
Math 3527 (Number Theory 1)

Lecture #25

Finite Fields:

Construction of Finite Fields

Factorization of xp − x and xpn − x in Fp[x ]

Counting Irreducible Polynomials in Fp[x ]

This material represents §4.3.2 from the course notes.



Finite Fields, I

Recall from the previous lectures that if q(x) is an irreducible
polynomial in R = F [x ], then R/qR is a field. In the special case
where F = Fp = Z/pZ, we see that R/qR is a finite field:

Theorem (Constructing Finite Fields)

If q(x) ∈ Fp[x ] is an irreducible polynomial of degree d, then the
ring R/qR is a finite field with pd elements.

Proof:

Since q(x) is irreducible, R/qR is a field.

The residue classes in the ring R/qR are represented uniquely
by the polynomials in Fp[x ] of degree ≤ d − 1.

These polynomials are a0 + a1x + · · ·+ ad−1xd−1, for ai ∈ Fp.

There are p choices for each of the d coefficients
a0, . . . , ad−1, so there are pd such polynomials.
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Finite Fields, II

Example: Show that the ring R/qR, where R = F2[x ] and
q(x) = x2 + x + 1, is a field with 4 elements.

Observe that q(x) = x2 + x + 1 has no roots modulo 2, since
q(0) = q(1) = 1.

Therefore, since it is a polynomial of degree 2, it is irreducible.

Thus by our results, we know that R/qR is a field, and since
q has degree 2, R/qR has 22 = 4 elements.

We actually encountered this field before and wrote down its
multiplication table (which clearly shows it is a field!):

· 0 1 x x + 1

0 0 0 0 0

1 0 1 x x + 1

x 0 x x + 1 1

x + 1 0 x + 1 1 x
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Finite Fields, III

Example: Show that the ring R/qR, where R = F3[x ] and
q(x) = x2 + 1, is a field with 9 elements.

Observe that q(x) = x2 + 1 has no roots modulo 3, since
q(0) = 1 and q(1) = q(2) = 2.

Therefore, since it is a polynomial of degree 2, it is irreducible.

Thus by our results, we know that R/qR is a field, and since
q has degree 2, R/qR has 32 = 9 elements.
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Finite Fields, IV

Example: Give an explicit construction for a finite field with
exactly 121 elements.

Note that 121 = 112. Therefore, we can construct a finite
field with 121 elements as R/qR where R = F11[x ] and q(x)
is an irreducible polynomial of degree 2.

There are (as we will show later) quite a few possible choices.

Since we want a polynomial of degree 2, it is enough to see
that it has no roots.

The polynomial q(x) = x2 is obviously not irreducible, so let’s
try q(x) = x2 + 1. In fact we see q(0) = 1, q(±1) = 2,
q(±2) = 5, q(±3) = 10, q(±4) = 6, and q(±5) = 4.

Since these values represent every residue class modulo 11, we
see that q has no roots and is therefore irreducible.

Thus, R/qR for R = F11[x ] and q(x) = x2 + 1 gives a finite
field with 121 elements.
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Finite Fields, V

Example: Give an explicit construction for a finite field with
exactly 8 elements.

From our discussion, since 8 = 23, such a field can be
obtained as R/qR where R = F2[x ] and q is an irreducible
polynomial in R of degree 3.

Again, since q has degree 3, to show that it is irreducible
requires only establishing that it has no roots.

The polynomials x3, x3 + 1, x3 + x all have roots
(respectively, x = 0, 1, 0).

However, q(x) = x3 + x + 1 does not, since q(0) = q(1) = 0.

Thus, for q(x) = x3 + x + 1 in R = F2[x ], R/qR is a finite
field with 8 elements.
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Factorization of xp − x , I

We now discuss a pair of very important polynomials in Fp[x ] that
will give us important information about factorizations; namely,
xp − x and xpn − x .

Proposition (Factorization of xp − x)

The factorization of xp − x in Fp[x ] is xp − x =
∏

a∈Fp
(x − a).

Proof:

First, by Fermat’s Little Theorem in Fp, we see that
ap − a = 0 for every a ∈ Fp.

Thus, for q(x) = xp − x , we have q(a) = 0 for all a ∈ Fp.

This means x − a is a divisor of q(x) for all a ∈ Fp.

