Math 3527 (Number Theory 1) Lecture #26

Primitive Roots:

- Primitive Roots (In General)
- Primitive Roots in Finite Fields
- Primitive Roots in $\mathbb{Z}/m\mathbb{Z}$

This material represents $\S4.3.3$ from the course notes.

The goal of this lecture is to discuss primitive roots in arbitrary rings, and to characterize the values of m for which there exists a primitive root modulo m.

Definition

If R is a commutative ring with 1 having finitely many units, an element $u \in R$ is a <u>primitive root</u> if every unit of R can be expressed as some power of u.

Equivalently, if there are n units in R, then an element is a primitive root precisely when its order is n.

Examples:

- If R is the ring 𝔽₂[x] modulo x² + x + 1, which we have previously established is a field, the elements x̄ and x̄ + 1 are primitive roots in R, since R has 3 units and each element has order 3 (their orders divide 3 by Euler's theorem, and neither element has order 1).
- If R is the ring F₃[x] modulo x² + 1, which is also a field, then the element x + 1 is a primitive root in R, since R has 8 units and x + 1 has order 8 (its order divides 8 by Euler's theorem, and x + 1⁴ = 2 so its order does not divide 4).

<u>Example</u>: If *R* is the ring $\mathbb{F}_7[x]$ modulo x^2 , show that the element $\overline{x+3}$ is a primitive root in *R*.

Primitive Roots, III

<u>Example</u>: If *R* is the ring $\mathbb{F}_7[x]$ modulo x^2 , show that the element $\overline{x+3}$ is a primitive root in *R*.

- Note that R is not a field because x^2 is not irreducible.
- Indeed, the units in R are the elements that are relatively prime to x, which have the form $\overline{ax + b}$ where $b \neq 0$.
- To be a unit, there are 7 possible choices for *a* and 6 choices for *b*, so there are $7 \cdot 6 = 42$ total units in *R*.
- Thus to show $\overline{x+3}$ is a primitive root, we need to show it has order 42.
- By Euler's theorem, we know its order divides 42. Furthermore, by successive squaring, we can compute $\overline{x+3}^{21} = \overline{6}, \overline{x+3}^{14} = \overline{2}, \text{ and } \overline{x+3}^{6} = \overline{2x+1}.$
- This means that the order of $\overline{x+3}$ cannot divide 21, 14, or 6, so it must be 42: it is therefore a primitive root.

Primitive Roots in Finite Fields, I

Our next goal is to prove that every finite field has a primitive root. We first recall some basic properties of orders:

Proposition (Properties of Orders)

Suppose R is a commutative ring with 1 and u is a unit in R.

- If uⁿ ≡ 1 (mod m) for some n > 0, then the order of u is finite and divides n.
- If u has order k, then uⁿ has order k/gcd(n, k). In particular, if n and k are relatively prime, then uⁿ also has order k.
- If uⁿ ≡ 1 (mod m) and u^{n/p} ≠ 1 (mod m) for any prime divisor p of n, then u has order n.
- If u has order k and w has order l, where k and l are relatively prime, then uw has order kl.

<u>Proofs</u>: The proofs are the same as in $\mathbb{Z}/m\mathbb{Z}$.

Primitive Roots in Finite Fields, II

We will first establish the following preliminary fact:

Proposition

Let R be a commutative ring with 1 having finitely many units. If M is the maximal order among all units in R, then the order of every unit divides M.

Proof:

- Suppose *u* has order *M* and let *w* be a unit of order *k*.
- If k does not divide M, there is some prime q which occurs to a higher power q^f in the factorization of k than the corresponding power q^e dividing M.
- Then u^{q^f} has order M/q^f while w^{k/q^e} has order q^e .
- Since these two orders are relatively prime, the element u^{q^f} · w^{k/q^e} has order M · q^{f-e}, which is a contradiction because this is larger than M. Hence k divides M as claimed.

Now we can prove our first main result:

Theorem (Primitive Roots in Finite Fields)

If F is a finite field, then F has a primitive root.

Our proof of the Theorem is nonconstructive: we will show the existence of a primitive root without explicitly finding one by exploiting unique factorization in the polynomial ring F[x].

