Math 3527 (Number Theory 1) Lecture #25

Finite Fields:

- Construction of Finite Fields
- Factorization of $x^p x$ and $x^{p^n} x$ in $\mathbb{F}_p[x]$
- Counting Irreducible Polynomials in $\mathbb{F}_p[x]$

This material represents $\S4.3.2$ from the course notes.

Finite Fields, I

Recall from the previous lectures that if q(x) is an irreducible polynomial in R = F[x], then R/qR is a field. In the special case where $F = \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, we see that R/qR is a finite field:

Theorem (Constructing Finite Fields)

If $q(x) \in \mathbb{F}_p[x]$ is an irreducible polynomial of degree d, then the ring R/qR is a finite field with p^d elements.

Finite Fields, I

Recall from the previous lectures that if q(x) is an irreducible polynomial in R = F[x], then R/qR is a field. In the special case where $F = \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, we see that R/qR is a finite field:

Theorem (Constructing Finite Fields)

If $q(x) \in \mathbb{F}_p[x]$ is an irreducible polynomial of degree d, then the ring R/qR is a finite field with p^d elements.

Proof:

- Since q(x) is irreducible, R/qR is a field.
- The residue classes in the ring R/qR are represented uniquely by the polynomials in 𝔽_p[x] of degree ≤ d − 1.
- These polynomials are $a_0 + a_1x + \cdots + a_{d-1}x^{d-1}$, for $a_i \in \mathbb{F}_p$.
- There are p choices for each of the d coefficients a_0, \ldots, a_{d-1} , so there are p^d such polynomials.

Finite Fields, II

Example: Show that the ring R/qR, where $R = \mathbb{F}_2[x]$ and $q(x) = x^2 + x + 1$, is a field with 4 elements.

Finite Fields, II

Example: Show that the ring R/qR, where $R = \mathbb{F}_2[x]$ and $q(x) = x^2 + x + 1$, is a field with 4 elements.

- Observe that $q(x) = x^2 + x + 1$ has no roots modulo 2, since q(0) = q(1) = 1.
- Therefore, since it is a polynomial of degree 2, it is irreducible.
- Thus by our results, we know that R/qR is a field, and since q has degree 2, R/qR has $2^2 = 4$ elements.
- We actually encountered this field before and wrote down its multiplication table (which clearly shows it is a field!):

•	0	1	X	x+1
0	0	0	0	0
1	0	1	X	x+1
X	0	X	x+1	1
x+1	0	x+1	1	x

Example: Show that the ring R/qR, where $R = \mathbb{F}_3[x]$ and $q(x) = x^2 + 1$, is a field with 9 elements.

Example: Show that the ring R/qR, where $R = \mathbb{F}_3[x]$ and $q(x) = x^2 + 1$, is a field with 9 elements.

- Observe that $q(x) = x^2 + 1$ has no roots modulo 3, since q(0) = 1 and q(1) = q(2) = 2.
- Therefore, since it is a polynomial of degree 2, it is irreducible.
- Thus by our results, we know that R/qR is a field, and since q has degree 2, R/qR has $3^2 = 9$ elements.

Finite Fields, IV

<u>Example</u>: Give an explicit construction for a finite field with exactly 121 elements.

Finite Fields, IV

<u>Example</u>: Give an explicit construction for a finite field with exactly 121 elements.

- Note that 121 = 11². Therefore, we can construct a finite field with 121 elements as R/qR where R = F₁₁[x] and q(x) is an irreducible polynomial of degree 2.
- There are (as we will show later) quite a few possible choices.
- Since we want a polynomial of degree 2, it is enough to see that it has no roots.
- The polynomial $q(x) = x^2$ is obviously not irreducible, so let's try $q(x) = x^2 + 1$. In fact we see q(0) = 1, $q(\pm 1) = 2$, $q(\pm 2) = 5$, $q(\pm 3) = 10$, $q(\pm 4) = 6$, and $q(\pm 5) = 4$.
- Since these values represent every residue class modulo 11, we see that *q* has no roots and is therefore irreducible.
- Thus, R/qR for $R = \mathbb{F}_{11}[x]$ and $q(x) = x^2 + 1$ gives a finite field with 121 elements.