However, because this polynomial has at most p roots, and we
have exhibited p roots, the factorization of q(x) must be
q(x) =

∏
a∈Fp

(x − a), since the leading terms agree.
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Factorization of xp − x , II

Here is one interesting consequence of this factorization
xp − x =

∏
a∈Fp

(x − a):

By dividing through by x , we see that
xp−1 − 1 =

∏
a∈Fp ,a 6=0(x − a).

Now examine the constant term of the product: it is
(−1)p−1

∏
a∈Fp ,a 6=0(a) = (−1)p−1 · (p − 1)!

Also, the constant term on the left-hand side is equal to −1.

So by comparing the coefficients as elements of Fp, we deduce
(p − 1)! ≡ (−1)p−2 ≡ −1 (mod p).

Thus, by examining this factorization, we obtain an easy (and
totally different) proof of Wilson’s Theorem!



Factorization of xpn − x , I

Let us now study the factorization of xpn − x in Fp[x ]. Examples:

For n = 2 and p = 2, we find the factorization
x4 − x = x(x + 1)(x2 + x + 1).

For n = 3 and p = 2, we find the factorization
x8 − x = x(x + 1)(x3 + x2 + 1)(x3 + x + 1).

For n = 4 and p = 2, we find the factorization x16 − x =
x(x +1)(x2+x +1)(x4+x3+1)(x4+x +1)(x4+x3+x2+x +1).

For n = 2 and p = 3, we find the factorization
x9 − x = x(x + 1)(x + 2)(x2 + 2)(x2 + x + 2)(x2 + 2x + 2).

For n = 2 and p = 5, we find the factorization x25 − x =
x(x + 1)(x + 2)(x + 3)(x + 4)(x2 + 2)(x2 + 3)(x2 + x + 1)
(x2 + x + 2)(x2 + 2x + 3)(x2 + 2x + 4)(x2 + 3x + 3)
(x2 + 3x + 4)(x2 + 4x + 1)(x2 + 4x + 1).



Factorization of xpn − x , II

We notice (especially in the p = 5 example) that the irreducible
factors all appear to be of small degree, and that there are no
repeated factors.

In fact, looking more closely, it seems that the factorization of
xpn − x over Fp contains all of the irreducible polynomials of
degree n, or of degree dividing n.

Here is one more example that will confirm this suspicion:

For n = 5 and p = 2, we find the factorization
x32 − x = x(x + 1)(x5 + x2 + 1)(x5 + x3 + 1)
(x5 + x3 + x2 + x + 1)(x5 + x4 + x2 + x + 1)
(x5 + x4 + x3 + x + 1)(x5 + x4 + x3 + x2 + 1).

Notice here that all the irreducible terms have degree 1 or degree 5.



Factorization of xpn − x , III

We now prove that our observation is correct:

Theorem (Factorization of xpn − x)

The polynomial xpn − x factors in Fp[x ] as the product of all
monic irreducible polynomials over Fp of degree dividing n.

The proof of this result will be in several steps:

First, we show that q(x) = xpn − x has no repeated factors.

Second, we show that every irreducible polynomial of degree
dividing n divides q(x).

Finally, we show that no other irreducible polynomial can
divide q(x).



Factorization of xpn − x , IV

Part 1: q(x) = xpn − x has no repeated factors.

We proved last lecture that a polynomial has no repeated
factors if and only if it is relatively prime to its derivative.

We compute q′(x) = pnxpn−1 − 1 = −1.

So, clearly, q(x) and q′(x) are relatively prime, since the
derivative q′(x) is actually just a constant.

Hence, q(x) has no repeated irreducible factors.



Factorization of xpn − x , V

For the next two parts, we will need the following Lemma:

Lemma

If p is a prime number, then the greatest common divisor of pn − 1
and pd − 1 is pgcd(n,d) − 1.

Proof of Lemma:

Use the division algorithm to write n = qd + r , and let
a = pr (p(q−1)d + p(q−2)d + · · ·+ pd + 1).

Then it is not hard to see by expanding the products that
pn − 1 = (pd − 1)a + (pr − 1).

So by properties of gcds, we see that
gcd(pn − 1, pd − 1) = gcd(pd − 1, pr − 1).

This means we can perform the Euclidean algorithm on the
exponents without changing the gcd.

The end result is pgcd(n,d) − 1, so this is the desired gcd.



Factorization of xpn − x , VI

Part 2: Every irreducible poly. of degree dividing n divides q(x).

Suppose that s(x) ∈ Fp[x ] is an irreducible polynomial of
degree d dividing n, so that n = ad .

Since s is irreducible, we know that R/sR is a finite field F
having pd elements.

