Math 3527 (Number Theory 1)
Lecture #25

Finite Fields:
@ Construction of Finite Fields
o Factorization of xP — x and xP" — x in F,[x]
e Counting Irreducible Polynomials in [F,[x]

This material represents §4.3.2 from the course notes.



Finite Fields, |

Recall from the previous lectures that if g(x) is an irreducible
polynomial in R = F[x], then R/gR is a field. In the special case
where F =T, = 7Z/pZ, we see that R/qR is a finite field:

Theorem (Constructing Finite Fields)

If q(x) € Fp[x] is an irreducible polynomial of degree d, then the
ring R/qR is a finite field with p? elements.




Finite Fields, |

Recall from the previous lectures that if g(x) is an irreducible
polynomial in R = F[x], then R/gR is a field. In the special case
where F =T, = 7Z/pZ, we see that R/qR is a finite field:

Theorem (Constructing Finite Fields)

If q(x) € Fp[x] is an irreducible polynomial of degree d, then the
ring R/qR is a finite field with p? elements.

Proof:
@ Since g(x) is irreducible, R/gR is a field.
@ The residue classes in the ring R/gR are represented uniquely
by the polynomials in F,[x] of degree < d — 1.
@ These polynomials are ag + ajx +--- + ag_1x971 for a; € Fp.
@ There are p choices for each of the d coefficients
a0, .. .,a4_1, so there are p? such polynomials.



Finite Fields, Il

Example: Show that the ring R/qR, where R = [F2[x] and
q(x) = x>+ x + 1, is a field with 4 elements.



Finite Fields, Il

Example: Show that the ring R/qR, where R = [F2[x] and
q(x) = x>+ x + 1, is a field with 4 elements.

o Observe that g(x) = x> 4+ x + 1 has no roots modulo 2, since
4(0) = q(1) = 1.
@ Therefore, since it is a polynomial of degree 2, it is irreducible.

@ Thus by our results, we know that R/gR is a field, and since
g has degree 2, R/qR has 2° = 4 elements.

o We actually encountered this field before and wrote down its
multiplication table (which clearly shows it is a field!):

[0] 1 | x [x+1]
0 0 0 0 0
1 0 1 X x+1
X 0 X x+1 1
x+10]|x+1 1 X
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Example: Show that the ring R/gR, where R = F3[x] and
q(x) = x> + 1, is a field with 9 elements.



Finite Fields, Il

Example: Show that the ring R/gR, where R = F3[x] and
q(x) = x> + 1, is a field with 9 elements.

@ Observe that g(x) = x? + 1 has no roots modulo 3, since
q(0) =1 and (1) = q(2) = 2.

@ Therefore, since it is a polynomial of degree 2, it is irreducible.

@ Thus by our results, we know that R/gR is a field, and since
g has degree 2, R/qR has 3° = 9 elements.



Finite Fields, IV

Example: Give an explicit construction for a finite field with
exactly 121 elements.



Finite Fields, IV

Example: Give an explicit construction for a finite field with
exactly 121 elements.

Note that 121 = 112. Therefore, we can construct a finite
field with 121 elements as R/gR where R = F11[x] and g(x)
is an irreducible polynomial of degree 2.

There are (as we will show later) quite a few possible choices.

@ Since we want a polynomial of degree 2, it is enough to see

that it has no roots.

The polynomial g(x) = x? is obviously not irreducible, so let’s
try g(x) = x> + 1. In fact we see q(0) = 1, g(£1) =2,
q(£2) =5, q(£3) =10, g(+4) =6, and g(£5) = 4.

Since these values represent every residue class modulo 11, we
see that g has no roots and is therefore irreducible.

Thus, R/gR for R = F11[x] and g(x) = x*> 4 1 gives a finite
field with 121 elements.



Finite Fields, V

Example: Give an explicit construction for a finite field with
exactly 8 elements.



Finite Fields, V

Example: Give an explicit construction for a finite field with
exactly 8 elements.

From our discussion, since 8 = 23, such a field can be
obtained as R/gR where R = F3[x] and g is an irreducible
polynomial in R of degree 3.

Again, since g has degree 3, to show that it is irreducible
requires only establishing that it has no roots.

The polynomials x3, x3+1, x3 + x all have roots
(respectively, x =0, 1,0).

However, g(x) = x3 + x + 1 does not, since q(0) = q(1) = 0.
Thus, for g(x) = x3 +x + 1in R = Fy[x], R/qgR is a finite
field with 8 elements.



Factorization of xP — x, |

We now discuss a pair of very important polynomials in F,[x] that

will give us important information about factorizations; namely,
n
xP — x and xP — x.

Proposition (Factorization of xP — x)

The factorization of xP — x in Fp[x] is xP — x = [ ,ep, (x — a).




