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0 Number Theory in Function Fields

These are lecture notes for the graduate course Math 7360: Number Theory in Function Fields, taught at North-
eastern in Fall 2025.

0.1 (Sep 3) Overview + Fermat's Last Theorem for Polynomials

• The goal of this course is to elucidate some of the many analogies between number theory in number �elds
and number theory in function �elds.

◦ Some things from classical number theory: primes, factorizations, congruences and modular arithmetic,
Fermat's and Euler's theorems, the prime number theorem, quadratic reciprocity (and higher reciprocity),
Dirichlet's theorem on primes in arithmetic progressions, zeta functions.
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◦ Some things from the more modern take on algebraic and analytic number theory: algebraic number
�elds and their rings of integers, Galois theory and its interplay with number �elds, discriminants, class
groups, Dirichlet's unit theorem, cyclotomic �elds, rami�cation, L-functions, the Riemann hypothesis.

◦ Our goal is to do as much of these things as possible in the context of function �elds, where many of
the results are more approachable, because the function-�eld setting has a major kit of additional tools
(namely, algebraic geometry).

◦ Though do note: number theory in function �elds is a beautiful subject in its own right, and not just
because it has so many similarities to algebraic number theory.

◦ We will illustrate how things can become simpler by proving Fermat's Last Theorem, which is quite
notoriously di�cult over Z, for polynomials using only elementary techniques.

• To start, let q = pf be a prime power, and let Fq be the �nite �eld with q elements. The story begins with
the polynomial ring A = Fq[t].

◦ We have the degree map on A: explicitly, for coe�cients ai ∈ Fq and an element f = a0 +a1t+ · · ·+ant
n

with an 6= 0, we de�ne deg(f) = n and sgn(f) = an. (We also set deg(0) = −∞ and sgn(0) = 0.)

◦ Exercises (trivial): deg(fg) = deg(f)+deg(g), sgn(fg) = sgn(f)sgn(g), and deg(f+g) ≤ max(deg f, deg g)
with equality whenever deg f 6= deg g.

◦ The polynomials with sign 1 (i.e., monic polynomials) behave analogously to the integers with positive
sign (i.e., the positive integers).

◦ We also note that the degree properties easily give a characterization of the units of A: they are the
nonzero constant polynomials.

• Our �rst basic result is the standard division-with-remainder algorithm for polynomials, which we record over
arbitrary �elds for no extra cost:

• Exercise (Polynomial Division): If F is any �eld, then for any f, g ∈ F [t] with g 6= 0, there exist unique
q, r ∈ F [t] such that f = qg + r and deg r < deg g.

◦ The idea is simply to prove that the usual long-division algorithm works by induction on the degree of g.

◦ As a consequence, F [t] is a Euclidean domain, meaning that it is also a principal ideal domain (all ideals
are principal) and a unique factorization domain (every element can be factored uniquely into a product
of irreducibles up to reordering and unit factors).

• As it turns out, unique factorization is essentially all we need to prove Fermat's Last Theorem for polynomials.

◦ We would like to show that the equation fn + gn = hn has no nontrivial solutions in polynomials f, g, h.
Aside from the case n = 4, it is enough to treat the situation where n is a prime.

◦ But we do need to be a little bit careful to write down exactly what the trivial solutions look like, beyond
the obvious ones where one of f, g, h is zero.

◦ For example, if f, g, h are all constants, we can certainly have lots of solutions to fn+gn = hn, depending
on the �eld and on n (e.g., 15 + 15 = 25 inside F3).

◦ We need to avoid the situation where n is divisible by p = char(Fq), since fp + gp = (f + g)p for any
polynomials f, g ∈ Fq[t].

◦ Also, since the equation is homogeneous, we can scale solutions to get new solutions.

◦ To avoid all of these situations, we can consider only the case where f, g, h are relatively prime (since if
they are not, then any common divisor of two of them also divides the third, so we could cancel it) and
where the exponent n is not divisible by the characteristic p.

• Theorem (FLT for Polynomials): Suppose that f, g, h ∈ F [t] are pairwise relatively prime and that p ≥ 3 is
prime with p 6= char(F ). Then the only solutions to fp + gp = hp are when f, g, h are all constants.

◦ We will remark that p ≥ 3 is needed, since the usual parametrization of Pythagorean triples also works
for polynomials: if we take f = a2 − b2, g = 2ab, h = a2 + b2 for any polynomials a, b ∈ F [t], then
f2 + g2 = h2.
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• We will give two di�erent proofs: the �rst uses a classical-style in�nite descent argument, while the second
uses a more function-�eld type of argument.

◦ Proof 1: Without loss of generality, we may assume that F is algebraically closed, since any solution to
fp + gp = hp over F is still a solution over the algebraic closure F .

◦ We show the result by inducting on d = deg f + deg g. The base case d = 0 is trivial, since there is
nothing to prove. So now suppose we have a solution with d > 0.

◦ By the assumption that p 6= char(F ), there are p distinct pth roots of unity in F : say, 1, ζp, ζ
2
p , . . . , ζ

p−1
p ,

and we can factor fp + gp = (f + g)(f + ζpg)(f + ζ2
pg) · · · (f + ζp−1

p g).

◦ Next, note that all of the terms f + ζipg are relatively prime: if e divides both f + ζipg and f + ζjpg, then

e also divides the di�erence (ζip− ζjp)g hence divides g, hence also divides (f + ζipg)− ζipg = f , but f and
g are relatively prime by assumption.

◦ Then by unique factorization inside F [t], since all of the terms in the product (f + g)(f + ζpg)(f +
ζ2
pg) · · · (f + ζp−1

p g) are relatively prime and their product is a pth power (namely, hp), each term must
be a pth power up to a unit factor. But since F is algebraically closed, everything in F has a pth root
in F , so the unit factor is also a pth power.

◦ Thus, in particular, we see that f + g = ap, f + ζpg = bp, and f + ζ2
pg = cp are all pth powers.

◦ Using basic linear algebra to eliminate f and g yields the relation −ζpap + (1 + ζp)b
p = cp, so if we set

a′ = (−ζp)1/pa, b′ = (1 + ζp)
1/pb, and c′ = c, then we have (a′)p + (b′)p = (c′)p.

◦ Note that a′, b′ cannot both be constant, since then f, g would have been constant. But we also have
deg(a′) + deg(b′) = deg(f + g)/p+ deg(f + ζpg)/p ≤ 2 max(deg f, deg g)/p < d, so we have constructed
a solution with smaller positive degree, but this contradicts the induction hypothesis. Therefore, there
are no nonconstant solutions.

◦ Exercise: For any �eld F of characteristic p, we have exhibited nontrivial polynomial solutions to fp+gp =
hp in F [t]. Where and why in the proof of FLT above does the argument break down when char(F ) = p?

• Before giving the second proof, we need a few preliminary results.

◦ First, if f has prime factorization f =
∏
i p
ai
i , de�ne rad(f) =

∏
i pi, the product of the monic irreducible

polynomials dividing f .

• Lemma: We have deg gcd(f, f ′) ≥ deg f − deg radf , where f ′ is the derivative of f .

◦ Proof: Suppose f = paq where p is irreducible and doesn't divide q. Then f ′ = apa−1p′q + paq′ =
pa−1(ap′q + pq′) is divisible by pa−1. Therefore, gcd(f, f ′) is divisible by pa−1.

◦ Taking the product over all primes dividing f shows that
∏
i p
ai−1
i divides gcd(f, f ′), so gcd(f, f ′) ·rad(f)

is divisible by
∏
i p
ai−1
i

∏
i pi =

∏
i p
ai
i = f , so taking degrees yields the inequality.

◦ Exercise: Determine when equality holds, namely when deg gcd(f, f ′) = deg f − deg radf .

• Next, we show a result due independently to Mason and Stothers:

• Proposition (Mason-Stothers): Suppose that f, g, h ∈ F [t] are nonconstant, relatively prime, that f + g = h,
and that not all of f ′, g′, h′ are zero. Then max(deg f, deg g,deg h) ≤ deg rad(fgh)− 1.