Finite Fields, V

<u>Example</u>: Give an explicit construction for a finite field with exactly 8 elements.

Finite Fields, V

<u>Example</u>: Give an explicit construction for a finite field with exactly 8 elements.

- From our discussion, since 8 = 2³, such a field can be obtained as R/qR where R = F₂[x] and q is an irreducible polynomial in R of degree 3.
- Again, since q has degree 3, to show that it is irreducible requires only establishing that it has no roots.
- The polynomials x³, x³ + 1, x³ + x all have roots (respectively, x = 0, 1, 0).
- However, $q(x) = x^3 + x + 1$ does not, since q(0) = q(1) = 0.
- Thus, for $q(x) = x^3 + x + 1$ in $R = \mathbb{F}_2[x]$, R/qR is a finite field with 8 elements.

Factorization of $x^p - x$, I

We now discuss a pair of very important polynomials in $\mathbb{F}_p[x]$ that will give us important information about factorizations; namely, $x^p - x$ and $x^{p^n} - x$.

Proposition (Factorization of $x^p - x$)

The factorization of $x^p - x$ in $\mathbb{F}_p[x]$ is $x^p - x = \prod_{a \in \mathbb{F}_p} (x - a)$.

Factorization of $x^p - x$, I

We now discuss a pair of very important polynomials in $\mathbb{F}_p[x]$ that will give us important information about factorizations; namely, $x^p - x$ and $x^{p^n} - x$.

Proposition (Factorization of $x^p - x$)

The factorization of
$$x^p - x$$
 in $\mathbb{F}_p[x]$ is $x^p - x = \prod_{a \in \mathbb{F}_p} (x - a)$.

Proof:

- First, by Fermat's Little Theorem in \mathbb{F}_p , we see that $a^p a = 0$ for every $a \in \mathbb{F}_p$.
- Thus, for $q(x) = x^p x$, we have q(a) = 0 for all $a \in \mathbb{F}_p$.
- This means x a is a divisor of q(x) for all $a \in \mathbb{F}_p$.
- However, because this polynomial has at most p roots, and we have exhibited p roots, the factorization of q(x) must be q(x) = ∏_{a∈𝔅p}(x − a), since the leading terms agree.

Here is one interesting consequence of this factorization

$$x^p - x = \prod_{a \in \mathbb{F}_p} (x - a)$$
:

- By dividing through by x, we see that $x^{p-1} 1 = \prod_{a \in \mathbb{F}_p, a \neq 0} (x a).$
- Now examine the constant term of the product: it is $(-1)^{p-1} \prod_{a \in \mathbb{F}_p, a \neq 0} (a) = (-1)^{p-1} \cdot (p-1)!$
- Also, the constant term on the left-hand side is equal to -1.
- So by comparing the coefficients as elements of \mathbb{F}_p , we deduce $(p-1)! \equiv (-1)^{p-2} \equiv -1 \pmod{p}$.
- Thus, by examining this factorization, we obtain an easy (and totally different) proof of Wilson's Theorem!