Factorization of xP — x, |

We now discuss a pair of very important polynomials in F,[x] that
will give us important information about factorizations; namely,
xP — x and xP" — x.

Proposition (Factorization of xP — x)

The factorization of xP — x in Fp[x] is xP — x = [ ,ep, (x — a).

Proof:

e First, by Fermat’'s Little Theorem in F,, we see that
aP —a =0 for every a € F,.

e Thus, for g(x) = xP — x, we have g(a) =0 for all a € [Fp,.
@ This means x — a is a divisor of g(x) for all a € F,,.

@ However, because this polynomial has at most p roots, and we
have exhibited p roots, the factorization of g(x) must be
q(x) = [L,er,(x — a), since the leading terms agree.



Factorization of xP — x, Il

Here is one interesting consequence of this factorization
xP — x = e, (x — a):
e By dividing through by x, we see that
xP7t =1 =T],ep, ap0(x — 3).
@ Now examine the constant term of the product: it is
(—-1)pt [Laer,.az0(a) = (1P~ (p - 1)!
@ Also, the constant term on the left-hand side is equal to —1.
@ So by comparing the coefficients as elements of IF,,, we deduce
(p—1)=(-1)P"2=—1 (mod p).
@ Thus, by examining this factorization, we obtain an easy (and
totally different) proof of Wilson's Theorem!



- . n
Factorization of xP — x, |

Let us now study the factorization of xP" — x in F,[x]. Examples:
@ For n =2 and p = 2, we find the factorization
x*—x =x(x +1)(x® +x+1).
@ For n=3 and p = 2, we find the factorization
B —x=x(x+1)(x*+x2+1)(x* +x +1).
@ For n=4 and p = 2, we find the factorization x*° — x =
x(x+1) (2 +x+1) (x* 453+ 1) (x* +x+1) (x* +x3+x2 +x+1).
@ For n =2 and p = 3, we find the factorization
x% — x = x(x + 1)(x + 2)(x* 4+ 2)(x? + x + 2)(x* + 2x + 2).
25

16

@ For n =2 and p =5, we find the factorization x=> — x =
x(x + 1) (x +2)(x +3)(x + 4) (x> + 2)(x® +3)(x*> + x + 1)
(x2 + x +2)(x% + 2x + 3)(x? + 2x + 4)(x®> + 3x + 3)

(x2 +3x + 4)(x® + 4x + 1)(x% + 4x + 1).
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Factorization of xP — x, Il

We notice (especially in the p = 5 example) that the irreducible
factors all appear to be of small degree, and that there are no
repeated factors.

In fact, looking more closely, it seems that the factorization of
xP" — x over [F, contains all of the irreducible polynomials of
degree n, or of degree dividing n.

Here is one more example that will confirm this suspicion:

@ For n =5 and p = 2, we find the factorization
x32 —x=x(x+1)(x®+x2+1)(x> + x>+ 1)
S+ x+ DO+ x*+x2 +x+1)
CCHx*+ 3+ x+ D+ X+ X3+ X2 +1).
Notice here that all the irreducible terms have degree 1 or degree 5.



Factorization of x?" — x, llI

We now prove that our observation is correct:

Theorem (Factorization of xP" — x)

The polynomial xP" — x factors in F,[x] as the product of all
monic irreducible polynomials over F, of degree dividing n.

The proof of this result will be in several steps:
o First, we show that g(x) = xP" — x has no repeated factors.
@ Second, we show that every irreducible polynomial of degree
dividing n divides g(x).
@ Finally, we show that no other irreducible polynomial can
divide g(x).



Factorization of x?" — x, IV

Part 1: g(x) = xP" — x has no repeated factors.

@ We proved last lecture that a polynomial has no repeated
factors if and only if it is relatively prime to its derivative.

o We compute ¢'(x) = p"xP""1 — 1= —1.
@ So, clearly, g(x) and ¢’(x) are relatively prime, since the
derivative ¢’(x) is actually just a constant.

@ Hence, g(x) has no repeated irreducible factors.



Factorization of x?" — x, V

For the next two parts, we will need the following Lemma:

If p is a prime number, then the greatest common divisor of p" — 1
and p? — 1 is peed(md) _ 1.

Proof of Lemma:

@ Use the division algorithm to write n = gd + r, and let
a= p’(p(q—l)d +pla=2d 4.4 pd 4 1).

@ Then it is not hard to see by expanding the products that
p1—1=(p? — 1)a+(p" —1).

@ So by properties of gcds, we see that
ged(p” —1,p% — 1) = ged(p? —1,p" — 1).

@ This means we can perform the Euclidean algorithm on the
exponents without changing the gcd.

@ The end result is p&<d(m9) _ 1 so this is the desired ged.



Factorization of x?" — x, VI

Part 2: Every irreducible poly. of degree dividing n divides g(x).

