
Math 3527 (Number Theory 1)

Lecture #26

Primitive Roots:

Primitive Roots (In General)

Primitive Roots in Finite Fields

Primitive Roots in Z/mZ
This material represents §4.3.3 from the course notes.



Primitive Roots, I

The goal of this lecture is to discuss primitive roots in arbitrary
rings, and to characterize the values of m for which there exists a
primitive root modulo m.

Definition

If R is a commutative ring with 1 having finitely many units, an
element u ∈ R is a primitive root if every unit of R can be
expressed as some power of u.

Equivalently, if there are n units in R, then an element is a
primitive root precisely when its order is n.



Primitive Roots, II

Examples:

If R is the ring F2[x ] modulo x2 + x + 1, which we have
previously established is a field, the elements x and x + 1 are
primitive roots in R, since R has 3 units and each element has
order 3 (their orders divide 3 by Euler’s theorem, and neither
element has order 1).

If R is the ring F3[x ] modulo x2 + 1, which is also a field,
then the element x + 1 is a primitive root in R, since R has 8
units and x + 1 has order 8 (its order divides 8 by Euler’s

theorem, and x + 1
4

= 2 so its order does not divide 4).



Primitive Roots, III

Example: If R is the ring F7[x ] modulo x2, show that the element
x + 3 is a primitive root in R.

Note that R is not a field because x2 is not irreducible.

Indeed, the units in R are the elements that are relatively
prime to x , which have the form ax + b where b 6= 0.

To be a unit, there are 7 possible choices for a and 6 choices
for b, so there are 7 · 6 = 42 total units in R.

Thus to show x + 3 is a primitive root, we need to show it has
order 42.

By Euler’s theorem, we know its order divides 42.
Furthermore, by successive squaring, we can compute
x + 3

21
= 6, x + 3

14
= 2, and x + 3

6
= 2x + 1.

This means that the order of x + 3 cannot divide 21, 14, or 6,
so it must be 42: it is therefore a primitive root.



Primitive Roots, III

Example: If R is the ring F7[x ] modulo x2, show that the element
x + 3 is a primitive root in R.

Note that R is not a field because x2 is not irreducible.

Indeed, the units in R are the elements that are relatively
prime to x , which have the form ax + b where b 6= 0.

To be a unit, there are 7 possible choices for a and 6 choices
for b, so there are 7 · 6 = 42 total units in R.

Thus to show x + 3 is a primitive root, we need to show it has
order 42.

By Euler’s theorem, we know its order divides 42.
Furthermore, by successive squaring, we can compute
x + 3

21
= 6, x + 3

14
= 2, and x + 3

6
= 2x + 1.

This means that the order of x + 3 cannot divide 21, 14, or 6,
so it must be 42: it is therefore a primitive root.



Primitive Roots in Finite Fields, I

Our next goal is to prove that every finite field has a primitive root.

We first recall some basic properties of orders:

Proposition (Properties of Orders)

Suppose R is a commutative ring with 1 and u is a unit in R.

1 If un ≡ 1 (mod m) for some n > 0, then the order of u is
finite and divides n.

2 If u has order k, then un has order k/ gcd(n, k). In particular,
if n and k are relatively prime, then un also has order k.

3 If un ≡ 1 (mod m) and un/p 6= 1 (mod m) for any prime
divisor p of n, then u has order n.

4 If u has order k and w has order l , where k and l are
relatively prime, then uw has order kl .

Proofs: The proofs are the same as in Z/mZ.



Primitive Roots in Finite Fields, II

We will first establish the following preliminary fact:

Proposition

Let R be a commutative ring with 1 having finitely many units. If
M is the maximal order among all units in R, then the order of
every unit divides M.

Proof:

Suppose u has order M and let w be a unit of order k .

If k does not divide M, there is some prime q which occurs to
a higher power qf in the factorization of k than the
corresponding power qe dividing M.

Then uqf has order M/qf while wk/qe has order qe .

Since these two orders are relatively prime, the element
uqf · wk/qe has order M · qf−e , which is a contradiction
because this is larger than M. Hence k divides M as claimed.



Primitive Roots in Finite Fields, III

Now we can prove our first main result:

Theorem (Primitive Roots in Finite Fields)

If F is a finite field, then F has a primitive root.

Our proof of the Theorem is nonconstructive: we will show the
existence of a primitive root without explicitly finding one by
exploiting unique factorization in the polynomial ring F [x ].



Primitive Roots in Finite Fields, IV

Proof:

Suppose M is the maximal order among all units in F , and let
|F | denote the number of elements in F .

Then by the finite-field version of Euler’s theorem, we know
that M ≤ |F | − 1, since a|F |−1 = 1 in F for every unit a ∈ F .

By our preliminary Proposition, all units in F then have order
dividing M.

This means that the polynomial xM − 1 has |F | − 1 roots in F .

But this is impossible unless M ≥ |F | − 1, since a polynomial
of degree M can only have at most M roots in F .

Hence we conclude M = |F | − 1, meaning that some element
has order |F | − 1: this element is a primitive root.