Factorization of $x^{p''} - x$, I

Let us now study the factorization of $x^{p^n} - x$ in $\mathbb{F}_p[x]$. Examples:

- For n = 2 and p = 2, we find the factorization $x^4 x = x(x+1)(x^2 + x + 1)$.
- For n = 3 and p = 2, we find the factorization $x^8 x = x(x+1)(x^3 + x^2 + 1)(x^3 + x + 1)$.
- For n = 4 and p = 2, we find the factorization $x^{16} x = x(x+1)(x^2+x+1)(x^4+x^3+1)(x^4+x+1)(x^4+x^3+x^2+x+1)$.
- For n = 2 and p = 3, we find the factorization $x^9 - x = x(x+1)(x+2)(x^2+2)(x^2+x+2)(x^2+2x+2).$
- For n = 2 and p = 5, we find the factorization $x^{25} x = x(x+1)(x+2)(x+3)(x+4)(x^2+2)(x^2+3)(x^2+x+1)(x^2+x+2)(x^2+2x+3)(x^2+2x+4)(x^2+3x+3)(x^2+3x+4)(x^2+4x+1)(x^2+4x+1).$

We notice (especially in the p = 5 example) that the irreducible factors all appear to be of small degree, and that there are no repeated factors.

In fact, looking more closely, it seems that the factorization of $x^{p^n} - x$ over \mathbb{F}_p contains all of the irreducible polynomials of degree n, or of degree dividing n.

Here is one more example that will confirm this suspicion:

• For
$$n = 5$$
 and $p = 2$, we find the factorization
 $x^{32} - x = x(x+1)(x^5 + x^2 + 1)(x^5 + x^3 + 1)$
 $(x^5 + x^3 + x^2 + x + 1)(x^5 + x^4 + x^2 + x + 1)$
 $(x^5 + x^4 + x^3 + x + 1)(x^5 + x^4 + x^3 + x^2 + 1).$

Notice here that all the irreducible terms have degree 1 or degree 5.

Factorization of $x^{p^n} - x$, III

We now prove that our observation is correct:

Theorem (Factorization of $x^{p^n} - x$)

The polynomial $x^{p^n} - x$ factors in $\mathbb{F}_p[x]$ as the product of all monic irreducible polynomials over \mathbb{F}_p of degree dividing *n*.

The proof of this result will be in several steps:

- First, we show that $q(x) = x^{p^n} x$ has no repeated factors.
- Second, we show that every irreducible polynomial of degree dividing n divides q(x).
- Finally, we show that no other irreducible polynomial can divide *q*(*x*).

<u>Part 1</u>: $q(x) = x^{p^n} - x$ has no repeated factors.

- We proved last lecture that a polynomial has no repeated factors if and only if it is relatively prime to its derivative.
- We compute $q'(x) = p^n x^{p^n 1} 1 = -1$.
- So, clearly, q(x) and q'(x) are relatively prime, since the derivative q'(x) is actually just a constant.
- Hence, q(x) has no repeated irreducible factors.

Factorization of $x^{p^n} - x$, V

For the next two parts, we will need the following Lemma:

Lemma

If p is a prime number, then the greatest common divisor of $p^n - 1$ and $p^d - 1$ is $p^{gcd(n,d)} - 1$.

Proof of Lemma:

- Use the division algorithm to write n = qd + r, and let $a = p^r(p^{(q-1)d} + p^{(q-2)d} + \dots + p^d + 1).$
- Then it is not hard to see by expanding the products that $p^n 1 = (p^d 1)a + (p^r 1).$
- So by properties of gcds, we see that $gcd(p^n 1, p^d 1) = gcd(p^d 1, p^r 1).$
- This means we can perform the Euclidean algorithm on the exponents without changing the gcd.
- The end result is $p^{\text{gcd}(n,d)} 1$, so this is the desired gcd.

<u>Part 2</u>: Every irreducible poly. of degree dividing *n* divides q(x).

- Suppose that s(x) ∈ 𝔽_p[x] is an irreducible polynomial of degree d dividing n, so that n = ad.
- Since s is irreducible, we know that R/sR is a finite field F having p^d elements.
- Therefore, by invoking Euler's theorem in F on the element x, we see that $x^{p^d-1} \equiv 1 \pmod{s}$.
- But, by the Lemma, p^d 1 divides pⁿ 1, so raising to the appropriate power modulo s shows x^{pⁿ-1} ≡ 1 (mod s). We conclude that s divides x^{pⁿ} x, as desired.

