$ different residue classes modulo α .

Next lecture: Factorization in $\mathbb{Z}[i]$.