◦ Proof: If f + g = h then f ′ + g′ = h′, and then fg′ − f ′g = (f + g)g′ − (f ′ + g′)g = hg′ − h′g.
◦ Note also that fg′ − f ′g is nonzero: if fg′ = f ′g then f must divide f ′g hence that f must divide f ′

since f, g are relatively prime.

◦ Exercise: Suppose f ∈ F [t]. Show that f divides its derivative f ′ if and only if f ′ = 0.

◦ By the exercise we see then that f ′ = 0. But now by the same argument we would also have g′ = 0 and
h′ = 0, contradicting the assumption that not all of f ′, g′, h′ are zero.

◦ Now let df = gcd(f, f ′), dg = gcd(g, g′), dh = gcd(h, h′). Then df , dg, dh all divide fg′− f ′g = hg′−h′g,
and they are all relatively prime since they are divisors of the relatively prime polynomials f, g, h.

◦ This means dfdgdh divides fg′ − f ′g, so taking degrees yields deg(dfdgdh) ≤ deg(fg′ − f ′g) ≤ deg(f) +
deg(g)− 1.
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◦ By the Lemma, we have deg(df ) ≥ deg(f)− deg radf , deg(dg) ≥ deg(g)− deg radg, deg(dh) ≥ deg(h)−
deg radh, so summing yields deg(f)+deg(h)+deg(h)−deg rad(fgh) ≤ deg(dfdgdh) ≤ deg(f)+deg(g)−1,
and therefore deg(h) ≤ deg rad(fgh)− 1.

◦ By rearranging we obtain the same bounds on deg(f) and deg(g), and so we are done.

• At last, we can �nish the second proof of Fermat's Last Theorem for polynomials:

◦ Proof 2: Suppose fp + gp = hp. By the assumption on the characteristic, we have (fp)′, (gp)′, (hp)′ are
not all zero.

◦ Then by Mason-Stothers, we see max(deg fp,deg gp,deg hp) ≤ deg rad(fpgphp) − 1, which is equivalent
to p · max(deg f, deg g,deg h) ≤ deg rad(fgh) − 1 ≤ deg f + deg g + deg h − 1 since the radical ignores
powers.

◦ Now apply the simple observation that max(a, b, c) ≥ (a+ b+ c)/3 and set d = deg f + deg g + deg h to
see that p · d/3 ≤ d− 1, which is impossible, since d ≤ p · d/3 by the hypothesis that p ≥ 3.

0.2 (Sep 8) Quotients of Fq[t]

• We now return to study the structure of quotient rings of A = Fq[t], which (re-posed) is simply studying
modular arithmetic in this ring.

◦ In particular, we will recover almost identical versions of Fermat's little theorem, Euler's theorem, and
Wilson's theorem.

◦ We will also take some time to look at the structure of the unit group of A/gA, which turns out to be a
bit more complicated to write down than the unit group of Z/mZ.

• As noted last lecture, A is a Euclidean domain, so it is a PID and also a UFD. Since every ideal is principal, if
we want to understand the structure of the quotient rings of A, we only have the quotients of the form A/gA
to consider.

◦ We can also assume g is monic by replacing it with its unique monic associate, which does not change
the quotient ring A/gA.

• Using the division algorithm, we can write down the residue classes in A/gA, and in particular compute its
cardinality, quite easily:

• Proposition: Let g ∈ Fq[t] = A be nonzero. Then the residue classes in A/gA are uniquely represented by the
polynomials of degree less than deg(g). In particular, #(A/gA) = qdeg g.

◦ Proof: If f ∈ Fq[t] is any polynomial, then by the division algorithm we can write f = qg + r, and so
inside A/gA we see f = r. So the possible remainders give a complete set of residue class representatives
� but by the uniqueness of the quotient and remainder, no two remainders are equivalent mod g, so in
fact they give all of the residue classes exactly once.

◦ For the counting, if deg(g) = n, then the remainders are of the form c0 +c1t+ · · ·+cn−1t
n−1 with ci ∈ Fq.

Since there are n coe�cients each of which has q possible values, there are qn = qdeg g possible ways to
select a remainder.

• The size of the quotient ring gives a convenient way of measuring the �size� of a polynomial that behaves
pleasantly under multiplication:

• De�nition: For g ∈ Fq[t], we de�ne |g|, the norm of g, to be qdeg g. By the calculation above, |g| = #(A/gA)
when g 6= 0.

◦ Exercise: Show |fg| = |f | · |g| and |f + g| ≤ max(|f | , |g|) with equality whenever |f | 6= |g|.

• Our next goal is to understand the units of A/gA, since this is the context in which to pose Fermat's and
Euler's theorems.
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◦ Regardless of the polynomial g, the units of A/gA will contain an isomorphic copy of the constant
polynomials (i.e., the units of A), which is the multiplicative group F∗q .
◦ As is well-known, the multiplicative group of a �nite �eld is cyclic. We record a few proofs of this fact,
for completeness:

• Proposition (Multiplicative Group of Fq): If G is a �nite multiplicative subgroup of a �eld F , then G is cyclic.

◦ All known proofs of this fact are essentially nonconstructive, to varying degrees: there does not seem to
be a nice algorithm for writing down a multiplicative generator of a �nite �eld that is appreciably better
than a brute-force search.

◦ Proof 1: Let G be a �nite multiplicative subgroup of F . By the fundamental theorem of �nite(ly
generated) abelian groups, G is isomorphic to a direct product of cyclic groups.

◦ Let m be the lcm of the orders of these cyclic groups: then xm = 1 for all x ∈ G. Since F [t] has unique
factorization, the polynomial tm−1 ∈ F [t] has at most m roots in F , so #G ≤ m. On the other hand, by
Lagrange's theorem, the order of every element in G divides #G, so m divides #G. We must therefore
have m = #G.

◦ But since #G is equal to the product of the orders of the cyclic groups, we see that the product of these
orders equals their lcm, so the orders are all relatively prime. This means G is cyclic, as claimed.

◦ Proof 2: Let M be the maximal order among all elements in G: we claim that the order of every element
in G divides M . To see this, suppose g has order M , and let h be any other element of order k. If k
does not divide M , then there is some prime q which occurs to a higher power qf in the factorization of
k than the corresponding power qe dividing M .

◦ By properties of orders, the element gq
f

has orderM/qf , and the element hk/q
e

has order qe. Since these
two orders are relatively prime and gh = hg (since these are elements in a �eld), we see that the element

gq
f · hk/qe has order M · qf−e. This is a contradiction because this element's order is larger than M .

Thus, k divides M as claimed.

◦ For the second claim, any element of orderM generates a subgroup of G havingM elements, soM ≤ #G.

◦ Furthermore, by the above, we know that all elements in G have order dividing M , so the polynomial
tM − 1 has #G roots in F [t]. By unique factorization, this requires M ≥ #G, and so we have M = #G.
Now select any element of order M : it generates G.

◦ Proof 3: Observe by Lagrange's theorem that t#G−1 factors as the product
∏
d|#G Φd(t), where Φd(t) =∏

order(g)=d(t− g) is the dth cyclotomic polynomial.

◦ By an inductive argument, or by observing invariance under the Galois action, all of the polynomials
Φd(t) have coe�cients in F [t].

◦ By induction on d using the fact that td − 1 has at most (hence exactly) d roots in F and in G, one has
that deg(Φd) = ϕ(d). In particular, deg(Φ#G) = ϕ(#G) > 0, so there is an element of order #G in G.

• Now we tackle the question of the units of A/gA.

◦ We can simplify the problem �rst: if we factor g = pa11 · · · p
ad
d where the pi are distinct monic irreducible

polynomials, then all of the ideals (paii ) are pairwise comaximal, so by the Chinese remainder theorem,
we see A/gA ∼= (A/pa11 A)× (A/pa22 A)× · · · × (A/padd A).

◦ Taking units on both sides then gives (A/gA)∗ ∼= (A/pa11 A)∗ × (A/pa22 A)∗ × · · · × (A/padd A)∗. So it is
enough to study the structure of the ring A/paA where p is irreducible.

