Math 3527 (Number Theory 1) Lecture #23

Generalizing theorems in $\mathbb{Z}/m\mathbb{Z}$ to general Euclidean domains:

- The Chinese Remainder Theorem
- Euler's Theorem
- Fermat's Little Theorem

This material represents §4.2.4 and §4.2.5 from the course notes.

Chinese Remainder Theorem, Outline

Organization of the Chinese Remainder Theorem in $\mathbb{Z}/m\mathbb{Z}$:

- Solve a single linear congruence $ax \equiv b \pmod{m}$.
- Solve a system of congruences of the form

$$\begin{array}{rcl} x & \equiv & a_1 \pmod{m_1} \\ x & \equiv & a_2 \pmod{m_2} \\ \vdots & \vdots & \vdots \\ x & \equiv & a_k \pmod{m_k} \end{array}$$

Linear Congruences, I

We start by describing what to do with a single linear congruence:

Proposition (Linear Congruences)

Let R be a Euclidean domain, with $a, b \in R$, and let d any gcd of a and r. Then the equation $ax \equiv b \pmod{r}$ has a solution for $x \in R$ if and only if d|b. In this case, if a = a'd, b = b'd, and r = r'd, then $ax \equiv b \pmod{r}$ is equivalent to $a'x \equiv b' \pmod{r'}$ and the solution is $x \equiv (a')^{-1}b' \pmod{r'}$.

We can do all of these calculations using only the Euclidean algorithm.

Linear Congruences, II

The proof of the result is the same as over \mathbb{Z} .

- Proof: If x is a solution to the congruence ax ≡ b (mod r), then there exists an s ∈ R with ax rs = b. Then since d divides the left-hand side, it must divide b.
- Now if we set a' = a/d, b' = b/d, and r' = r/d, our original equation becomes $a'dx \equiv b'd \pmod{r'd}$.
- Solving this equation is equivalent to solving $a'x \equiv b' \pmod{r'}$, by one of our properties of congruences.
- But since a' and r' are relatively prime, a' is a unit modulo r', so we can simply multiply by its inverse to obtain x ≡ b' ⋅ (a')⁻¹ (mod r').

Linear Congruences, III

Example: Solve $(7 + i)x \equiv 3 - i \mod 8 - 9i$ in $\mathbb{Z}[i]$.

Linear Congruences, III

Example: Solve $(7 + i)x \equiv 3 - i \mod 8 - 9i$ in $\mathbb{Z}[i]$.

 Using the Euclidean algorithm we can verify that 7 + i and 8 - 9i are relatively prime, and can write 1 as a linear combination explicitly as

$$1 = (11 - i)(7 + i) + (-4 - 5i)(8 - 9i).$$

- So the inverse of $7 + i \mod 8 9i$ is 11 i.
- Now multiply both sides of the original congruence by 11 i:

$$x \equiv (11-i)(7+i)x \equiv (11-i)(3-i) \equiv 3+i \pmod{8-9i}$$

and so the solution is $x \equiv 3 + i \pmod{8 - 9i}$.

Linear Congruences, IV

Example: Solve $(x + 1)p \equiv x^2 + 1$ modulo $x^3 + x + 1$ in $\mathbb{F}_3[x]$.

Linear Congruences, IV

Example: Solve $(x + 1)p \equiv x^2 + 1$ modulo $x^3 + x + 1$ in $\mathbb{F}_3[x]$.

 Using the Euclidean algorithm we can verify that x + 1 and x³ + x + 1 are relatively prime, and can write 1 as a linear combination explicitly as

$$1 = (x^2 + 2x + 2)(x + 1) + 2(x^3 + x + 1)$$

- So the inverse of x + 1 modulo $x^3 + x + 1$ is $x^2 + 2x + 2$.
- Now multiply both sides of the original congruence by $x^2 + 2x + 2$ and reduce:

$$p \equiv (x^2 + 2x + 2)(x^2 + 1) \equiv 2x^2 + 2x \pmod{x^3 + x + 1}$$

and so the solution is
$$p\equiv 2x^2+2x \pmod{x^3+x+1}$$
.

Chinese Remainder Theorem, I

Now we can give the analogue of the Chinese Remainder Theorem:

Theorem (Chinese Remainder Theorem)

Let R be a Euclidean domain and $r_1, r_2, ..., r_k$ be pairwise relatively prime elements of R, and $a_1, a_2, ..., a_k$ be arbitrary elements of R. Then the system

 $x \equiv a_1 \pmod{r_1}$ $x \equiv a_2 \pmod{r_2}$ $\vdots \vdots \\x \equiv a_k \pmod{r_k}$

has a solution $x_0 \in R$. Furthermore, x is unique modulo $r_1r_2 \cdots r_k$, and the general solution is precisely the residue class of x_0 modulo $r_1r_2 \cdots r_k$.