Primitive Roots Modulo pd , I

By applying the Theorem in the particular case where F = Z/pZ,
we obtain the following very important consequence:

Corollary (Primitive Roots Modulo p)

For any prime p, there exists a primitive root modulo p.

We can then use the existence of a primitive root modulo p to
show that there exist primitive roots modulo powers of p:

Proposition (Primitive Roots Modulo p2)

If a is a primitive root modulo p for p an odd prime, then a is a
primitive root modulo p2 if ap−1 6≡ 1 (mod p2). In the event that
ap−1 ≡ 1 (mod p2), then a + p is a primitive root modulo p2.



Primitive Roots Modulo pd , II

Proof:

Since a is a primitive root modulo p, if the order of a mod p2

is r , then since ar ≡ 1 (mod p2) certainly implies ar ≡ 1 (mod
p), we see that p − 1 divides r .

Since ϕ(p2) = p(p − 1), there are two possibilities: the order
of a modulo p2 is p − 1 or it is p(p − 1).

The order of a modulo p2 will be p − 1 if and only if ap−1 ≡ 1
(mod p2). This gives the first statement.

For the second statement, suppose that ap−1 ≡ 1 (mod p2).

The binomial theorem implies (a + p)p−1 ≡ ap−1 − p ap−2

(mod p2), since the other terms all have a p2 in them.

Since ap−1 ≡ 1 (mod p2), we see that ap−2 − p ap−2 6≡ 1
(mod p2), because p ap−2 is not divisible by p2.

Therefore, we see that (a + p)p−1 6≡ 1 (mod p2), so by the
argument above, a + p is a primitive root modulo p2.



Primitive Roots Modulo pd , III

Example: Find a primitive root modulo 112.

Per the Proposition, first we find a primitive root modulo 11,
and then we use it to construct a primitive root modulo 112.

We claim 2 is a primitive root modulo 11: since the order of 2
must divide ϕ(11) = 10, and 22 6≡ 1 (mod 11) and 25 6≡ 1
(mod 11), the order divides neither 2 nor 5, hence must be 10.

Now, to find a primitive root modulo 112, we simply compute
210 = 1024 ≡ 56 (mod 112).

Since this is not congruent to 1 modulo 112, our Proposition
dictates that 2 is also a primitive root modulo 112.
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Primitive Roots Modulo pd , IV

Now we look at primitive roots modulo pd for larger d . It turns
out that primitive roots here are essentially the same as primitive
roots modulo p2:

Proposition (Primitive Roots Modulo pd)

If a is a primitive root modulo p2 for p an odd prime, then a is a
primitive root modulo pd for all d ≥ 2.

Example: Since 2 is a primitive root modulo 112 as we just
showed, it is also a primitive root modulo 11d for all d ≥ 2. (In
particular, it is a primitive root modulo, say, 11100.)



Primitive Roots Modulo pd , V

Proof: Induction on d (base case d = 2 is trivial).

Suppose a is a primitive root modulo pd and that it has order
r modulo pd+1: thus, ar ≡ 1 (mod pd+1). Note that Euler’s
theorem implies that r divides ϕ(pd+1) = pd(p − 1).

Since a is a primitive root modulo pd we see that r is divisible
by ϕ(pd) = pd−1(p − 1), so

Thus, the only possibilities are r = pd−1(p − 1) and
r = pd(p − 1): we just need to eliminate the first possibility.



Primitive Roots Modulo pd , VI

Proof (continued):

We want to show that a cannot have order pd−1(p − 1).

By Euler’s theorem, ap−1 ≡ 1 (mod p) so we can write
ap−1 = 1 + kp for some integer k .

Then, since a is a primitive root modulo p2, we also know
that k is not divisible by p (as otherwise a would have order
p − 1 modulo p2).

Expanding with the binomial theorem yields
(ap−1)p

d−1
= (1+kp)p

d−1
= 1+pd−1 ·kp+pd+1 ·[other terms].

But this is 6≡ 1 modulo pd+1, since k is not divisible by p.

Hence ap
d−1(p−1) 6≡ 1 (mod pd+1), so a must have order

pd(p − 1) = ϕ(pd+1), meaning a is in fact a primitive root.



Primitive Roots Modulo pd , VII

Example: Find a primitive root modulo 72020.

Per our Propositions, we first find a primitive root modulo 7.
Then we use it to construct a primitive root modulo 72, which
will then also be a primitive root modulo 7d for any d ≥ 2
(and in particular, modulo 72020).

Note that 23 ≡ 1 (mod 7), so 2 is not a primitive root.

But 33 ≡ 6 and 32 ≡ 2 (mod 7), so 3 is a primitive root.

Furthermore, we can see that 36 ≡ 43 (mod 49).

Hence 3 is also a primitive root modulo 49, and therefore also
modulo 72020, as required.
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Primitive Roots Modulo m, I

Now that we have treated the case of odd prime powers, we can
also easily handle one other case:

Proposition (Primitive Roots Modulo 2 · pd)

If a is a primitive root modulo pd for p an odd prime, then a is a
primitive root modulo 2pd if a is odd, and a + pd is a primitive
root modulo 2pd if a is even.