• Proposition (Structure of A/paA): For A = Fq[t] where char(Fq) = p̃, and p ∈ A is a monic irreducible
polynomial, we have the following:

1. The cardinality of (A/paA)∗ is #(A/paA)∗ = |p|a−1
(|p| − 1) = |pa| (1− 1/ |p|).

◦ Exercise: Show that a commutative ring R with 1 has a unique maximal ideal M if and only if the
set of nonunits in R forms an ideal, which is then a unique maximal ideal M . A ring with this
property is called a local ring.

◦ Proof: The ring A/paA has a unique maximal ideal, namely pA/paA, and is therefore a local ring,
because the quotient (A/paA)/(pA/paA) ∼= A/pA is a �eld by the third isomorphism theorem.
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◦ By the exercise above, evvery element not in the maximal ideal is a unit, and the cardinality of the
maximal ideal is 1/ |p| times the cardinality of the entire ring (since the elements in the ideal are
just the multiples of p). The formula follows.

2. (A/paA)∗ ∼= [cyclic group of order |p| − 1]× [an abelian p̃-group].

◦ Proof: The reduction-mod-p map is a surjective group homomorphism from (A/paA)∗ → (A/pA)∗,
and the latter is the multiplicative group of the �eld A/pA hence is cyclic of order |p| − 1.

◦ Pulling back a generator yields that (A/paA)∗ contains a cyclic subgroup of order |p| − 1. By the

cardinality calculation in (1), the remaining piece has order |p|a−1
and is therefore a p̃-group (and

it is clearly abelian).

◦ Remark: The direct product decomposition writes each element modulo pa as [its residue modulo p]
times [an element congruent to 1 modulo p].

3. The p̃-part of (A/paA)∗ has exponent at most p̃s where p̃s ≥ a.
◦ Proof: By the above, the elements in the p̃-part are of the form 1 + bp for some b ∈ Fq[t].
◦ Since we are in characteristic p̃, we then have (1 + bp)p̃

s

= 1 + (bp)p̃
s

, and since pp̃
s

is divisible by pa

by assumption, we see (1 + bp)p̃
s ≡ 1 (mod pa), which is to say, the element 1 + bp modulo pa has

order dividing p̃s (as required).

4. As a→∞, the number of cyclic factors in the p̃-part of (A/paA)∗ goes to in�nity.

◦ The point here is that we get a di�erent kind of behavior than over Z: over Z, we see that (Z/paZ) ∼={
Z/(pa − pa−1)Z for odd primes p

(Z/2Z)× (Z/2a−3Z) for p = 2
, and so even for large prime powers, the quotient is either

cyclic or basically cyclic.

◦ For polynomials, we end up getting a large number of cyclic factors when we take a large power,
regardless of the prime.

◦ Proof: Since the exponent of the p̃-part is at most p̃s, if we have a total of j cyclic factors then the
order of the group is at most p̃sj . So we need p̃sj ≥ |p|a−1

= qdeg(p)·(a−1) = p̃f ·deg(p)·(a−1) and so
j ≥ f · deg(p) · (a− 1)/s.

◦ Since s ∼ logp a, we see that for a �xed �eld Fq (i.e., �xed f) and �xed prime p (i.e., �xed deg p),
we have j ∼ C(a− 1)/ logp a→∞ as a→∞.

• Now that we have established some basic things about the unit group of A/paA, we can establish the analogues
of Fermat's little theorem, Euler's theorem, and Wilson's theorem.

◦ First, we need the analogue of the Euler phi-function. We de�ne Φ(f) = #(A/fA)∗ to be the number
of polynomials of degree less than deg f that are relatively prime to f .

◦ By our calculations with the unit group earlier, we have the usual formula Φ(f) = |f |
∏
p|fprime(1−1/ |p|),

which is the analogue of ϕ(n) = n
∏
p|n prime(1− 1/p) for the phi-function over Z.

• Proposition (�Euler�): If f ∈ Fq[t] is nonzero and g is relatively prime to f , then gΦ(f) ≡ 1 (mod f).

◦ Proof 1: Apply Lagrange's theorem to g in (A/fA)∗.

◦ Proof 2: Multiplication by g is a bijection on the cosets in (A/fA)∗. Thus,
∏
u∈(A/fA)∗ u =

∏
u∈(A/fA)∗(ug) =

gΦ(f)
∏
u∈(A/fA)∗ u inside (A/fA)∗, and cancelling the unit factor

∏
u∈(A/fA)∗ u yields gΦ(f) = 1 inside

(A/fA)∗.

• Proposition (�Fermat�): If p ∈ Fq[t] is irreducible, then a|p| ≡ a (mod p) for any a ∈ Fq[t].

◦ Proof: If p|a the result is trivial. Otherwise, a is a unit modulo p and the result follows from Euler above.

• We can use the analogue of Fermat's theorem to prove an analogue of Wilson's theorem:

• Proposition (Factoring, 1): If p ∈ Fq[t] is irreducible of degree d, then x|p| − x ≡
∏

deg f<d(x− f) mod p.

◦ Proof: As we have noted, in A/p the polynomials of degree < d represent all of the residue classes modulo
p.
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◦ By Fermat, each of these polynomials is a root of x|p| − x. But by unique factorization, this polynomial
has at most |p| distinct roots, and we have just exhibited |p| roots, so these are all of the roots, and the
factorization follows.

• Corollary (�Wilson�): If p ∈ Fq[t] is irreducible of degree d, then
∏

deg f<d,f 6=0 f ≡ −1 (mod p).

◦ Proof 1: Dividing the result above by x yields x|p|−1 − 1 ≡
∏

deg f<d,f 6=0(x− f) mod p.

◦ Now set x = 0: if the characteristic is odd, then the number of minus signs on the RHS is even and the
result follows, while if the characteristic is even, then 1 = −1 so the result still follows.

◦ Proof 2: If f does not have order 2 in A/pA, then f 6= f
−1

and so we can pair up and discard (f, f
−1

)
without a�ecting the product.

◦ When we have done this for all possible pairs, the only elements left are the elements of order dividing
2 (i.e., the solutions to x2 = 1), which are x = ±1. In characteristic not 2, the product is −1, while in
characteristic 2, the product is 1 = −1.

◦ Exercise: Generalize proof 2 of Wilson's theorem to show that if G is a �nite abelian group, then the
product of all elements in g is the unique element in G of order 2 (if there is one), or is otherwise the
identity.

• We also record a useful result about roots of unity:

• Proposition (Roots of Unity): If p ∈ Fq[t] = A is irreducible and d divides |p| − 1, then there are d dth roots
of unity in A/pA; equivalently, xd ≡ 1 (mod p) has exactly d solutions.

◦ Exercise: For positive integers a, b, show gcd(xa − 1, xb − 1) = xgcd(a,b) − 1 in F [x].

◦ Proof: As shown above, x|p|−1 − 1 splits completely mod p . By the exercise, xd − 1 divides x|p|−1 − 1
when d divides |p| − 1, and so xd − 1 also splits completely, which is to say, it has d roots mod p.

◦ Exercise: Prove the converse: if there are d dth roots of unity in A/pA, then d divides |p| − 1.

0.3 (Sep 10) Prime-Counting and The Zeta Function

• Now that we have established most of the classical results for modular arithmetic, we move to our next item:
counting primes.

◦ We will do things in a more ad hoc manner �rst, and then give a more general approach using zeta
functions that will allow us to go further.

• Our �rst step is to write down a generalization of the fact we used to establish Wilson's theorem above:

• Theorem (Factoring, II): For a positive integer m, the polynomial tq
m − t factors in Fq[x] as the product of

all monic irreducible polynomials of degree dividing m.

◦ Proof 1 (�Elementary�): We will show that tq
m − t has no repeated factors, that each of the claimed

polynomials does divide it, and that no other polynomials divide it.

◦ Exercise: A polynomial in F [t] is separable (i.e., has no repeated factors) if and only if it is relatively
prime to its derivative.

◦ Since (tq
m−t)′ = qmtq

m−1−1 = −1 in characteristic p, the polynomial is relatively prime to its derivative,
so it has no repeated factors by the exercise.

◦ Exercise: For positive integers q, a, b, show that gcd(qa − 1, qb − 1) = qgcd(a,b) − 1 in Z. (This is almost
identical to the polynomial version mentioned earlier.)