Factorization of $x^{p^n} - x$, VII

<u>Part 3</u>: No other irreducible polynomials divide q(x).

- Suppose $s(x) \in \mathbb{F}_p[x]$ is an irreducible polynomial that divides $x^{p^n} x$ and has degree d not dividing n.
- Clearly $s(x) \neq x$, so we can assume s divides $x^{p^n-1} 1$.
- As before, R/sR is a finite field F having p^d elements.
- Thus, Euler's theorem in F implies a^{p^d-1} ≡ 1 (mod s) for all nonzero a ∈ F. Also, a^{pⁿ-1} ≡ 1 (mod s) holds for every nonzero a ∈ F by the above assumptions.
- Thus the order of every nonzero element in F divides both $p^d 1$ and $p^n 1$ and hence also their gcd $p^{\text{gcd}(d,n)} 1$.

• This means $a^{p^{\text{gcd}(d,n)}-1} \equiv 1 \pmod{s}$ for all nonzero $a \in F$.

• This is impossible, because then $q(t) = t^{p^{\text{gcd}(d,n)}-1} - 1$ is a polynomial of degree $p^{\text{gcd}(d,n)} - 1$ having $p^d - 1$ roots.

Counting Irreducible Polynomials, I

As a corollary, the above theorem allows us to count the number of monic irreducible polynomials in $\mathbb{F}_p[x]$ of any particular degree *n*:

- Let f_p(n) be the number of monic irreducible polynomials of exact degree n in 𝔽_p[x].
- By counting degrees on both sides of our factorization of $x^{p^n} x$, we obtain a recursive formula $p^n = \sum_{d|n} df_p(d)$.

Counting Irreducible Polynomials, I

As a corollary, the above theorem allows us to count the number of monic irreducible polynomials in $\mathbb{F}_p[x]$ of any particular degree *n*:

- Let f_p(n) be the number of monic irreducible polynomials of exact degree n in 𝔽_p[x].
- By counting degrees on both sides of our factorization of x^{pⁿ} − x, we obtain a recursive formula pⁿ = ∑_{d|n} df_p(d).
 We can use this formula to calculate the values f_n(p):

•
$$n = 1$$
: the formula says $p = f_1(p)$ so $f_1(p) = p$.

•
$$n = 2$$
: formula says $p^2 = f_1(p) + 2f_2(p)$ so $f_2(p) = \frac{p^2 - p}{2}$

•
$$n = 3$$
: formula says $p^3 = f_1(p) + 3f_3(p)$ so $f_3(p) = \frac{p^3 - p}{\frac{3}{2}}$

•
$$n = 4$$
: $p^4 = f_1(p) + 2f_2(p) + 4f_4(p)$ so $f_4(p) = \frac{p^2 - p^2}{4}$.

Counting Irreducible Polynomials, II

Using this recursion, we can compute a few more values:

п	1	2	3	4	5
$f_p(n)$	p	$\frac{1}{2}(p^2-p)$	$\frac{1}{3}(p^3-p)$	$\frac{1}{4}(\rho^4-\rho^2)$	$\frac{1}{5}(p^5-p)$

n	6	7	8	9
$f_p(n)$	$\left \ rac{1}{6} (p^6 - p^3 - p^2 + p) ight $	$\frac{1}{7}(p^7-p)$	$rac{1}{8}(ho^8- ho^4)$	$\frac{1}{9}(p^9-p^3)$

Counting Irreducible Polynomials, II

Using this recursion, we can compute a few more values:

n	1	2	3	4	5
$f_p(n)$	р	$\frac{1}{2}(p^2-p)$	$\frac{1}{3}(p^3-p)$	$rac{1}{4}(ho^4- ho^2)$	$\frac{1}{5}(p^5-p)$

<u>Example</u>: Find the number of monic irreducible polynomials of degree 3 in $\mathbb{F}_2[x]$.