Proof:

If a is odd, then a, a2, ... , aϕ(p
d ) are odd and distinct modulo

pd , so they remain invertible and distinct modulo 2pd .

But since ϕ(2pd) = ϕ(pd), the elements a, a2, ... , aϕ(p
d )

exhaust all of the distinct unit residue classes modulo 2pd .

Thus, a is a primitive root modulo 2pd .

If a is even, then a + pd is odd, and so by the argument
above, we see a + pd is a primitive root modulo 2pd .



Primitive Roots Modulo m, II

Example: Find a primitive root modulo 2 · 11100.

From before, we know that 2 is a primitive root modulo 11100.
Since 2 is even, the Proposition implies that 2 + 11100 is a
primitive root modulo 2 · 11100.

Example: Find a primitive root modulo 2 · 72020.

From before, we know that 3 is a primitive root modulo 72020.
Since 3 is odd, the Proposition implies that 3 is also a
primitive root modulo 2 · 11100.



Primitive Roots Modulo m, III

By putting together all of our results, we can finish the
characterization of the moduli that have primitive roots:

Theorem (Primitive Roots Modulo m)

There exists a primitive root modulo m if and only if m = 1, 2, 4,
or m = pk or 2pk for an odd prime p and some k ≥ 1.

Examples:

Since 27 = 33 is an odd prime power, there is a primitive root
modulo 27.

Since 33 = 3 · 11 is not of the required form, there is no
primitive root modulo 33.

Since 64 = 26 is not of the required form, there is no primitive
root modulo 64.

Since 2662 = 2 · 113 is twice an odd prime power, there is a
primitive root modulo 2662.
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Primitive Roots Modulo m, IV

We have already shown the existence of primitive roots in all of the
listed cases except m = 1, 2, 4 (but these cases are trivial). All we
have left to do is show that a primitive root cannot exist for other
m. Before giving the proof, we establish a simple Lemma:

Lemma

If there exists a primitive root r modulo m, then the congruence
u2 ≡ 1 (mod m) has only the two solutions u = ±1 (mod m).

Proof:

If u2 ≡ 1 (mod m) then u is a unit, so since r is a primitive
root, we can write u = rd for some 0 ≤ d < ϕ(m).

Then u2 ≡ r2d ≡ 1 mod m, so since r has order ϕ(m) there
are only two possible d , namely d = 0 and d = ϕ(m)/2.

Thus there are only two possible u (namely u = ±1).



Primitive Roots Modulo m, V

Proof (of main Theorem):

We will show that if m is not of the given form, then there are
more than two solutions to u2 ≡ 1 (mod m), which by the
Lemma will show that m cannot have a primitive root.

First, suppose m = 4p for some prime p (including p = 2).
Then x ≡ ±1 and x ≡ ±(2p − 1) have x2 ≡ 1 (mod 4p).

Second, suppose m = pq for some distinct primes p and q: by
the Chinese Remainder Theorem, there are four solutions to
x2 ≡ 1 (mod pq), obtained by solving the congruences
x ≡ ±1 (mod p) and x ≡ ±1 (mod q) simultaneously.

To finish the argument, note that if r is a primitive root
modulo m and d |m, then r is a primitive root modulo d .

Running this backwards, we see that if m is divisible by 4p or
by pq, then m has no primitive root.

This encompasses all of our required cases, so we are done.



Primitive Roots Modulo m, VI

For completeness, we restate a result we showed previously about
the number of primitive roots modulo m:

Proposition (Number of Primitive Roots)

If there exists a primitive root modulo m, then there are precisely
ϕ(ϕ(m)) primitive roots modulo m.

Proof:

Suppose that there is a primitive root u modulo m.

The units modulo m are represented by u1, . . . , uϕ(m), so it
suffices to determine which of these have order ϕ(m).

Since the order of uk is ϕ(m)/ gcd(k , ϕ(m)), we see that uk is
a primitive root if and only if k is relatively prime to ϕ(m).

There are ϕ(ϕ(m)) such k , so there are ϕ(ϕ(m)) primitive
roots modulo m.



Primitive Roots Modulo m, VII

Examples:

The number of primitive roots modulo 41 is equal to
ϕ(ϕ(41)) = 16 since 41 is a prime number, hence there are
primitive roots mod 41.

The number of primitive roots modulo 232020 is equal to
ϕ(ϕ(232020) = 10 · 22 · 232018, since 232020 is an odd prime
power.

The number of primitive roots modulo 2662 is equal to
ϕ(ϕ(2662)) = 440 since 2662 = 2 · 113 is twice an odd prime
power, hence there are primitive roots mod 2662.

The number of primitive roots modulo 242020 is equal to 0,
because 242020 = 2606032020 is not of the correct form.



Summary

We gave a general definition of a primitive root in a ring and
proved that every finite field has a primitive root.

We discussed primitive roots modulo powers of primes, and gave
procedures for finding primitive roots modulo pd and 2pd .

We proved that there is a primitive root in Z/mZ if and only if
m = 1, 2, 4, or m = pk or 2pk for an odd prime p and some k ≥ 1.

Next lecture: Modular Arithmetic in Z[i ].