◦ Next, suppose p is irreducible of degree dividing m. If p = t the result is trivial, and otherwise, in A/pA
we have tq

m−1 ≡ 1 mod p because qm − 1 is a multiple of |p| − 1 = qdeg p − 1 by the exercise above along
with Euler's theorem. This means tq

m−1 − 1 is divisible by p as required.

◦ Finally, suppose p is irreducible of degree not dividingm. Then in A/pA we have tq
m−1 ≡ tqgcd(m,deg p) 6= 1

mod p by the exercise above along with Euler's theorem and the fact that qgcd(m,deg p) < qdeg p. This
means tq

m−1 − 1 is not divisible by p as required.
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◦ We have shown that tq
m − t has no repeated factors, that each of the claimed polynomials does divide it,

and that no other polynomials divide it. Since the polynomial is monic, its factorization must therefore
be as claimed.

◦ Proof 2 (�Galois�): By basic Galois theory, Gal(Fqm/Fq) is a cyclic group of order m generated by the
Frobenius map x 7→ xq1.

◦ By the Galois correspondence, the intermediate �elds of Fqm/Fq are Fqd for d|m. Therefore, p is irre-
ducible of degree dividing d ⇐⇒ Fq[t]/(p) is (isomorphic to) an intermediate �eld of Fqm/Fq ⇐⇒ p
divides xq

m − x.
◦ Since xq

m − x is separable, its factorization must therefore be as claimed.

• Corollary: If ad is the number of irreducible monic polynomials in A = Fq[t] of degree d, then
∑
d|n dad = qn.

◦ Proof: Count degrees in the theorem above.

• We can use this recurrence to write down an exact formula for ad using Mobius inversion.

• De�nition: The Mobius µ-function is de�ned as µ(n) =

{
0 if nis not squarefree

(−1)r if nis the product of rdistinct primes
. Note

µ(1) = 1.

◦ Exercise: Show that
∑
d|n µ(d) =

{
1 for n = 1

0 for n > 1
.

• Proposition (Mobius Inversion): If f, n are integer functions such that g(n) =
∑
d|n f(d), then f(n) =∑

d|n µ(d)g(n/d).

◦ Proof: Induct on n. The base case n = 1 is trivial.

◦ For the inductive step, we have
∑
d|n µ(d)g(n/d) =

∑
d|n µ(d) ·

∑
d′|n/d f(d′) =

∑
dd′|n µ(d)f(d′) =∑

d′|n f(d′)
∑
d|(n/d′) µ(d) = f(n) because the last inner sum is zero except for when n/d′ = 1.

• By using Mobius inversion on the sequence {dad}, we can write down formulas for the number of monic
irreducible polynomials of degree d.

• Proposition (Prime Counting): If an is the number of monic irreducible polynomials in Fq[t] of degree n, then

an =
1

n

∑
d|n µ(d)qn/d.

◦ The �rst few values are a1 = q, a2 = 1
2 (q2 − q), a3 = 1

3 (q3 − q), a4 = 1
4 (q4 − q2), a5 = 1

5 (q5 − q),
a6 = 1

6 (q6 − q3 − q2 + q), ....

◦ Proof: Immediate from applying Mobius inversion to the sequence {nan}.

• We can also do some basic asymptotic analysis using the formula above.

◦ The main term is
1

n
qn, and then the next biggest possible term is

1

n
qn/2, so we see that an =

1

n
qn +

O(qn/2/n).

◦ If we write X = qn (which is the total number of monic polynomials of degree n), we see that the number

of �primes� in A of �size� ∼ X is an =
X

logqX
+O(

√
X

logqX
).

◦ This is quite in the spirit of the prime number theorem over Z, which says that the number of primes ≤ X
is Π(X) =

X

logX
+ O(

X

(logX)2
). If we replace X/ logX with the logarithmic integral li(x) =

´ x
2

dt

log t
,

then as shown by von Koch, the Riemann hypothesis is equivalent to the error estimate Π(X) = li(x) +
O(
√
X log x).

1This follows by noting that Fqm is the splitting �eld of xqm − x over Fq and since this polynomial is separable as noted in proof
1, the order of the Galois group is m. The Frobenius map is an injective �eld map from Fqm to itself, hence an automorphism by

�niteness, and its order is clearly at least m (since xqd − x has at most qd solutions) and at most m (by Lagrange).
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◦ Qualitatively, then, we have already obtained a prime-counting result that is closely analogous to the
best possible one predicted by the Riemann hypothesis.

• Up until this point, our approach has been purely algebraic. However, by introducing analytic methods, we
can give even easier solutions to these (and other) counting problems. The necessary object of study is the
zeta function, which we now de�ne:

• De�nition: For A = Fq[t], the zeta function of A is ζA(s) =
∑
f∈A monic

1

|f |s
for s ∈ C.

◦ Compare to the de�nition of the Riemann zeta function ζ(s) =
∑
n>0

1

ns
for s ∈ C.

◦ Unlike the Riemann zeta function, however, we can actually just evaluate the zeta function for A: since

there are qd monic polynomials of degree d, we see that
∑

deg(f)≤d monic

1

|f |s
= 1+

q

qs
+
q2

q2s
+ · · ·+ qd

qds
=

1− q(d+1)(1−s)

1− q1−s , and so taking d → ∞ we see that ζA(s) =
1

1− q1−s whenever Re(s) > 1 (to ensure

convergence).

◦ We have an obvious meromorphic continuation for ζA(s) to the complex plane (i.e., via the formula
above), and it is clear that ζ is analytic everywhere except for a simple pole at s = 1.

◦ Exercise: Show that the residue of ζA(s) at s = 1 (which is to say, the value of lims→1(s − 1)ζA(s)) is
1/ log q.

◦ We also have a functional equation for ζA(s): if we set ξA(s) = q−s(1 − q−s)−1ζA(s), then ξA(s) =
ξA(1− s).
◦ Exercise: Do the algebra to establish the functional equation.

• We can also represent ζA(s) as an Euler product, just as with the Riemann zeta function.

◦ Explicitly, by the uniqueness of prime factorization, we can formally write ζA(s) =
∑
f∈A monic

1

|f |s
=∏

pmonic irred(1+
1

|p|s
+

1

|p|2s
+· · · ) =

∏
pmonic irred(1−1/ |p|s)−1, and both sides are absolutely convergent

for Re(s) > 1.

◦ To prove this equality rigorously, we need to do some estimations on tails of the respective series, but
since everything converges absolutely, this is not so di�cult; we leave the precise details as an exercise.

• We can use the Euler product for the zeta function to obtain the same prime counts that we got earlier.

• Proposition (Prime Counting, Again): If ad is the number of irreducible monic polynomials in A = Fq[t] of

degree d, then
∑
d|n dad = qn, and so by Mobius inversion as before, we see an =

1

n

∑
d|n µ(d)qn/d.

◦ Proof: Group the terms in the Euler product together by degree: if deg p = d then |p|s = qds.

◦ Thus, since there are ad monic irreducibles of degree d by de�nition, we see that ζA(s) =
∏
pmonic irred(1−

1/ |p|s)−1 =
∏∞
d=1(1− q−ds)−ad .

◦ Noting from earlier that ζA(s) =
1

1− q1−s , if we substitute u = q−s, we obtain the equality
1

1− qu
=∏∞

d=1(1− ud)−ad .

◦ Taking the log-derivative of both sides yields
q

1− qu
=
∑∞
d=1

dadu
d−1

1− ud
. These expressions are equal as

power series in u, and thus corresponding coe�cients must also be equal.

◦ The LHS is
q

1− qu
= q

∑∞
k=0(qu)k while the RHS is

∑∞
d=1 dadu

d−1
∑∞
l=0 u

dl =
∑∞
d=1

∑∞
l=0 dadu

d(l+1)−1.

So the coe�cient of un−1 on the LHS is q · qn−1 = qn, while the coe�cient of un−1 on the RHS is∑
d(l+1)=n dad =

∑
d|n dad.

◦ Thus, qn =
∑
d|n dad as claimed.
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• Of course, we have already proven this result by counting irreducible polynomials algebraically. However, this
approach using the zeta function also extends to solve other counting problems quite conveniently.