- This is the value of $f_3(2) = \frac{1}{3}(2^3 2) = 2$.
- In fact, it is not hard to see that there are in fact exactly 2 such polynomials: x³ + x + 1 and x³ + x² + 1.

Counting Irreducible Polynomials, III

<u>Example</u>: Find the number of monic irreducible polynomials of degree 5 in $\mathbb{F}_2[x]$.

- This is the value of $f_5(2) = \frac{1}{5}(2^5 2^1) = 6.$
- In fact, we calculated these six polynomials earlier in our factorization of $x^{32} x$.

Counting Irreducible Polynomials, III

<u>Example</u>: Find the number of monic irreducible polynomials of degree 5 in $\mathbb{F}_2[x]$.

• This is the value of
$$f_5(2) = \frac{1}{5}(2^5 - 2^1) = 6$$
.

• In fact, we calculated these six polynomials earlier in our factorization of $x^{32} - x$.

<u>Example</u>: Find the number of monic irreducible polynomials of degree 6 in $\mathbb{F}_3[x]$.

Counting Irreducible Polynomials, III

<u>Example</u>: Find the number of monic irreducible polynomials of degree 5 in $\mathbb{F}_2[x]$.

• This is the value of
$$f_5(2) = \frac{1}{5}(2^5 - 2^1) = 6$$
.

• In fact, we calculated these six polynomials earlier in our factorization of $x^{32} - x$.

<u>Example</u>: Find the number of monic irreducible polynomials of degree 6 in $\mathbb{F}_3[x]$.

• This is the value of
$$f_6(3) = rac{1}{6}(3^6 - 3^3 - 3^2 + 3^1) = 116.$$

Example: Find the number of monic irreducible polynomials of degree 8 in $\mathbb{F}_5[x]$.

• This is the value of
$$f_8(5) = \frac{1}{8}(5^8 - 5^4) = 48750.$$

Counting Irreducible Polynomials, IV

Looking at the formulas $f_n(p)$ for various small values of *n* suggests that there might be a nice formula for the general value. In fact, we can describe it using a technique known as <u>Möbius inversion</u>:

Definition

The <u>Möbius function</u> is defined as $\mu(n) = \begin{cases} 0 & \text{if } n \text{ is divisible by the square of any prime} \\ (-1)^k & \text{if } n \text{ is the product of } k \text{ distinct primes} \end{cases}$ In particular, $\mu(1) = 1$.

Counting Irreducible Polynomials, IV

Looking at the formulas $f_n(p)$ for various small values of n suggests that there might be a nice formula for the general value. In fact, we can describe it using a technique known as <u>Möbius inversion</u>:

Definition

The <u>Möbius function</u> is defined as $\mu(n) = \begin{cases} 0 & \text{if } n \text{ is divisible by the square of any prime} \\ (-1)^k & \text{if } n \text{ is the product of } k \text{ distinct primes} \end{cases}.$ In particular, $\mu(1) = 1$.

Examples:

• Since 19 is prime, we have $\mu(19) = -1$.

• Since
$$6 = 2 \cdot 3$$
, we have $\mu(6) = 1$.

- Since $8 = 2^3$, we have $\mu(8) = 0$.
- Since $30 = 2 \cdot 3 \cdot 5$, we have $\mu(30) = -1$.

The (quite clever!) observation is that we can use the Möbius function to solve the recurrence relation for our values $f_n(p)$:

Proposition (Möbius Inversion)

If A(n) is any sequence satisfying a recursive relation of the form $B(n) = \sum_{d|n} A(d)$, for some function B(n), then $A(n) = \sum_{d|n} \mu(d)B(n/d)$.

We will omit the proof (it is in the notes, if you are curious, but it is just a strong induction argument).