Therefore, by invoking Euler’s theorem in F on the element x ,
we see that xpd−1 ≡ 1 (mod s).

But, by the Lemma, pd − 1 divides pn − 1, so raising to the
appropriate power modulo s shows xpn−1 ≡ 1 (mod s). We
conclude that s divides xpn − x , as desired.



Factorization of xpn − x , VII

Part 3: No other irreducible polynomials divide q(x).

Suppose s(x) ∈ Fp[x ] is an irreducible polynomial that divides
xpn − x and has degree d not dividing n.

Clearly s(x) 6= x , so we can assume s divides xpn−1 − 1.

As before, R/sR is a finite field F having pd elements.

Thus, Euler’s theorem in F implies ap
d−1 ≡ 1 (mod s) for all

nonzero a ∈ F . Also, ap
n−1 ≡ 1 (mod s) holds for every

nonzero a ∈ F by the above assumptions.

Thus the order of every nonzero element in F divides both
pd − 1 and pn − 1 and hence also their gcd pgcd(d ,n) − 1.

This means ap
gcd(d,n)−1 ≡ 1 (mod s) for all nonzero a ∈ F .

This is impossible, because then q(t) = tp
gcd(d,n)−1 − 1 is a

polynomial of degree pgcd(d ,n) − 1 having pd − 1 roots.



Counting Irreducible Polynomials, I

As a corollary, the above theorem allows us to count the number of
monic irreducible polynomials in Fp[x ] of any particular degree n:

Let fp(n) be the number of monic irreducible polynomials of
exact degree n in Fp[x ].

By counting degrees on both sides of our factorization of
xpn − x , we obtain a recursive formula pn =

∑
d |n dfp(d).

We can use this formula to calculate the values fn(p):

n = 1: the formula says p = f1(p) so f1(p) = p.

n = 2: formula says p2 = f1(p) + 2f2(p) so f2(p) =
p2 − p

2
.

n = 3: formula says p3 = f1(p) + 3f3(p) so f3(p) =
p3 − p

3
.

n = 4: p4 = f1(p) + 2f2(p) + 4f4(p) so f4(p) =
p4 − p2

4
.
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Counting Irreducible Polynomials, II

Using this recursion, we can compute a few more values:
n 1 2 3 4 5

fp(n) p
1

2
(p2 − p)

1

3
(p3 − p)

1

4
(p4 − p2)

1

5
(p5 − p)

n 6 7 8 9

fp(n)
1

6
(p6 − p3 − p2 + p)

1

7
(p7 − p)

1

8
(p8 − p4)

1

9
(p9 − p3)

Example: Find the number of monic irreducible polynomials of
degree 3 in F2[x ].

This is the value of f3(2) =
1

3
(23 − 2) = 2.

In fact, it is not hard to see that there are in fact exactly 2
such polynomials: x3 + x + 1 and x3 + x2 + 1.
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Counting Irreducible Polynomials, III

Example: Find the number of monic irreducible polynomials of
degree 5 in F2[x ].

This is the value of f5(2) =
1

5
(25 − 21) = 6.

In fact, we calculated these six polynomials earlier in our
factorization of x32 − x .

Example: Find the number of monic irreducible polynomials of
degree 6 in F3[x ].

This is the value of f6(3) =
1

6
(36 − 33 − 32 + 31) = 116.

Example: Find the number of monic irreducible polynomials of
degree 8 in F5[x ].

This is the value of f8(5) =
1

8
(58 − 54) = 48750.



Counting Irreducible Polynomials, III

Example: Find the number of monic irreducible polynomials of
degree 5 in F2[x ].

This is the value of f5(2) =
1

5
(25 − 21) = 6.

In fact, we calculated these six polynomials earlier in our
factorization of x32 − x .

Example: Find the number of monic irreducible polynomials of
degree 6 in F3[x ].

This is the value of f6(3) =
1

6
(36 − 33 − 32 + 31) = 116.

Example: Find the number of monic irreducible polynomials of
degree 8 in F5[x ].

This is the value of f8(5) =
1

8
(58 − 54) = 48750.



Counting Irreducible Polynomials, III

Example: Find the number of monic irreducible polynomials of
degree 5 in F2[x ].

This is the value of f5(2) =
1

5
(25 − 21) = 6.

In fact, we calculated these six polynomials earlier in our
factorization of x32 − x .

Example: Find the number of monic irreducible polynomials of
degree 6 in F3[x ].