• Proposition (Squarefree Counting): The number of monic squarefree polynomials of degree n over Fq[t] is
equal to bn := qn− qn−1. Equivalently, a randomly-chosen degree-n polynomial is squarefree with probability
1− 1/q = 1/ζA(2).

◦ Compare this result to the corresponding fact about integers (which is a little harder to pose because
we have to phrase it over a range): if αn is the probability that a randomly-chosen integer in [1, n] is
squarefree, then limn→∞ αn = 6/π2 = 1/ζ(2).

◦ Proof: Consider the product π =
∏
p monic irred(1 + |p|−s).

◦ By multiplying out the terms, we see that for Re(s) > 1, we have π =
∑
f monic

δ(f)

|f |s
where δ(f) ={

1 if f is squarefree

0 if f is not squarefree
, since the denominators in the Euler product only include prime factors of

exponents 0 and 1.

◦ Now, since 1 + |p|−s =
1− |p|−2s

1− |p|−s
, taking the product over monic irreducibles and using the fact

that the resulting numerator and denominator products converge absolutely allows us to write π =∏
p monic irred

1− |p|−2s

1− |p|−s
=

∏
p monic irred 1− |p|−2s∏
p monic irred 1− |p|−s

=
ζA(2s)

ζA(s)
.

◦ Setting u = q−s yields
1− qu2

1− qu
=
ζA(2s)

ζA(s)
= π =

∑
f monic

δ(f)

|f |s
=
∑∞
n=0 bnu

n.

◦ But as a power series in u, we have
1− qu2

1− qu
= (1−qu2)(1+qu+q2u2 + · · · ), and so comparing coe�cients

yields bn = qn − qn−1 as claimed.

• In a similar way, we can use the zeta function to write down formulas for the number of monic kth-powerfree
polynomials of a given degree over Fq[t].

◦ Speci�cally, these values are packaged as the coe�cients in the Euler product
∏
p monic irred(1 + |p|−s +

|p|−2s
+ · · · + |p|−(k−1)s

) =
ζA(ks)

ζA(s)
, and then by doing a calculation like the one above, one can write

down an explicit formula.

◦ Exercise: Finish this calculation and give the actual formula for the number of cubefree polynomials of
degree n.

◦ It is also worthwhile interpreting this Euler product calculation heuristically in terms of probabilities.

◦ Explicitly, we would expect (under suitable probability assumptions) that the probability of a given
polynomial not being divisible by f is (1− 1/ |f |).
◦ So, assuming independence (which can be made rigorous by appealing to the Chinese remainder theorem),
the probability that a given polynomial is not divisible by any prime power pk for all monic irreducible
p is

∏
p monic irred(1− 1/ |p|k) = 1/ζA(k): this is why the 1/zeta factor shows up in the answer.

0.4 (Sep 15) Dirichlet Series and Multiplicative Functions

• Another classical object of study in elementary number theory over Z are arithmetic functions related to
divisors, such as the Euler ϕ-function, the divisor-counting function, and the sum-of-divisors function.

◦ All of these are examples of multiplicative functions, which have the property that f(ab) = f(a)f(b)
whenever a, b are relatively prime. (Note the infelicitous terminology: if f(ab) = f(a)f(b) for all a, b, f
is instead called completely multiplicative.)

◦ In particular, if n has prime factorization n =
∏
i p
ai
i and f is multiplicative, then f(n) =

∏
i f(paii ).
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◦ We will brie�y review some results about multiplicative functions in the classical setting, and then redo
them in the function-�eld setting.

• It is a standard combinatorial principle that if we want to understand a function with domain N, we should
look at its generating function.

◦ A natural �rst guess would be to use the standard power series
∑∞
n=0 f(n)xn.

◦ However, this type of generating function is useful primarily for functions that behave additively. For
number-theoretic functions, we instead want to use a Dirichlet series.

• De�nition: If h : N → C is a complex-valued function de�ned on positive integers, then its associated

Dirichlet series is Dh(s) =
∑∞
n=1

h(n)

ns
.

◦ Example: If h(n) = 1 for all n, then Dh(s) = ζ(s), the Riemann zeta function.

◦ In order for this series to converge, we need h not to grow too fast. One may check that if h(n) = O(nα)
then Dh(s) is absolutely convergent for Re(s) > 1 + α. (We will mostly ignore issues of convergence,
since our functions will grow polynomially at worst, and so we may manipulate the series as if they were
formal power series.)

◦ If h is multiplicative, then it is a straightforward calculation to see that Dh(s) has an Euler product

expansion: Dh(s) =
∏
p prime(1 +

h(p)

p
+
h(p2)

p2
+ · · · ), on the appropriate domain of convergence.

• The key property of Dirichlet series is that they reproduce desired behaviors under multiplication:

• Proposition (Dirichlet Multiplication): If f, g : N→ C are functions, then Df (s) ·Dg(s) = Df?g(s) where f ∗g
is the Dirichlet convolution de�ned via (f ∗ g)(n) =

∑
d|n f(d)g(n/d).

◦ Proof: Df (s)Dg(s) =
∑∞
a=1

∑∞
b=1

f(a)g(b)

(ab)s
=
∑∞
n=1

1

ns
∑
ab=n f(a)g(b) =

∑∞
n=1

(f ∗ g)(n)

ns
= Df∗g(s).

• The Dirichlet convolution, owing to the fact that it is merely multiplication of the underlying Dirichlet series,
has various nice properties.

◦ Exercise: Show that Dirichlet convolution is commutative and associative, and has an identity element

given by I(n) =

{
1 for n = 1

0 for n > 1
.

◦ Exercise: Show that f has an inverse under Dirichlet convolution if and only if f(1) 6= 0.

◦ Exercise: If f(1) 6= 0 and f is multiplicative, then its Dirichlet inverse f−1 is also multiplicative.

◦ Exercise: Show that if two of f , g, and f ∗ g are multiplicative, then the third is also.

• By exploiting Dirichlet convolution, we can �nd the Dirichlet series for many basic multiplicative functions in
terms of the Riemann zeta function.

◦ Recall I(n) =

{
1 for n = 1

0 for n > 1
and the Mobius function µ(n) =

{
0 if nis not squarefree

(−1)r if nis the product of rdistinct primes
.

◦ Also de�ne N(n) = n and 1(n) = 1 (for all n).

◦ Exercise: Show that DI(s) = 1, D1(s) = ζ(s), and DN (s) = ζ(s− 1).

◦ First, we note that µ ∗ 1 = I, since (µ ∗ 1)(n) =
∑
d|n µ(d)1(n/d) =

∑
d|n µ(d) =

{
1 for n = 1

0 for n > 1

as noted in an exercise previously. Therefore, by multiplicativity of the Dirichlet series, we see that

Dµ(s)D1(s) = DI(s), so that Dµ(s) =
1

ζ(s)
.

◦ Exercise: Use µ∗1 = I to establish Mobius inversion: if g(n) =
∑
d|n f(n) then f(n) =

∑
d|n µ(d)g(n/d).

◦ Exercise: For the Euler ϕ-function, show that
∑
d|n ϕ(d) = n.
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◦ The previous exercise says that ϕ ∗ 1 = N , and so by composing with µ and using associativity, we see

that ϕ = µ ∗N . Then we have Dϕ(s) = Dµ(s)DN (s) =
ζ(s− 1)

ζ(s)
.

◦ In principle, we could have established this fornula for Dϕ(s) by manipulating the zeta function directly,
but this method is both more di�cult and requires knowing the actual (non-obvious) formula for the
answer ahead of time.

◦ We can also �nd the Dirichlet series for the divisor-counting function d(n) = #{d ∈ N : d|n} quite easily
by noting that d(n) =

∑
d|n 1(d)1(d/n): this means d = 1 ∗ 1, so Dd(s) = D1(s)2 = ζ(s)2.

◦ Exercise: If σ is the sum-of-divisors function σ(n) =
∑
d|n d, show that Dσ(s) = ζ(s)ζ(s− 1).

◦ Exercise: If σk is the sum-of-kth-powers-of-divisors function σk(n) =
∑
d|n d

k, �nd and prove a formula

for Dσk
(s) in terms of the Riemann zeta function.

• One of the main applications of computing the Dirichlet series for these various arithmetic functions is that
we can extract information about average growth rates from them.