Primitive Roots in Finite Fields, IV

Proof:

- Suppose M is the maximal order among all units in F, and let |F| denote the number of elements in F.
- Then by the finite-field version of Euler's theorem, we know that $M \leq |F| 1$, since $a^{|F|-1} = 1$ in F for every unit $a \in F$.
- By our preliminary Proposition, all units in *F* then have order dividing *M*.
- This means that the polynomial $x^M 1$ has |F| 1 roots in F.
- But this is impossible unless M ≥ |F| − 1, since a polynomial of degree M can only have at most M roots in F.
- Hence we conclude M = |F| 1, meaning that some element has order |F| 1: this element is a primitive root.

By applying the Theorem in the particular case where $F = \mathbb{Z}/p\mathbb{Z}$, we obtain the following very important consequence:

Corollary (Primitive Roots Modulo p)

For any prime p, there exists a primitive root modulo p.

We can then use the existence of a primitive root modulo p to show that there exist primitive roots modulo powers of p:

Proposition (Primitive Roots Modulo p^2)

If a is a primitive root modulo p for p an odd prime, then a is a primitive root modulo p^2 if $a^{p-1} \not\equiv 1 \pmod{p^2}$. In the event that $a^{p-1} \equiv 1 \pmod{p^2}$, then a + p is a primitive root modulo p^2 .

Primitive Roots Modulo p^d , II

Proof:

- Since a is a primitive root modulo p, if the order of a mod p^2 is r, then since $a^r \equiv 1 \pmod{p^2}$ certainly implies $a^r \equiv 1 \pmod{p}$, we see that p 1 divides r.
- Since φ(p²) = p(p − 1), there are two possibilities: the order of a modulo p² is p − 1 or it is p(p − 1).
- The order of a modulo p^2 will be p-1 if and only if $a^{p-1} \equiv 1 \pmod{p^2}$. This gives the first statement.
- For the second statement, suppose that $a^{p-1} \equiv 1 \pmod{p^2}$.
- The binomial theorem implies (a + p)^{p-1} ≡ a^{p-1} − p a^{p-2} (mod p²), since the other terms all have a p² in them.
- Since $a^{p-1} \equiv 1 \pmod{p^2}$, we see that $a^{p-2} p a^{p-2} \neq 1 \pmod{p^2}$, because $p a^{p-2}$ is not divisible by p^2 .
- Therefore, we see that (a + p)^{p-1} ≠ 1 (mod p²), so by the argument above, a + p is a primitive root modulo p².

<u>Example</u>: Find a primitive root modulo 11^2 .

<u>Example</u>: Find a primitive root modulo 11^2 .

- Per the Proposition, first we find a primitive root modulo 11, and then we use it to construct a primitive root modulo 11².
- We claim 2 is a primitive root modulo 11: since the order of 2 must divide φ(11) = 10, and 2² ≠ 1 (mod 11) and 2⁵ ≠ 1 (mod 11), the order divides neither 2 nor 5, hence must be 10.
- Now, to find a primitive root modulo 11^2 , we simply compute $2^{10} = 1024 \equiv 56 \pmod{11^2}$.
- Since this is not congruent to 1 modulo 11², our Proposition dictates that 2 is also a primitive root modulo 11².

Now we look at primitive roots modulo p^d for larger d. It turns out that primitive roots here are essentially the same as primitive roots modulo p^2 :

Proposition (Primitive Roots Modulo p^d)

If a is a primitive root modulo p^2 for p an odd prime, then a is a primitive root modulo p^d for all $d \ge 2$.

<u>Example</u>: Since 2 is a primitive root modulo 11^2 as we just showed, it is also a primitive root modulo 11^d for all $d \ge 2$. (In particular, it is a primitive root modulo, say, 11^{100} .)

<u>Proof</u>: Induction on d (base case d = 2 is trivial).