@ Suppose that s(x) € Fy[x] is an irreducible polynomial of
degree d dividing n, so that n = ad.

@ Since s is irreducible, we know that R/sR is a finite field F
having p9 elements.

@ Therefore, by invoking Euler's theorem in F on the element x,
we see that xP*~1 =1 (mod s).

e But, by the Lemma, p? — 1 divides p" — 1, so raising to the
appropriate power modulo s shows x?"~! =1 (mod s). We
conclude that s divides xP" — x, as desired.



Factorization of x?" — x, VII

Part 3: No other irreducible polynomials divide g(x).

@ Suppose s(x) € Fp[x] is an irreducible polynomial that divides
xP" — x and has degree d not dividing n.

- n__
o Clearly s(x) # x, so we can assume s divides x?"~! — 1.

o As before, R/sR is a finite field F having p? elements.

o Thus, Euler's theorem in F implies a*"~1 = 1 (mod s) for all

nonzero a € F. Also, a?"~1 = 1 (mod s) holds for every
nonzero a € F by the above assumptions.

@ Thus the order of every nonzero element in F divides both
p? — 1 and p” — 1 and hence also their gcd pged(d:n) — 1,

. d(d,n) _
o This means a#*““"-1 =1 (

mod s) for all nonzero a € F.

@ This is impossible, because then g(t) = P71 _1is a

polynomial of degree p&d(@:") _ 1 having p? — 1 roots.



Counting Irreducible Polynomials, |

As a corollary, the above theorem allows us to count the number of
monic irreducible polynomials in F,[x]| of any particular degree n:
o Let f,(n) be the number of monic irreducible polynomials of
exact degree n in Fp[x].
@ By counting degrees on both sides of our factorization of
xP" — x, we obtain a recursive formula p" = >_ajn dfp(d).



Counting Irreducible Polynomials, |

As a corollary, the above theorem allows us to count the number of
monic irreducible polynomials in F,[x]| of any particular degree n:

o Let f,(n) be the number of monic irreducible polynomials of
exact degree n in Fp[x].

@ By counting degrees on both sides of our factorization of
xP" — x, we obtain a recursive formula p" = >_ajn dfp(d).

We can use this formula to calculate the values f,(p):

e n = 1: the formula says p = fi(p) so fi(p) = p.

e n=2: formula says p?> = fi(p) + 2f(p) so fH(p) =

e n=3: formula says p> = f1(p) + 3f(p) so f(p) =

4 _
o n=4: p* = fi(p) + 2h(p) + 4fa(p) so fa(p) = =7




Counting Irreducible Polynomials, Il

Using this recursion, we can compute a few more values:

n |1 2 3 4 5
fo(n) | P %(p2 —p) %(p3 —p) %(p4 - p%) %(p‘r’ —p)

n 6 7 8 9
fo(n) %(/06 -pP=pP+p) | s —p %(p8 —p*) %(p9 - p?)




Counting Irreducible Polynomials, Il

Using this recursion, we can compute a few more values:

n |1 2 3 4 5
1 1 1 1
fo(n) || p | 5(p*=p) | 3(P*=p) | 2(p* =P?) | £(P° = P)
n 6 7 8 9
£ o6 3 2 17 Log  ay|1li0 .3
p(n) | g(P° =p*=p*+p) | S(p"=p) | g(P"=P") | 5(P" = P°)

Example: Find the number of monic irreducible polynomials of

degree 3 in Fa[x].

o This is the value of £3(2) = %(23 -2)=2.

@ In fact, it is not hard to see that there are in fact exactly 2
such polynomials: x3 4+ x4+ 1 and x3 + x? 4+ 1.




Counting Irreducible Polynomials, |lI

Example: Find the number of monic irreducible polynomials of
degree 5 in Fa[x].

1
e This is the value of f5(2) = 5(25 —2) =6.

@ In fact, we calculated these six polynomials earlier in our
factorization of x32 — x.



Counting Irreducible Polynomials, |lI

Example: Find the number of monic irreducible polynomials of
degree 5 in Fa[x].

1
e This is the value of f5(2) = 5(25 —2) =6.

@ In fact, we calculated these six polynomials earlier in our
factorization of x32 — x.

Example: Find the number of monic irreducible polynomials of
degree 6 in F3[x].

1
@ This is the value of f5(3) = 6(36 —33-32 431 =116.



Counting Irreducible Polynomials, |lI

Example: Find the number of monic irreducible polynomials of
degree 5 in Fa[x].

1
e This is the value of f5(2) = 5(25 —2) =6.

@ In fact, we calculated these six polynomials earlier in our
factorization of x32 — x.

Example: Find the number of monic irreducible polynomials of
degree 6 in F3[x].

1
@ This is the value of f5(3) = 6(36 —33-32 431 =116.