◦ In the classical case, obtaining average-growth results is moderately delicate, so we will instead just focus
on the function-�eld case.

• Here are the function-�eld analogues of these classical multiplicative functions, which are now complex-valued
functions on monic polynomials rather than positive integers:

◦ The identity: I(f) =

{
1 for f = 1

0 for f 6= 1
.

◦ The norm: N(f) = |f |.

◦ The Mobius µ-function: µ(f) =

{
0 if f is not squarefree

(−1)r if f is the product of rdistinct primes
.

◦ The Euler Φ-function: Φ(f) = #(A/fA)∗ = |f |
∏
p|f prime(1− 1/ |p|).

◦ The divisor-counting function: d(f) = #{monic d|f}.
◦ The sum-of-divisors function: σ(f) =

∑
d|f monic |d|, or more generally the sum-of-kth-powers-of-divisors

function σk(f) =
∑
d|f monic |d|

k
. (Note here that we take the norm of the divisors, since we want a

C-valued function.)

◦ It is easy to check that all of these functions are multiplicative, and to write down formulas for all of
them in terms of the prime factorization of f = pa11 · · · p

ak
k .

◦ Exercise: Verify that d(f) = (a1 + 1) · · · (ak + 1) and σ(f) =
|p1|a1+1 − 1

|p1| − 1
· · · |pk|

ak+1 − 1

|pk| − 1
.

• We have essentially the same de�nition for the Dirichlet series in the function-�eld case:

• De�nition: If h : {monics} → C is a complex-valued function de�ned on monic polynomials in Fq[t], then its

associated Dirichlet series is Dh(s) =
∑
f monic

h(f)

|f |s
.

◦ As before, we will mostly ignore issues of convergence, but just as in the classical case, one may check
that if h(f) = O(|f |α) then Dh(s) converges absolutely for Re(s) > 1 + α.

◦ We also have the same Dirichlet convolution operator: if g, h : {monics} → C are functions, then
Dg(s) ·Dh(s) = Dg?h(s) where (g ∗ h)(f) =

∑
d|f monic g(d)h(f/d).

◦ Dirichlet convolution is commutative, associative, and has the identity element I(f) =

{
1 for f = 1

0 for f 6= 1
.

◦ All of the same formulas for our arithmetic functions in terms of the zeta function follow through just
as before. Here, however, we can actually write out the expressions explicitly, since we have a formula

ζA(s) =
1

1− q1−s .
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• Proposition (Some Dirichlet Series): For u = q−s, we have the following formulas: DI(s) = 1, DN (s) =

ζA(s − 1) =
1

1− u
, D1(s) = ζA(s) =

1

1− qu
, Dµ(s) =

1

ζA(s)
= 1 − qu, DΦ(s) =

ζA(s− 1)

ζA(s)
=

1− qu
1− q2u

,

Dd(s) = ζA(s)2 =
1

(1− qu)2
, and Dσ(s) = ζA(s)ζA(s− 1) =

1

(1− qu)(1− q2u)
.

◦ Proof: Exercise.

• Using these formulas we can recover average-value results quite easily.

• De�nition: If h : {monics} → C is a function, the average value of h on degree-n polynomials is Avgn(h) =
1

qn
∑

deg(f)=n monic h(f). If the limit limn→∞Avgn(h) exists, we call it the �average value� of h.

◦ We can also easily average h on polynomials of degree≤ n: the desired sum is instead
1

1 + q + · · ·+ qn
∑

deg(f)≤n h(f).

◦ Exercise: Show that if limn→∞Avgn(h) = α, then limn→∞
1

1 + q + · · ·+ qn
∑

deg(f)≤n h(f) = α as well,

so it is irrelevant whether we average over degree exactly n or ≤ n.
◦ The nice result here is that we can read o� the value of Avgn(h) from the coe�cients of the Dirichlet series

for h: explicitly, we have Dh(s) =
∑∞
n=1

∑
deg(f)=n h(f)

qns
=
∑∞
n=1

qnAvgn(h)

qns
=
∑∞
n=1 q

nAvgn(h)un for

u = q−s.

◦ So we can calculate these averages by simply expanding out the Dirichlet series calculated above as power
series in u = q−s and then dividing by qn.

◦ For example, Dµ(s) = 1 − qu, so the average value of µ is 1 on degree-0 polynomials, −1 on degree-1
polynomials, and 0 on higher-degree polynomials.

◦ Similarly, Dd(s) =
1

(1− qu)2
= (1 + qu+ q2u2 + · · · )2 = 1 + 2qu2 + 3q2u3 + · · · , so the average value of

d on degree-n polynomials is n+ 1.

◦ Likewise, DΦ(s) =
1− qu
1− q2u

= (1− qu)(1 + q2u+ q4u2 + q6u3 + · · · ) = 1 + (q2 − q)u+ (q4 − q3)u2 + · · · ,

so the average value of Φ on degree-n polynomials is (q2n − q2n−1)/qn = qn − qn−1.

◦ Exercise: Show that the average value of σ on degree-n polynomials is (qn+1 − 1)/(q − 1).

0.5 (Sep 17) Primes in Arithmetic Progressions, Part 1

• Our next task is to prove the function-�eld analogue of Dirichlet's theorem on primes in arithmetic progres-
sions.

◦ Over Q, Dirichlet's theorem says that for any positive integer m and any a relatively prime to m, there
exist in�nitely many primes in the arithmetic progression {a, a+m, a+2m, a+3m, . . . }: in other words,
congruent to a modulo m.

◦ Exercise (easy): Show that if a is not relatively prime to m, then there are only �nitely many primes
congruent to a modulo m.

• There are ϕ(m) residue classes modulo m that contain in�nitely many primes, so one can ask more precisely
about how the primes are distributed among these residue classes.

◦ In fact, the primes are asymptotically uniformly distributed among these residue classes: the proportion
of primes congruent to a modulo m approaches 1/ϕ(m) upon taking an appropriate limit.

◦ Explicitly, de�ne the natural density of a set S of primes to be lim
n→∞

S ∩ {1, 2, . . . , n}
{primes} ∩ {1, 2, . . . , n}

, provided

the limit exists.

◦ Then, as �rst proven by de la Vallée Poussin, the natural density of the primes congruent to a modulo
m is 1/ϕ(m) when a is relatively prime to m.
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• However, the natural density is somewhat di�cult to handle with analytic methods. From the standpoint of
zeta functions, a more natural choice is the Dirichlet density:

• De�nition: If S is a set of primes, the Dirichlet density of S is the value δS = lim
s→1+

∑
primes p∈S p

−s∑
primes p p

−s , assuming

the limit exists.

◦ Note that the sum in the numerator is always �nite for Re(s) > 1 by comparison to the sum for the zeta
function.

◦ Exercise: If S is �nite, show that its Dirichlet density is 0.

◦ One may prove that if a set has natural density δ, then its Dirichlet density is also δ. The converse is
not true, however: a simple counterexample due to Serre is the set S of primes whose leading digit is 1
in base 10.

◦ Exercise (hard): Show that the set of primes whose leading digit is 1 in base 10 has unde�ned natural
density, but has Dirichlet density log10 2. (The answer works out the same if you use integers with leading
digit 1.)

• The corresponding de�nition for function �elds is as follows:

• De�nition: If T is a set of monic irreducibles in Fq[t], its Dirichlet density is δT = lim
s→1+

∑
p∈T |p|

−s∑
p |p|

−s , assuming

the limit exists.

◦ We note that both the numerator and denominator sums converge for Re(s) > 1.

• Our main result is the following:

• Theorem (Analogue of Dirichlet's Theorem): Let m ∈ Fq[t] have positive degree and let a be relatively prime
to m. Then the Dirichlet density of the set of primes congruent to a (mod m) exists and is 1/Φ(m). In
particular, there are in�nitely many such primes.

◦ The fundamentally hard part of proving this theorem is to establish the nonvanishing of the L-functions
for nontrivial characters at s = 1.

◦ In order to explain what this means (and then do it), we will begin with a brisk discussion of Dirichlet
characters and their properties.

• De�nition: Let G be a �nite abelian group. A group character χ of G is a homomorphism χ : G→ C×.