- Suppose a is a primitive root modulo p^d and that it has order r modulo p^{d+1}: thus, a^r ≡ 1 (mod p^{d+1}). Note that Euler's theorem implies that r divides φ(p^{d+1}) = p^d(p - 1).
- Since a is a primitive root modulo p^d we see that r is divisible by φ(p^d) = p^{d-1}(p - 1), so
- Thus, the only possibilities are r = p^{d-1}(p 1) and r = p^d(p - 1): we just need to eliminate the first possibility.

Primitive Roots Modulo p^d , VI

<u>Proof</u> (continued):

- We want to show that a cannot have order $p^{d-1}(p-1)$.
- By Euler's theorem, $a^{p-1} \equiv 1 \pmod{p}$ so we can write $a^{p-1} = 1 + kp$ for some integer k.
- Then, since a is a primitive root modulo p^2 , we also know that k is not divisible by p (as otherwise a would have order p-1 modulo p^2).
- Expanding with the binomial theorem yields $(a^{p-1})^{p^{d-1}} = (1+kp)^{p^{d-1}} = 1+p^{d-1}\cdot kp+p^{d+1}\cdot$ [other terms]. But this is $\neq 1$ modulo p^{d+1} , since k is not divisible by p.
- Hence $a^{p^{d-1}(p-1)} \not\equiv 1 \pmod{p^{d+1}}$, so a must have order $p^d(p-1) = \varphi(p^{d+1})$, meaning a is in fact a primitive root.

<u>Example</u>: Find a primitive root modulo 7^{2020} .

Example: Find a primitive root modulo 7²⁰²⁰.

- Per our Propositions, we first find a primitive root modulo 7. Then we use it to construct a primitive root modulo 7², which will then also be a primitive root modulo 7^d for any $d \ge 2$ (and in particular, modulo 7²⁰²⁰).
- Note that $2^3 \equiv 1 \pmod{7}$, so 2 is not a primitive root.
- But $3^3 \equiv 6$ and $3^2 \equiv 2 \pmod{7}$, so 3 is a primitive root.
- Furthermore, we can see that $3^6 \equiv 43 \pmod{49}$.
- Hence 3 is also a primitive root modulo 49, and therefore also modulo 7²⁰²⁰, as required.

Primitive Roots Modulo m, I

Now that we have treated the case of odd prime powers, we can also easily handle one other case:

Proposition (Primitive Roots Modulo $2 \cdot p^d$)

If a is a primitive root modulo p^d for p an odd prime, then a is a primitive root modulo $2p^d$ if a is odd, and $a + p^d$ is a primitive root modulo $2p^d$ if a is even.

Proof:

- If a is odd, then a, a^2 , ..., $a^{\varphi(p^d)}$ are odd and distinct modulo p^d , so they remain invertible and distinct modulo $2p^d$.
- But since φ(2p^d) = φ(p^d), the elements a, a², ..., a^{φ(p^d)} exhaust all of the distinct unit residue classes modulo 2p^d.
- Thus, a is a primitive root modulo $2p^d$.
- If a is even, then $a + p^d$ is odd, and so by the argument above, we see $a + p^d$ is a primitive root modulo $2p^d$.

Example: Find a primitive root modulo 2 · 11¹⁰⁰.

• From before, we know that 2 is a primitive root modulo 11^{100} . Since 2 is even, the Proposition implies that $2 + 11^{100}$ is a primitive root modulo $2 \cdot 11^{100}$.

<u>Example</u>: Find a primitive root modulo $2 \cdot 7^{2020}$.

From before, we know that 3 is a primitive root modulo 7²⁰²⁰.
Since 3 is odd, the Proposition implies that 3 is also a primitive root modulo 2 · 11¹⁰⁰.

Primitive Roots Modulo m, III

By putting together all of our results, we can finish the characterization of the moduli that have primitive roots:

Theorem (Primitive Roots Modulo *m*)

There exists a primitive root modulo m if and only if m = 1, 2, 4, or $m = p^k$ or $2p^k$ for an odd prime p and some $k \ge 1$.

Primitive Roots Modulo m, III

By putting together all of our results, we can finish the characterization of the moduli that have primitive roots:

Theorem (Primitive Roots Modulo *m*)

There exists a primitive root modulo m if and only if m = 1, 2, 4, or $m = p^k$ or $2p^k$ for an odd prime p and some $k \ge 1$.

