Math 3527 — Lecture 23

Math 3527 (Number Theory 1)
Lecture #23

Generalizing theorems in Z/mZ to general Euclidean domains:
@ The Chinese Remainder Theorem
@ Euler's Theorem
@ Fermat’s Little Theorem

This material represents §4.2.4 and §4.2.5 from the course notes.
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Chinese Remainder Theorem, Outline

Organization of the Chinese Remainder Theorem in Z/mZ.:
@ Solve a single linear congruence ax = b (mod m.

@ Solve a system of congruences of the form

a1 (mod my)

an (mod m2)

x = ak (mod my)
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Linear Congruences, |

We start by describing what to do with a single linear congruence:

Proposition (Linear Congruences)

Let R be a Euclidean domain, with a, b € R, and let d any gcd of
a and r. Then the equation ax = b (mod r) has a solution for

x € R if and only if d|b. In this case, ifa=a'd, b= b'd, and
r=r'd, then ax = b (mod r) is equivalent to a'’x = b’ (mod r’)
and the solution is x = (a')~*b' (mod r').

We can do all of these calculations using only the Euclidean
algorithm.
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Linear Congruences, Il

The proof of the result is the same as over Z.

@ Proof: If x is a solution to the congruence ax = b (mod r),
then there exists an s € R with ax — rs = b. Then since d
divides the left-hand side, it must divide b.

e Now if we set &/ = a/d, b’ = b/d, and ' = r/d, our original
equation becomes a’dx = b'd (mod r'd).

@ Solving this equation is equivalent to solving a’x = b’ (mod
r'), by one of our properties of congruences.

@ But since &’ and r’ are relatively prime, &’ is a unit modulo r/,

so we can simply multiply by its inverse to obtain
x=b-(a)7t (mod r).
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Linear Congruences, Il

Example: Solve (7 + i)x = 3 — i modulo 8 — 9/ in Z[i].
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Linear Congruences, Il

Example: Solve (7 + i)x = 3 — i modulo 8 — 9/ in Z[i].
@ Using the Euclidean algorithm we can verify that 7 + i and
8 — 9/ are relatively prime, and can write 1 as a linear
combination explicitly as

1= (11— )7+ i)+ (=4 —5/)(8 — 9/).

@ So the inverse of 7+ i/ modulo 8 — 9/ is 11 — .

@ Now multiply both sides of the original congruence by 11 — i:

x=11-)T+iH)x=(11—-i)(3—i)=3+i (mod 8 —9/)

and so the solution is ’x =3+ (mod 8 —9i) ‘
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Linear Congruences, IV

Example: Solve (x + 1)p = x2 + 1 modulo x3 + x + 1 in F3[x].
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Linear Congruences, IV

Example: Solve (x + 1)p = x2 + 1 modulo x3 + x + 1 in F3[x].

@ Using the Euclidean algorithm we can verify that x 4+ 1 and
x3 + x + 1 are relatively prime, and can write 1 as a linear
combination explicitly as

1= +2x+2)(x +1) +2(x> +x+1)

@ So the inverse of x + 1 modulo x3 + x + 1 is x2 + 2x + 2.

@ Now multiply both sides of the original congruence by
x2 + 2x + 2 and reduce:

p=(x*+2x+2)(x*+1) = 2x*> + 2x (mod x> + x + 1)

and so the solution is | p = 2x? 4+ 2x (mod x> + x + 1) |.
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Chinese Remainder Theorem, |

Now we can give the analogue of the Chinese Remainder Theorem:

Theorem (Chinese Remainder Theorem)

Let R be a Euclidean domain and ri, r, ..., r, be pairwise
relatively prime elements of R, and a1, as, ..., ax be arbitrary
elements of R. Then the system

= a1 (mod n)

= ap (mod n)

x = a (mod ry)

has a solution xp € R. Furthermore, x is unique modulo rir - - - ry,
and the general solution is precisely the residue class of xo modulo

rirp---rg.
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Chinese Remainder Theorem, Il

The proof is the same as over Z. By induction, it is enough to
show the result for two congruences

= a1 (mod n)

= a (mod n).

Existence:
@ The first congruence implies x = a; + kr; for some k € R.
@ Then plugging into the second equation then yields
a1 + krp = ap (mod n).
@ Rearranging yields kry = (a2 — a1) (mod r).
@ Since by hypothesis r; and ry are relatively prime, that this

congruence has a unique solution for k modulo rp, and hence
has a solution for x.
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Chinese Remainder Theorem, Ill

Uniqueness:
@ Suppose x and y are both solutions, so that

X =y a1 (mod n)

X =y

az (mod n).

@ Then x — y is congruent to 0 modulo r; and to 0 modulo r,
meaning that ri|(x — y) and r2|(x — y).

@ But since r; and r» are relatively prime, their product must
therefore divide x — y, meaning that x is unique modulo ryr.

@ Finally, it is obvious that any other element of R congruent to
x modulo r;rp also satisfies the system.

We have shown both parts, so we are done.
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Chinese Remainder Theorem, IV

Example: In R = C[x], solve the system g(x) =1 (mod x — 1),
q(x) = 3 (mod x).
@ Since x — 1 and x are relatively prime polynomials, by the
Chinese Remainder Theorem we just need one solution.

o If we take the solution g(x) = 3 + ax to equation 2 and plug
it into equation 1, we must solve 3+ ax =1 (mod x — 1).