◦ Note that χ(1) = 1 for every character, and also if g ∈ G has order d, then 1 = χ(1) = χ(gd) = χ(g)d, so
χ(g) is a dth root of unity. Thus in general, χ is a map from G to the group of complex |G|th roots of
unity.

◦ Example: For any G, the trivial character χtriv has χtriv(g) = 1 for all g ∈ G.

◦ Example: If G = (Z/pZ)×, the quadratic residue symbol χ(a) =

(
a

p

)
is a group character.

◦ Example: If G = (A/pA)× for A = Fq[t] and d divides q−1, the dth-power residue symbol χ(a) =

(
a

p

)
d

gives a group character, provided we identify the dth roots of unity in Fq with the dth roots of unity in
C (simply choose any �xed isomorphism).

• We will be interested in the case where G is the group of units (Z/mZ)× or (A/fA)×, in which case we call
χ a Dirichlet character.

◦ In some situations it is slightly more convenient to work with extended Dirichlet characters, which we
extend to have domain Z/mZ or A/fA by setting χ(a) = 0 whenever a is not relatively prime to the
modulus.
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◦ Exercise: Extended Dirichlet characters modulo m are the same as functions χ : Z→ C (or A→ C) such
that (i) χ(a+ bm) = χ(a) for all a, b, (ii) χ(ab) = χ(a)χ(b) for all a, b, and (iii) χ(a) 6= 0 i� a is relatively
prime to m.

• We can multiply two group characters on G pointwise, and this operation makes them into a group:

• Proposition (Dual Group ofG): The set of group characters onG forms a group under pointwise multiplication.
The identity is the trivial character and the inverse of χ is its complex conjugate χ. This group is called the
dual group of G and is denoted Ĝ.

◦ Proof: These properties can be checked directly (exercise), or one may simply note that Ĝ = Hom(G,C×).

• The dual group Ĝ is also an abelian group, so it is natural to wonder how its structure relates to G. In fact,
it is isomorphic to G:

• Proposition (Dual Group, II): If G is a �nite abelian group, its dual group Ĝ is isomorphic to G.

◦ Proof: First consider the special case where G is a cyclic group of order n generated by g. Then
χ(gd) = χ(g)d for all d, so any group character χ is uniquely determined by the value of χ(g), which
must be some nth root of unity.

◦ Conversely, any such selection e2πia/n for χ(g) yields a valid group character χa, namely with χa(gd) =
e2πiad/n. Since χaχb = χa+b and χ

n
1 is the trivial character, we see that the dual group Ĝ is cyclic of

order n (the map a 7→ χa is an isomorphism of Ĝ with Z/nZ).
◦ Now suppose G = H ×K is a direct product. If χ : H ×K → C× is a homomorphism, let χH : H → C×
and χK : K → C× be the projections χH(h) = χ(h, 1) and χK(k) = χ(1, k). Then χH is a group
character of H, χK is a group character of K, and χ = χHχK .

◦ Conversely, any pair (χH , χK) ∈ (Ĥ, K̂) yields a character χ = χHχK ∈ Ĝ, so we see Ĝ ∼= Ĥ × K̂.

◦ Since every �nite abelian group is a direct product of cyclic groups, and the result holds for cyclic groups
and direct products, we are done.

• Exercise: If H is a subgroup of the �nite abelian group G, de�ne H⊥ = {χ ∈ Ĝ : χ(H) = 1}. Show that

H⊥ ∼= Ĝ/H and that Ĝ/H⊥ ∼= Ĥ. Use these results along with Ĝ ∼= G to conclude that the subgroup lattice
of G is the same when turned upside down.

• The isomorphism between Ĝ and G above is non-canonical (i.e., it is not �coordinate-free� in the sense that
we must pick speci�c generators for G and Ĝ to obtain the isomorphism).

◦ However, there is a canonical isomorphism between
ˆ̂
G (the double dual) and G given by the �evaluation

map� ϕ, which maps an element g ∈ G to the �evaluation-at-g� map eg on characters χ ∈ Ĝ, de�ned by
eg(χ) = χ(g).

◦ Exercise: Verify that the evaluation map ϕ : G→ ˆ̂
G with ϕ(g) = {χ 7→ χ(g)} is an isomorphism from

ˆ̂
G

to G.

◦ This result is a special case of Pontryagin duality, and has an analogous statement for duals of �nite-
dimensional vector spaces.

◦ In fact, it is really the algebraic analogue of Fourier inversion (the reason being that Fourier analysis on
�nite abelian groups involves sums over group characters in lieu of integrals). For a brief taste of the
analogy, the main idea is to note that the map einx : R→ C× is a group homomorphism, and thus is an
�R�-character.

• We can also put the structure of an inner product on group characters. To establish this we �rst show some
simple orthogonality relations:

• Proposition (Orthogonality Relations): If G is a �nite abelian group and χ is a group character, the following
hold:

1. The sum
∑
g∈G χ(g) =

{
|G| if χis trivial

0 otherwise
.
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◦ Proof: If χ is trivial the sum is clearly |G|. If χ is not trivial, say with χ(h) 6= 1, then
∑
g∈G χ(g) =∑

g∈G χ(gh) = χ(h)
∑
g∈G χ(g) by reindexing (since G = Gh), and so

∑
g∈G χ(g) = 0.

2. The sum
∑
χ∈Ĝ χ(g) =

{
|G| if g = 1

0 otherwise
.

◦ Proof: Apply Pontryagin duality to (1).

3. (Orthogonality 1) For any characters χ1 and χ2,
∑
g∈G χ1(g)χ2(g) =

{
|G| if χ1 = χ2

0 otherwise
.

◦ Proof: Apply (1) to χ = χ1χ2.

4. (Orthogonality 2) For any elements g1 and g2,
∑
χ∈Ĝ χ(g1)χ(g2) =

{
|G| if g1 = g2

0 otherwise
.

◦ Proof: Apply (2) to g = g1g
−1
2 , or apply Pontryagin duality to (3).

5. The pairing 〈f1, f2〉G =
1

|G|
∑
g∈G f1(g)f2(g) is a complex inner product on functions f : G → C, and

the elements of the dual group Ĝ are an orthonormal basis with respect to this inner product.

◦ Proof: The inner product axioms are straightforward, and the fact that Ĝ yields an orthonormal
basis follows from (3).

6. The pairing
〈
f̂1, f̂2

〉
Ĝ

=
1

|G|
∑
χ∈Ĝ f̂1(χ)f̂2(χ) is a complex inner product on functions f̂ : Ĝ→ C, and

the elements of G are an orthonormal basis with respect to this inner product.

◦ Proof: The inner product axioms are straightforward, and the fact that G ∼= ˆ̂
G yields an orthonormal

basis follows from (4), or apply Pontryagin duality to (5).

7. (Fourier Inversion) For any function f : G → C, with the Fourier transform f̂ : Ĝ → C de�ned by

f̂(χ) = 〈f, χ〉G =
1

|G|
∑
g∈G f(g)χ(g), we have f(g) =

∑
χ∈Ĝ f̂(χ)χ(g) for all g ∈ G.

◦ Proof: This follows immediately from (5), since the elements of Ĝ are an orthonormal basis.

• Exercise: Prove Plancherel's theorem 〈f1, f2〉G =
1

|G|

〈
f̂1, f̂2

〉
Ĝ
and deduce Parseval's theorem

∑
g∈G |f(g)|2 =

1

|G|
∑
χ∈Ĝ

∣∣∣f̂(χ)
∣∣∣2.

• With the fundamentals taken care of, we can now focus on Dirichlet characters.

◦ Studying primes congruent to a modulo m naturally leads to a question about Dirichlet characters via
Fourier inversion, since we may decompose the characteristic function of [primes congruent to a modulo
m] as a sum over Dirichlet characters for the group G = (A/mA)∗.

◦ Explicitly, if δa(p) is 1 when p ≡ a (mod m) and 0 otherwise, then δ̂a(χ) =
1

Φ(m)

∑
g∈G δa(g)χ(g) =

1

Φ(m)
χ(a), since the only nonzero value of δa(g) occurs when g ≡ a (mod m).

