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Math 3527 (Number Theory 1)

Lecture #23

Generalizing theorems in Z/mZ to general Euclidean domains:

The Chinese Remainder Theorem

Euler’s Theorem

Fermat’s Little Theorem

This material represents §4.2.4 and §4.2.5 from the course notes.
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Chinese Remainder Theorem, Outline

Organization of the Chinese Remainder Theorem in Z/mZ:

Solve a single linear congruence ax ≡ b (mod m.

Solve a system of congruences of the form

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)
...

...
...

x ≡ ak (mod mk)
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Linear Congruences, I

We start by describing what to do with a single linear congruence:

Proposition (Linear Congruences)

Let R be a Euclidean domain, with a, b ∈ R, and let d any gcd of
a and r . Then the equation ax ≡ b (mod r) has a solution for
x ∈ R if and only if d |b. In this case, if a = a′d, b = b′d, and
r = r ′d, then ax ≡ b (mod r) is equivalent to a′x ≡ b′ (mod r ′)
and the solution is x ≡ (a′)−1b′ (mod r ′).

We can do all of these calculations using only the Euclidean
algorithm.
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Linear Congruences, II

The proof of the result is the same as over Z.

Proof: If x is a solution to the congruence ax ≡ b (mod r),
then there exists an s ∈ R with ax − rs = b. Then since d
divides the left-hand side, it must divide b.

Now if we set a′ = a/d , b′ = b/d , and r ′ = r/d , our original
equation becomes a′dx ≡ b′d (mod r ′d).

Solving this equation is equivalent to solving a′x ≡ b′ (mod
r ′), by one of our properties of congruences.

But since a′ and r ′ are relatively prime, a′ is a unit modulo r ′,
so we can simply multiply by its inverse to obtain
x ≡ b′ · (a′)−1 (mod r ′).
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Linear Congruences, III

Example: Solve (7 + i)x ≡ 3− i modulo 8− 9i in Z[i ].

Using the Euclidean algorithm we can verify that 7 + i and
8− 9i are relatively prime, and can write 1 as a linear
combination explicitly as

1 = (11− i)(7 + i) + (−4− 5i)(8− 9i).

So the inverse of 7 + i modulo 8− 9i is 11− i .

Now multiply both sides of the original congruence by 11− i :

x ≡ (11− i)(7 + i)x ≡ (11− i)(3− i) ≡ 3 + i (mod 8− 9i)

and so the solution is x ≡ 3 + i (mod 8− 9i) .
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Linear Congruences, IV

Example: Solve (x + 1)p ≡ x2 + 1 modulo x3 + x + 1 in F3[x ].

Using the Euclidean algorithm we can verify that x + 1 and
x3 + x + 1 are relatively prime, and can write 1 as a linear
combination explicitly as

1 = (x2 + 2x + 2)(x + 1) + 2(x3 + x + 1)

So the inverse of x + 1 modulo x3 + x + 1 is x2 + 2x + 2.

Now multiply both sides of the original congruence by
x2 + 2x + 2 and reduce:

p ≡ (x2 + 2x + 2)(x2 + 1) ≡ 2x2 + 2x (mod x3 + x + 1)

and so the solution is p ≡ 2x2 + 2x (mod x3 + x + 1) .
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Chinese Remainder Theorem, I

Now we can give the analogue of the Chinese Remainder Theorem:

Theorem (Chinese Remainder Theorem)

Let R be a Euclidean domain and r1, r2, . . . , rk be pairwise
relatively prime elements of R, and a1, a2, . . . , ak be arbitrary
elements of R. Then the system

x ≡ a1 (mod r1)

x ≡ a2 (mod r2)
...

...
...

x ≡ ak (mod rk)

has a solution x0 ∈ R. Furthermore, x is unique modulo r1r2 · · · rk ,
and the general solution is precisely the residue class of x0 modulo
r1r2 · · · rk .
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Chinese Remainder Theorem, II

The proof is the same as over Z. By induction, it is enough to
show the result for two congruences

x ≡ a1 (mod r1)

x ≡ a2 (mod r2).

Existence:

The first congruence implies x = a1 + kr1 for some k ∈ R.

Then plugging into the second equation then yields
a1 + kr1 ≡ a2 (mod r2).

Rearranging yields kr1 ≡ (a2 − a1) (mod r2).

Since by hypothesis r1 and r2 are relatively prime, that this
congruence has a unique solution for k modulo r2, and hence
has a solution for x .
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Chinese Remainder Theorem, III

Uniqueness:

Suppose x and y are both solutions, so that

x ≡ y ≡ a1 (mod r1)

x ≡ y ≡ a2 (mod r2).

Then x − y is congruent to 0 modulo r1 and to 0 modulo r2,
meaning that r1|(x − y) and r2|(x − y).

But since r1 and r2 are relatively prime, their product must
therefore divide x − y , meaning that x is unique modulo r1r2.

Finally, it is obvious that any other element of R congruent to
x modulo r1r2 also satisfies the system.

We have shown both parts, so we are done.
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Chinese Remainder Theorem, IV

Example: In R = C[x ], solve the system q(x) ≡ 1 (mod x − 1),
q(x) ≡ 3 (mod x).

Since x − 1 and x are relatively prime polynomials, by the
Chinese Remainder Theorem we just need one solution.

If we take the solution q(x) = 3 + ax to equation 2 and plug
it into equation 1, we must solve 3 + ax ≡ 1 (mod x − 1).