Chinese Remainder Theorem, II

The proof is the same as over $\mathbb{Z}.$ By induction, it is enough to show the result for two congruences

 $\begin{array}{rcl} x & \equiv & a_1 \pmod{r_1} \\ x & \equiv & a_2 \pmod{r_2}. \end{array}$

Existence:

- The first congruence implies $x = a_1 + kr_1$ for some $k \in R$.
- Then plugging into the second equation then yields $a_1 + kr_1 \equiv a_2 \pmod{r_2}$.
- Rearranging yields $kr_1 \equiv (a_2 a_1) \pmod{r_2}$.
- Since by hypothesis r_1 and r_2 are relatively prime, that this congruence has a unique solution for k modulo r_2 , and hence has a solution for x.

Chinese Remainder Theorem, III

Uniqueness:

• Suppose x and y are both solutions, so that

$$\begin{array}{rcl} x \ \equiv \ y \ \equiv \ a_1 \ ({\rm mod} \ r_1) \\ x \ \equiv \ y \ \equiv \ a_2 \ ({\rm mod} \ r_2). \end{array}$$

- Then x y is congruent to 0 modulo r_1 and to 0 modulo r_2 , meaning that $r_1|(x y)$ and $r_2|(x y)$.
- But since r₁ and r₂ are relatively prime, their product must therefore divide x - y, meaning that x is unique modulo r₁r₂.
- Finally, it is obvious that any other element of *R* congruent to *x* modulo *r*₁*r*₂ also satisfies the system.

We have shown both parts, so we are done.

Chinese Remainder Theorem, IV

Example: In $R = \mathbb{C}[x]$, solve the system $q(x) \equiv 1 \pmod{x-1}$, $q(x) \equiv 3 \pmod{x}$.

- Since x 1 and x are relatively prime polynomials, by the Chinese Remainder Theorem we just need one solution.
- If we take the solution q(x) = 3 + ax to equation 2 and plug it into equation 1, we must solve $3 + ax \equiv 1 \pmod{x-1}$.
- Since $3 + ax \equiv (3 + a) \mod (x 1)$, we can take a = -2.
- Hence the polynomial q(x) = 3 2x is a solution.
- The general solution is therefore $3 2x + x(x 1) \cdot s(x)$ for an arbitrary polynomial $s(x) \in R$.

• Equivalently, the solution is $q(x) \equiv 3 - 2x \pmod{x^2 - x}$.

Euler and Fermat, I

Now we discuss the generalizations of Euler's and Fermat's theorems to R/pR. First, we need the general definition of the order of an element:

Definition

If *R* is a commutative ring with 1 and *u* is a unit of *R*, then the smallest k > 0 such that $u^k \equiv 1 \pmod{m}$ is called the <u>order</u> of *u*. (If there exists no such *k*, then we say *u* has infinite order.)

Examples:

- The element -1 has order 2 in \mathbb{Z} (and also in \mathbb{Q} , \mathbb{R} , and \mathbb{C}).
- The element *i* has order 4 in $\mathbb{Z}[i]$ and in \mathbb{C} .
- The element 2 does not have finite order in \mathbb{R} , since no positive power of 2 is equal to 1.

Euler and Fermat, II

<u>Properties of Orders</u>: Suppose R is a commutative ring with 1 and u is a unit in R. Then:

- If $u^n \equiv 1 \pmod{m}$ for some n > 0, then the order of u is finite and divides n.
- If u has order k, then uⁿ has order k/gcd(n, k). In particular, if n and k are relatively prime, then uⁿ also has order k.
- If uⁿ ≡ 1 (mod m) and u^{n/p} ≠ 1 (mod m) for any prime divisor p of n, then u has order n.
- If *u* has order *k* and *w* has order *l*, where *k* and *l* are relatively prime, then *uw* has order *kl*.

The proofs are the same as in $\mathbb{Z}/m\mathbb{Z}$.

Euler and Fermat, III

We can now give the generalization of Euler's theorem:

Theorem (Euler's Theorem)

If R is a commutative ring with 1 and $r \in R$, let $\varphi(r)$ denote the number of units in the ring R/rR, assuming this number is finite. Then if a is any unit in R/rR, we have $a^{\varphi(r)} \equiv 1 \pmod{r}$.