@ Since 3+ ax = (3 + a) mod (x — 1), we can take a = —2.

@ Hence the polynomial g(x) = 3 — 2x is a solution.

@ The general solution is therefore ‘3 —2x+ x(x —1) - s(x) ‘ for

an arbitrary polynomial s(x) € R.

o Equivalently, the solution is | g(x) = 3 — 2x (mod x* — x)|.
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Euler and Fermat, |

Now we discuss the generalizations of Euler's and Fermat's
theorems to R/pR. First, we need the general definition of the
order of an element:

Definition

If R is a commutative ring with 1 and v is a unit of R, then the
smallest k > 0 such that u¥ =1 (mod m) is called the order of w.
(If there exists no such k, then we say u has infinite order.)

Examples:
@ The element —1 has order 2 in Z (and also in Q, R, and C).
@ The element / has order 4 in Z[i] and in C.

@ The element 2 does not have finite order in R, since no
positive power of 2 is equal to 1.
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Euler and Fermat, Il

Properties of Orders: Suppose R is a commutative ring with 1 and
uis a unit in R. Then:

o If u" =1 (mod m) for some n > 0, then the order of u is
finite and divides n.

@ If u has order k, then u" has order k/gcd(n, k). In particular,
if n and k are relatively prime, then u” also has order k.

o If u" =1 (mod m) and u™P # 1 (mod m) for any prime
divisor p of n, then u has order n.

@ If u has order k and w has order /I, where k and [ are
relatively prime, then uw has order kl.

The proofs are the same as in Z/mZ.
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Euler and Fermat, Il

We can now give the generalization of Euler's theorem:

Theorem (Euler's Theorem)

If R is a commutative ring with 1 and r € R, let ©(r) denote the
number of units in the ring R/rR, assuming this number is finite.
Then if a is any unit in R/rR, we have a?(") =1 (mod r).

In fact, this result holds in any commutative ring S having a finite
number of units. The idea of the proof is the same as over Z/mZ:
the point is that if a is a unit and uy, ..., u,x are the units in S,
then the elements auy, . .., au, are the same as uy, ..., Uy, just in
a different order.
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Euler and Fermat, IV

Proof:
o Let the set of all units in R/rR be @1, @2, ... , Ug(r)s and
consider the elements @~ 1, @~ 02,..., 3 Uy, in R/rR: we
claim that they are simply the elements o, wg, ... , Ty

again (possibly in a different order).

Since there are (r) elements listed and they are all still units,
it is enough to verify that they are all distinct.

So suppose a- uj = a- uj (mod r). Since a is a unit, multiply
by a~!: this gives u; = u; (mod r), but this forces i = .

Hence modulo r, the elements - u1, a-02,..., 3 Uy, are
simply oy, oo, ... , Us(r) in some order.
Thus (a-u1)(a-w) - (a-uyp)) = ur- 2ty (mod r)

and so cancelling uy - uz - - - uy() from both sides yields
a#() =1 (mod r) as desired.
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Euler and Fermat, V

Example: Verify the result of Euler's theorem for X in R/pR where
R =TFs3[x] and p = x? + x + 2.
o It is straightforward to see that p = x? + x + 2 is irreducible
in F3[x], so R/pR is a field.
@ We also know that the residue classes have the form a + bx for
a,b € F3. Thus, R/pR has 9 elements, 8 of which are units.

@ To verify Euler's theorem we need to evaluate X%, which we
can do using successive squaring: X2 = 2x + 1,
X =(2x+1)2=2 and then X8 =2° =1,

@ Thus, X8 = 1, meaning that x® =1 (mod p), as dictated by
Euler's theorem.
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Euler and Fermat, VI

Although it is cheating a bit, we can obtain Fermat’s little theorem
quite easily using Euler's theorem.

Corollary (Fermat's Little Theorem)

If R is a Euclidean domain, p € R is a prime element, and the
number of elements in R/pR is n, then a" = a (mod p) for every

aeR.
Proof:
@ Since R/pR is a field, the only nonunit is zero, so
p(p) =n—1.

@ Then by Euler’s theorem, a*(P) = 1 (mod p) for every a that
is a unit modulo p, so a” = a¥(P)*! = 2 (mod p) for such a.

@ Since 3" = a (mod p) is also true when p|a, we see that it
holds for every a € R.
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Euler and Fermat, VII: The Force Awakens

Example: Verify the result of Fermat's little theorem for X in R/pR
where R = Fs[x] and p = x3 + x + 1.
o It is straightforward to see that p = x3 + x + 1 is irreducible
in F2[x], so R/pR is a field.
@ We also know that the residue classes have the form
a+ bx+ cx? for a, b, c € Fp. Thus, R/pR has 8 elements.
@ To verify Euler's theorem we need to evaluate %8, which we
can do using successive squaring: X> = x4,
— —_ ——2
x* = (x2)? = x2 + x, and then X® = x2 + x = X.
o Thus, X® = X, meaning that x® = x (mod p), as dictated by
Fermat's little theorem.
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Summary

We generalized the Chinese Remainder Theorem, Euler’'s Theorem,
and Fermat's Little Theorem to the general setting R/pR where R
is a Euclidean domain.

Next lecture: Factorization of polynomials in F[x].