Example: Find the number of monic irreducible polynomials of
degree 8 in Fs[x].

1
o This is the value of f3(5) = §(58 — 5%) = 48750.



Counting Irreducible Polynomials, IV

Looking at the formulas f,(p) for various small values of n suggests
that there might be a nice formula for the general value. In fact,
we can describe it using a technique known as Mobius inversion:

Definition

The Mobius function is defined as

(n) = 0 if n is divisible by the square of any prime
= (—1)k if nis the product of k distinct primes
In particular, p(1) = 1.




Counting Irreducible Polynomials, IV

Looking at the formulas f,(p) for various small values of n suggests
that there might be a nice formula for the general value. In fact,
we can describe it using a technique known as Mobius inversion:

Definition

The Mobius function is defined as

(n) = 0 if n is divisible by the square of any prime
= (—1)k if nis the product of k distinct primes
In particular, p(1) = 1.

Examples:
@ Since 19 is prime, we have p(19) = —1.
@ Since 6 =2 -3, we have p(6) = 1.
o Since 8 = 23, we have u(8) = 0.
@ Since 30 =2-3-5, we have p(30) = —1.



Counting Irreducible Polynomials, V

The (quite clever!) observation is that we can use the Mébius
function to solve the recurrence relation for our values f,(p):

Proposition (Mdbius Inversion)

If A(n) is any sequence satisfying a recursive relation of the form
B(n) = > 4, A(d), for some function B(n), then
A(n) = g 1(d)B(n/d).

We will omit the proof (it is in the notes, if you are curious, but it
is just a strong induction argument).



Counting Irreducible Polynomials, VI

By applying Mobius inversion for the function B(n) = p" and
A(n) = nf,(p), we obtain an explicit formula for f,(p):

The number of monic irreducible polynomials of degree n in Fp[x]
, 1 n
is fp(n) = " > djn 1(d)p /d.




Counting Irreducible Polynomials, VI

By applying Mobius inversion for the function B(n) = p" and
A(n) = nf,(p), we obtain an explicit formula for f,(p):

The number of monic irreducible polynomials of degree n in Fp[x]
, 1 n
is fp(n) = " > djn 1(d)p /d.

Examples:

o We have f5(p) = & (1(1)p® + p(2)p> + 1(3)p? + p(6)p) =
%(p6 — p3 — p? + p), which agrees with our earlier results.

@ We have

fo(p) = 5(1(1)p® + u(2)p* + u(4)p* + 1(8)p) = 5(p° — P,
again as before.



Counting Irreducible Polynomials, VII

The number of monic irreducible polynomials of degree n in Fp[x]
, 1 n
is fp(n) = " > _djn 1(d)p /d.

From this corollary (repeated above for your convenience), we see

1
foln) = —p" + o(p"/?)

where the "big-O" notation means that the error is of size
bounded above by a constant times p"/2.



Counting Irreducible Polynomials, VIII: The Last Slide

1
The observation f,(n) = =p" + O(p™?) can be reinterpreted:
n

@ Let X be the number of polynomials in F,[x] of degree n.

@ Clearly, X = p". Now we ask: of all these X polynomials, how
many of them are “prime” (i.e., irreducible)?

o This is simply f,(n) = %p" + 0(p"?) = IogX(X) + O(VX).
1%

@ In other words: the number of “primes less than X" is equal

to ———~, up to a bounded error term.
Iogp(X)

Notice how very similar this statement is to the statement of the
Prime Number Theorem for the integers Z!

This is not a coincidence: in fact, it is the analogue of the Prime
Number Theorem for the ring F,[x].



Counting Irreducible Polynomials, IX: That Was a Lie

It is also fairly easy to show using the formula that f,(n) > 0 for
every prime p and every integer n > 1.

o Explicitly, by the Mabius inversion formula, we see that
fo(n) > p"—p"t—- —p—1.

e But p” is bigger than p" 1 +p" 2 4+ ... 4+ p+1= p 1 by
the geometric series formula. Hence fp( n) is always positive.

As we showed earlier, if g(x) is an irreducible polynomial of degree
nin R =F,[x], then R/qR is a finite field of size p”. Thus:

For any prime p and any n, there is a finite field with p" elements. \

As one additional note: by a linear algebra argument, the number
of elements in a finite field must be a prime power.



Summary

We described how to construct finite fields with p¢ elements as the
ring of residue classes R/qR where R = Fp[x] and g(x) is an
irreducible polynomial of degree d.

We studied the factorization of the polynomials x? — x and xP" — x
in Fp[x] and used the results to count irreducible polynomials of
degree n in Fp[x].

We used Mobius inversion to give a formula for the number of
monic irreducible polynomials in F,[x], and established the
analogue of the Prime Number Theorem.

Next lecture: Primitive roots.