Since 3 + ax ≡ (3 + a) mod (x − 1), we can take a = −2.

Hence the polynomial q(x) = 3− 2x is a solution.

The general solution is therefore 3− 2x + x(x − 1) · s(x) for

an arbitrary polynomial s(x) ∈ R.

Equivalently, the solution is q(x) ≡ 3− 2x (mod x2 − x) .
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Euler and Fermat, I

Now we discuss the generalizations of Euler’s and Fermat’s
theorems to R/pR. First, we need the general definition of the
order of an element:

Definition

If R is a commutative ring with 1 and u is a unit of R, then the
smallest k > 0 such that uk ≡ 1 (mod m) is called the order of u.
(If there exists no such k , then we say u has infinite order.)

Examples:

The element −1 has order 2 in Z (and also in Q, R, and C).

The element i has order 4 in Z[i ] and in C.

The element 2 does not have finite order in R, since no
positive power of 2 is equal to 1.
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Euler and Fermat, II

Properties of Orders: Suppose R is a commutative ring with 1 and
u is a unit in R. Then:

If un ≡ 1 (mod m) for some n > 0, then the order of u is
finite and divides n.

If u has order k, then un has order k/ gcd(n, k). In particular,
if n and k are relatively prime, then un also has order k.

If un ≡ 1 (mod m) and un/p 6= 1 (mod m) for any prime
divisor p of n, then u has order n.

If u has order k and w has order l , where k and l are
relatively prime, then uw has order kl .

The proofs are the same as in Z/mZ.
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Euler and Fermat, III

We can now give the generalization of Euler’s theorem:

Theorem (Euler’s Theorem)

If R is a commutative ring with 1 and r ∈ R, let ϕ(r) denote the
number of units in the ring R/rR, assuming this number is finite.
Then if a is any unit in R/rR, we have aϕ(r) ≡ 1 (mod r).

In fact, this result holds in any commutative ring S having a finite
number of units. The idea of the proof is the same as over Z/mZ:
the point is that if a is a unit and u1, . . . , uk are the units in S ,
then the elements au1, . . . , auk are the same as u1, . . . , uk , just in
a different order.
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Euler and Fermat, IV

Proof:

Let the set of all units in R/rR be u1, u2, . . . , uϕ(r), and
consider the elements a · u1, a · u2, . . . , a · uϕ(r) in R/rR: we
claim that they are simply the elements u1, u2, . . . , uϕ(r)

again (possibly in a different order).

Since there are ϕ(r) elements listed and they are all still units,
it is enough to verify that they are all distinct.

So suppose a · ui ≡ a · uj (mod r). Since a is a unit, multiply
by a−1: this gives ui ≡ uj (mod r), but this forces i = j .

Hence modulo r , the elements a · u1, a · u2, . . . , a · uϕ(r) are
simply u1, u2, . . . , uϕ(r) in some order.

Thus (a · u1)(a · u2) · · · (a · uϕ(r)) ≡ u1 · u2 · · · uϕ(r) (mod r)
and so cancelling u1 · u2 · · · uϕ(r) from both sides yields

aϕ(r) ≡ 1 (mod r) as desired.
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Euler and Fermat, V

Example: Verify the result of Euler’s theorem for x in R/pR where
R = F3[x ] and p = x2 + x + 2.

It is straightforward to see that p = x2 + x + 2 is irreducible
in F3[x ], so R/pR is a field.

We also know that the residue classes have the form a + bx for
a, b ∈ F3. Thus, R/pR has 9 elements, 8 of which are units.

To verify Euler’s theorem we need to evaluate x8, which we
can do using successive squaring: x2 = 2x + 1,
x4 = (2x + 1)2 = 2, and then x8 = 2

2
= 1.

Thus, x8 = 1, meaning that x8 ≡ 1 (mod p), as dictated by
Euler’s theorem.
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Euler and Fermat, VI

Although it is cheating a bit, we can obtain Fermat’s little theorem
quite easily using Euler’s theorem.

Corollary (Fermat’s Little Theorem)

If R is a Euclidean domain, p ∈ R is a prime element, and the
number of elements in R/pR is n, then an ≡ a (mod p) for every
a ∈ R.

Proof:

Since R/pR is a field, the only nonunit is zero, so
ϕ(p) = n − 1.

Then by Euler’s theorem, aϕ(p) ≡ 1 (mod p) for every a that
is a unit modulo p, so an = aϕ(p)+1 ≡ a (mod p) for such a.

Since an ≡ a (mod p) is also true when p|a, we see that it
holds for every a ∈ R.
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Euler and Fermat, VII: The Force Awakens

Example: Verify the result of Fermat’s little theorem for x in R/pR
where R = F2[x ] and p = x3 + x + 1.

It is straightforward to see that p = x3 + x + 1 is irreducible
in F2[x ], so R/pR is a field.

We also know that the residue classes have the form
a + bx + cx2 for a, b, c ∈ F2. Thus, R/pR has 8 elements.

To verify Euler’s theorem we need to evaluate x8, which we
can do using successive squaring: x2 = x4,

x4 = (x2)2 = x2 + x , and then x8 = x2 + x
2

= x .

Thus, x8 = x , meaning that x8 ≡ x (mod p), as dictated by
Fermat’s little theorem.
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Summary

We generalized the Chinese Remainder Theorem, Euler’s Theorem,
and Fermat’s Little Theorem to the general setting R/pR where R
is a Euclidean domain.

Next lecture: Factorization of polynomials in F [x ].