This is the value of f6(3) =
1

6
(36 − 33 − 32 + 31) = 116.

Example: Find the number of monic irreducible polynomials of
degree 8 in F5[x ].

This is the value of f8(5) =
1

8
(58 − 54) = 48750.



Counting Irreducible Polynomials, IV

Looking at the formulas fn(p) for various small values of n suggests
that there might be a nice formula for the general value. In fact,
we can describe it using a technique known as Möbius inversion:

Definition

The Möbius function is defined as

µ(n) =

{
0 if n is divisible by the square of any prime

(−1)k if n is the product of k distinct primes
.

In particular, µ(1) = 1.

Examples:

Since 19 is prime, we have µ(19) = −1.

Since 6 = 2 · 3, we have µ(6) = 1.

Since 8 = 23, we have µ(8) = 0.

Since 30 = 2 · 3 · 5, we have µ(30) = −1.
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Counting Irreducible Polynomials, V

The (quite clever!) observation is that we can use the Möbius
function to solve the recurrence relation for our values fn(p):

Proposition (Möbius Inversion)

If A(n) is any sequence satisfying a recursive relation of the form
B(n) =

∑
d |n A(d), for some function B(n), then

A(n) =
∑

d |n µ(d)B(n/d).

We will omit the proof (it is in the notes, if you are curious, but it
is just a strong induction argument).



Counting Irreducible Polynomials, VI

By applying Möbius inversion for the function B(n) = pn and
A(n) = nfn(p), we obtain an explicit formula for fn(p):

Corollary

The number of monic irreducible polynomials of degree n in Fp[x ]

is fp(n) =
1

n

∑
d |n µ(d)pn/d .

Examples:

We have f6(p) = 1
6(µ(1)p6 + µ(2)p3 + µ(3)p2 + µ(6)p) =

1
6(p6 − p3 − p2 + p), which agrees with our earlier results.

We have
f8(p) = 1

8(µ(1)p8 + µ(2)p4 + µ(4)p2 + µ(8)p) = 1
8(p8 − p4),

again as before.
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Counting Irreducible Polynomials, VII

Corollary

The number of monic irreducible polynomials of degree n in Fp[x ]

is fp(n) =
1

n

∑
d |n µ(d)pn/d .

From this corollary (repeated above for your convenience), we see

fp(n) =
1

n
pn + O(pn/2)

where the “big-O” notation means that the error is of size
bounded above by a constant times pn/2.



Counting Irreducible Polynomials, VIII: The Last Slide

The observation fp(n) =
1

n
pn + O(pn/2) can be reinterpreted:

Let X be the number of polynomials in Fp[x ] of degree n.

Clearly, X = pn. Now we ask: of all these X polynomials, how
many of them are “prime” (i.e., irreducible)?

This is simply fp(n) =
1

n
pn + O(pn/2) =

X

logp(X )
+ O(

√
X ).

In other words: the number of “primes less than X ” is equal

to
X

logp(X )
, up to a bounded error term.

Notice how very similar this statement is to the statement of the
Prime Number Theorem for the integers Z!

This is not a coincidence: in fact, it is the analogue of the Prime
Number Theorem for the ring Fp[x ].



Counting Irreducible Polynomials, IX: That Was a Lie

It is also fairly easy to show using the formula that fp(n) > 0 for
every prime p and every integer n ≥ 1.

Explicitly, by the Möbius inversion formula, we see that
fp(n) ≥ pn − pn−1 − · · · − p − 1.

But pn is bigger than pn−1 + pn−2 + · · ·+ p + 1 = pn−1
p−1 by

the geometric series formula. Hence fp(n) is always positive.

As we showed earlier, if q(x) is an irreducible polynomial of degree
n in R = Fp[x ], then R/qR is a finite field of size pn. Thus:

Corollary

For any prime p and any n, there is a finite field with pn elements.

As one additional note: by a linear algebra argument, the number
of elements in a finite field must be a prime power.



Summary

We described how to construct finite fields with pd elements as the
ring of residue classes R/qR where R = Fp[x ] and q(x) is an
irreducible polynomial of degree d .

We studied the factorization of the polynomials xp − x and xpn − x
in Fp[x ] and used the results to count irreducible polynomials of
degree n in Fp[x ].

We used Möbius inversion to give a formula for the number of
monic irreducible polynomials in Fp[x ], and established the
analogue of the Prime Number Theorem.

Next lecture: Primitive roots.