By applying Möbius inversion for the function $B(n) = p^n$ and $A(n) = nf_n(p)$, we obtain an explicit formula for $f_n(p)$:

Corollary

The number of monic irreducible polynomials of degree n in $\mathbb{F}_p[x]$ is $f_p(n) = \frac{1}{n} \sum_{d|n} \mu(d) p^{n/d}$. By applying Möbius inversion for the function $B(n) = p^n$ and $A(n) = nf_n(p)$, we obtain an explicit formula for $f_n(p)$:

Corollary

The number of monic irreducible polynomials of degree n in $\mathbb{F}_p[x]$ is $f_p(n) = \frac{1}{n} \sum_{d|n} \mu(d) p^{n/d}$.

Examples:

- We have $f_6(p) = \frac{1}{6}(\mu(1)p^6 + \mu(2)p^3 + \mu(3)p^2 + \mu(6)p) = \frac{1}{6}(p^6 p^3 p^2 + p)$, which agrees with our earlier results.
- We have

 $f_8(p) = \frac{1}{8}(\mu(1)p^8 + \mu(2)p^4 + \mu(4)p^2 + \mu(8)p) = \frac{1}{8}(p^8 - p^4),$ again as before.

Counting Irreducible Polynomials, VII

Corollary

The number of monic irreducible polynomials of degree n in $\mathbb{F}_p[x]$ is $f_p(n) = \frac{1}{n} \sum_{d|n} \mu(d) p^{n/d}$.

From this corollary (repeated above for your convenience), we see

$$f_p(n) = \frac{1}{n}p^n + O(p^{n/2})$$

where the "big-O" notation means that the error is of size bounded above by a constant times $p^{n/2}$.

Counting Irreducible Polynomials, VIII: The Last Slide

The observation
$$f_p(n) = \frac{1}{n}p^n + O(p^{n/2})$$
 can be reinterpreted:

- Let X be the number of polynomials in $\mathbb{F}_p[x]$ of degree n.
- Clearly, X = pⁿ. Now we ask: of all these X polynomials, how many of them are "prime" (i.e., irreducible)?

• This is simply
$$f_p(n) = \frac{1}{n}p^n + O(p^{n/2}) = \frac{X}{\log_p(X)} + O(\sqrt{X}).$$

• In other words: the number of "primes less than X" is equal to $\frac{X}{\log_p(X)}$, up to a bounded error term.

Notice how very similar this statement is to the statement of the Prime Number Theorem for the integers \mathbb{Z} !

This is not a coincidence: in fact, it is the analogue of the Prime Number Theorem for the ring $\mathbb{F}_p[x]$.

Counting Irreducible Polynomials, IX: That Was a Lie

It is also fairly easy to show using the formula that $f_p(n) > 0$ for every prime p and every integer $n \ge 1$.

- Explicitly, by the Möbius inversion formula, we see that $f_p(n) \ge p^n p^{n-1} \cdots p 1.$
- But pⁿ is bigger than pⁿ⁻¹ + pⁿ⁻² + · · · + p + 1 = pⁿ⁻¹/p-1 by the geometric series formula. Hence f_p(n) is always positive.
 As we showed earlier, if q(x) is an irreducible polynomial of degree n in R = 𝔽_p[x], then R/qR is a finite field of size pⁿ. Thus:

Corollary

For any prime p and any n, there is a finite field with p^n elements.

As one additional note: by a linear algebra argument, the number of elements in a finite field must be a prime power.

Summary

We described how to construct finite fields with p^d elements as the ring of residue classes R/qR where $R = \mathbb{F}_p[x]$ and q(x) is an irreducible polynomial of degree d.

We studied the factorization of the polynomials $x^p - x$ and $x^{p^n} - x$ in $\mathbb{F}_p[x]$ and used the results to count irreducible polynomials of degree *n* in $\mathbb{F}_p[x]$.

We used Möbius inversion to give a formula for the number of monic irreducible polynomials in $\mathbb{F}_{p}[x]$, and established the analogue of the Prime Number Theorem.

Next lecture: Primitive roots.