Examples:

- Since $27 = 3^3$ is an odd prime power, there is a primitive root modulo 27.
- Since $33 = 3 \cdot 11$ is not of the required form, there is no primitive root modulo 33.
- Since $64 = 2^6$ is not of the required form, there is no primitive root modulo 64.
- Since $2662 = 2 \cdot 11^3$ is twice an odd prime power, there is a primitive root modulo 2662.

We have already shown the existence of primitive roots in all of the listed cases except m = 1, 2, 4 (but these cases are trivial). All we have left to do is show that a primitive root cannot exist for other m. Before giving the proof, we establish a simple Lemma:

Lemma

If there exists a primitive root r modulo m, then the congruence $u^2 \equiv 1 \pmod{m}$ has only the two solutions $u = \pm 1 \pmod{m}$.

<u>Proof</u>:

- If u² ≡ 1 (mod m) then u is a unit, so since r is a primitive root, we can write u = r^d for some 0 ≤ d < φ(m).
- Then u² ≡ r^{2d} ≡ 1 mod m, so since r has order φ(m) there are only two possible d, namely d = 0 and d = φ(m)/2.
- Thus there are only two possible u (namely $u = \pm 1$).

Primitive Roots Modulo *m*, V

<u>Proof</u> (of main Theorem):

- We will show that if m is not of the given form, then there are more than two solutions to $u^2 \equiv 1 \pmod{m}$, which by the Lemma will show that m cannot have a primitive root.
- First, suppose m = 4p for some prime p (including p = 2). Then $x \equiv \pm 1$ and $x \equiv \pm (2p - 1)$ have $x^2 \equiv 1 \pmod{4p}$.
- Second, suppose m = pq for some distinct primes p and q: by the Chinese Remainder Theorem, there are four solutions to x² ≡ 1 (mod pq), obtained by solving the congruences x ≡ ±1 (mod p) and x ≡ ±1 (mod q) simultaneously.
- To finish the argument, note that if r is a primitive root modulo m and d|m, then r is a primitive root modulo d.
- Running this backwards, we see that if m is divisible by 4p or by pq, then m has no primitive root.
- This encompasses all of our required cases, so we are done.

Primitive Roots Modulo m, VI

For completeness, we restate a result we showed previously about the number of primitive roots modulo m:

Proposition (Number of Primitive Roots)

If there exists a primitive root modulo m, then there are precisely $\varphi(\varphi(m))$ primitive roots modulo m.

Proof:

- Suppose that there is a primitive root *u* modulo *m*.
- The units modulo m are represented by $u^1, \ldots, u^{\varphi(m)}$, so it suffices to determine which of these have order $\varphi(m)$.
- Since the order of u^k is φ(m)/gcd(k, φ(m)), we see that u^k is a primitive root if and only if k is relatively prime to φ(m).
- There are φ(φ(m)) such k, so there are φ(φ(m)) primitive roots modulo m.

Examples:

- The number of primitive roots modulo 41 is equal to φ(φ(41)) = 16 since 41 is a prime number, hence there are primitive roots mod 41.
- The number of primitive roots modulo 23^{2020} is equal to $\varphi(\varphi(23^{2020}) = 10 \cdot 22 \cdot 23^{2018}$, since 23^{2020} is an odd prime power.
- The number of primitive roots modulo 2662 is equal to φ(φ(2662)) = 440 since 2662 = 2 · 11³ is twice an odd prime power, hence there are primitive roots mod 2662.
- The number of primitive roots modulo 24^{2020} is equal to 0, because $24^{2020} = 2^{6060}3^{2020}$ is not of the correct form.

Summary

We gave a general definition of a primitive root in a ring and proved that every finite field has a primitive root.

We discussed primitive roots modulo powers of primes, and gave procedures for finding primitive roots modulo p^d and $2p^d$.

We proved that there is a primitive root in $\mathbb{Z}/m\mathbb{Z}$ if and only if m = 1, 2, 4, or $m = p^k$ or $2p^k$ for an odd prime p and some $k \ge 1$.

Next lecture: Modular Arithmetic in $\mathbb{Z}[i]$.