In fact, this result holds in any commutative ring S having a finite number of units. The idea of the proof is the same as over $\mathbb{Z}/m\mathbb{Z}$: the point is that if a is a unit and u_1, \ldots, u_k are the units in S, then the elements au_1, \ldots, au_k are the same as u_1, \ldots, u_k , just in a different order.

Euler and Fermat, IV

Proof:

- Let the set of all units in R/rR be $\overline{u_1}$, $\overline{u_2}$, ..., $\overline{u_{\varphi(r)}}$, and consider the elements $\overline{a \cdot u_1}$, $\overline{a \cdot u_2}$, ..., $\overline{a \cdot u_{\varphi(r)}}$ in R/rR: we claim that they are simply the elements $\overline{u_1}$, $\overline{u_2}$, ..., $\overline{u_{\varphi(r)}}$ again (possibly in a different order).
- Since there are φ(r) elements listed and they are all still units, it is enough to verify that they are all distinct.
- So suppose a · u_i ≡ a · u_j (mod r). Since a is a unit, multiply by a⁻¹: this gives u_i ≡ u_j (mod r), but this forces i = j.
- Hence modulo r, the elements $\overline{a \cdot u_1}$, $\overline{a \cdot u_2}$, ..., $\overline{a \cdot u_{\varphi(r)}}$ are simply $\overline{u_1}$, $\overline{u_2}$, ..., $\overline{u_{\varphi(r)}}$ in some order.
- Thus (a · u₁)(a · u₂) · · · (a · u_{φ(r)}) ≡ u₁ · u₂ · · · u_{φ(r)} (mod r) and so cancelling u₁ · u₂ · · · u_{φ(r)} from both sides yields a^{φ(r)} ≡ 1 (mod r) as desired.

Euler and Fermat, V

Example: Verify the result of Euler's theorem for \overline{x} in R/pR where $R = \mathbb{F}_3[x]$ and $p = x^2 + x + 2$.

- It is straightforward to see that p = x² + x + 2 is irreducible in F₃[x], so R/pR is a field.
- We also know that the residue classes have the form $\overline{a + bx}$ for $a, b \in \mathbb{F}_3$. Thus, R/pR has 9 elements, 8 of which are units.
- To verify Euler's theorem we need to evaluate \overline{x}^8 , which we can do using successive squaring: $\overline{x}^2 = \overline{2x+1}$, $\overline{x}^4 = (\overline{2x+1})^2 = \overline{2}$, and then $\overline{x}^8 = \overline{2}^2 = \overline{1}$.
- Thus, $\overline{x}^8 = \overline{1}$, meaning that $x^8 \equiv 1 \pmod{p}$, as dictated by Euler's theorem.

Euler and Fermat, VI

Although it is cheating a bit, we can obtain Fermat's little theorem quite easily using Euler's theorem.

Corollary (Fermat's Little Theorem)

If R is a Euclidean domain, $p \in R$ is a prime element, and the number of elements in R/pR is n, then $a^n \equiv a \pmod{p}$ for every $a \in R$.

Proof:

- Since R/pR is a field, the only nonunit is zero, so $\varphi(p) = n 1$.
- Then by Euler's theorem, a^{φ(p)} ≡ 1 (mod p) for every a that is a unit modulo p, so aⁿ = a^{φ(p)+1} ≡ a (mod p) for such a.
- Since aⁿ ≡ a (mod p) is also true when p|a, we see that it holds for every a ∈ R.

Euler and Fermat, VII: The Force Awakens

<u>Example</u>: Verify the result of Fermat's little theorem for \overline{x} in R/pR where $R = \mathbb{F}_2[x]$ and $p = x^3 + x + 1$.

- It is straightforward to see that p = x³ + x + 1 is irreducible in F₂[x], so R/pR is a field.
- We also know that the residue classes have the form $\overline{a + bx + cx^2}$ for $a, b, c \in \mathbb{F}_2$. Thus, R/pR has 8 elements.
- To verify Euler's theorem we need to evaluate \overline{x}^8 , which we can do using successive squaring: $\overline{x}^2 = \overline{x^4}$, $\overline{x}^4 = (\overline{x^2})^2 = \overline{x^2 + x}$, and then $\overline{x}^8 = \overline{x^2 + x}^2 = \overline{x}$.
- Thus, $\overline{x}^8 = \overline{x}$, meaning that $x^8 \equiv x \pmod{p}$, as dictated by Fermat's little theorem.

We generalized the Chinese Remainder Theorem, Euler's Theorem, and Fermat's Little Theorem to the general setting R/pR where R is a Euclidean domain.

Next lecture: Factorization of polynomials in F[x].