◦ Then by Fourier inversion we have δa(p) =
∑
χ∈Ĝ δ̂a(χ)χ(p) =

∑
χ∈Ĝ

1

Φ(m)
χ(a)χ(p). So the numerator

for the Dirichlet density is
∑
p≡a (mod m) |p|

−s
=
∑
p δa(p) |p|−s =

1

Φ(m)

∑
χ∈Ĝ

[
χ(a)

∑
p χ(p) |p|−s

]
.

◦ This is a bit complicated, but the point is that we have a sum over the Dirichlet characters of constants

(namely χ(a)) times
∑
p

χ(p)

|p|s
, which is quite close to the Dirichlet series for the character χ (the only

di�erence is that we are only summing over primes, rather than all monic polynomials).

◦ As we will see, we will be able to extract this sum over primes from the full Dirichlet series, which we
now examine more closely.
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◦ The main reason we go to this e�ort to use Fourier inversion is that the Dirichlet series for Dirichlet
characters behave very nicely (far more nicely than the original series over primes congruent to a modulo
m) because Dirichlet characters are multiplicative.

• De�nition: If χ is a Dirichlet character modulo m, we de�ne its associated Dirichlet L-series L(s, χ) =∑
f monic

χ(f)

|f |s
.

◦ Note that this is just the Dirichlet series for χ(f), as we de�ned it previously. It is traditional to denote
these series with the letter L (which was the letter Dirichlet used for such functions).

◦ As usual, the series converges absolutely for Re(s) > 1, since |χ(f)| ≤ 1 for all f .

◦ Furthermore, because Dirichlet characters are completely multiplicative, the L-series has a very simple

Euler product: explicitly, L(s, χ) =
∏
p irred

[
1− χ(p)

|p|s
]−1

, for Re(s) > 1.

◦ The Euler product is the key to calculating the Dirichlet density we wanted earlier: taking the logarithm

of the Euler product gives logL(s, χ) = −
∑
p irred log(1 − χ(p)/|p|s) ≈

∑
p irred

χ(p)

|p|s
using the Taylor

approximation − log(1− x) ≈ x which is accurate for small |x|.
◦ So our main task is to determine what happens to logL(s, χ) as s → 1, since this is the required input
for calculating the Dirichlet density of the primes congruent to a modulo m.

0.6 (Sep 22) Primes in Arithmetic Progressions, Part 2

• Our main task is to determine what happens to logL(s, χ) as s → 1, since this is the required input for
calculating the Dirichlet density of the primes congruent to a modulo m.

• Example: For the trivial character χtriv, we have L(s, χtriv) =
∏
p|m irred(1 − |p|−s) · ζA(s), since the terms

with p|m are missing from the Euler product for L(s, χ).

◦ In particular, we see that L(s, χtriv) has an analytic continuation (since ζA(s) does) and a single simple
pole at s = 1.

• For other characters, the L-series is essentially �nite.

• Proposition (L-Series for Nontrivial Characters): Let m be a monic polynomial of positive degree and χ be
a nontrivial Dirichlet character modulo m. Then L(s, χ) is a polynomial in q−s of degree at most degm− 1,
and in particular has an analytic continuation.

◦ Proof: Let A(n, χ) =
∑

deg f=n χ(f) and note, as we have previously done in working out average-value

results, that L(s, χ) =
∑∞
n=0A(n, χ)q−ns. The claimed result is then equivalent to saying A(n, χ) = 0

for n ≥ degm.

◦ For this, suppose deg f = n ≥ m and write f = hm+ r with deg r < degm, where deg h = deg f −degm
and sgn(h) = 1/sgn(m). Conversely, given such an h and r, we get a unique f = hm + r. Note that
χ(f) = χ(r), and also that there are qn−degm possible h.

◦ Then A(n, χ) =
∑

deg f=n χ(f) =
∑

deg f=n χ(r) = qn−degm
∑

deg r<degm χ(r) = 0 where the last sum is
zero by the orthogonality relation (1).

◦ The observation about the analytic continuation is immediate (simply take the analytic continuation as
the given polynomial in q−s).

• Exercise: Choose a modulus m ∈ Fq[t] and a nontrivial Dirichlet character χ, and verify explicitly that L(s, χ)
is a polynomial in q−s.

• As a consequence, we see that L(s, χ) has no pole at s = 1 when χ 6= χtriv. Our next major goal is to prove
that L(1, χ) 6= 0 for χ 6= χtriv.
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• Lemma: Let χ be any Dirichlet character modulo m. Then for each monic irreducible p not dividing m, there
exist fp, gp > 0 with fpgp = Φ(m) such that

∏
χ∈Ĝ L(s, χ) =

∏
p-m(1− |p|−fps)−gp .

◦ Proof: For a �xed monic irreducible p - m, as we have previously noted the evaluation-at-p map χ 7→ χ(p)
is a homomorphism from Ĝ to C×.
◦ Let the image be a cyclic group of order fp and the kernel have size gp: then fpgp = #Ĝ = #G = Φ(m)
by the �rst isomorphism theorem.

◦ For this p, by grouping the �bers of the evaluation-at-p map together, for ζ = e2πi/fp we have
∏
χ∈Ĝ(1−

χ(p)/ |p|s)−1 =
∏fp−1
j=0 (1 − ζj/ |p|s)−gp , and this last product equals (1 − |p|−fps)−gp since it is the

evaluation of the polynomial (1− t)(1− ζt) · · · (1− ζfp−1t) = 1− tfp at t = |p|−s.
◦ Thus, taking the product over all monic irreducibles p - m yields the claimed

∏
χ∈Ĝ L(s, χ) =

∏
χ∈Ĝ

∏
p-m(1−

χ(p)/ |p|s)−1 =
∏
p-m(1− |p|−fps)−gp after reversing the order of the products.

• We next show that L(1, χ) 6= 0 for nonreal Dirichlet characters χ:

• Lemma (Nonvanishing, I): Let χ be any Dirichlet character modulo m such that χ 6= χ. Then L(1, χ) 6= 0.

◦ Proof: If we expand the product
∏
χ∈Ĝ L(s, χ) =

∏
p-m(1− |p|−fps)−gp from the Lemma above, it yields

a Dirichlet series with nonnegative coe�cients and constant term 1.

◦ Thus, if s is real and greater than 1 (so that the product converges), the value of the product is real and
greater than 1.

◦ If χ 6= χ, then
∏
χ∈Ĝ L(s, χ) = L(s, χtriv)L(s, χ)L(s, χ) · [other terms].

◦ Now suppose L(1, χ) = 0: then we would have L(1, χ) = 0 also. But this would mean the product∏
χ∈Ĝ L(s, χ) vanishes at s = 1, because the only term that has a pole at s = 1 is L(s, χtriv) and that

pole has order 1, but we have two zeroes at s = 1 arising from L(s, χ) and L(s, χ).

◦ But this is impossible because the value of the product is real and greater than 1 for s > 1. Thus,
L(1, χ) 6= 0.

• The case where χ = χ and χ 6= χtriv (i.e., when χ has order 2 in Ĝ) is quite a bit trickier, since we cannot get
away with such a simple order-of-vanishing argument.

• Lemma (Nonvanishing, II): Let χ be any Dirichlet character of order 2 modulo m (i.e., such that χ = χ but
χ 6= χtriv). Then L(1, χ) 6= 0.

◦ Proof: Suppose that χ = χ but χ 6= χtriv, so that χ(p) ∈ {±1} for p - m, and de�ne the function G(s) =

L(s, χtriv)L(s, χ)

L(2s, χtriv)
=
∏
p-m

(1− |p|−s)−1(1− χ(p) |p|−s)−1

(1− |p|−2s
)−1

=
∏
p-m

1 + |p|−s

1− χ(p) |p|−s
=
∏
p-m,χ(p)=1

1 + |p|−s

1− |p|−s
=∏

p-m,χ(p)=1[1 +
∑∞
k=1 |p|

−ks
].

◦ By expanding this last expression forG, we can see that its Dirichlet series has all coe�cients nonnegative.

◦ We also have
L(s, χtriv)

L(2s, χtriv)
=

ζA(s)

ζA(2s)
·
∏
p|m

1− |p|−s

1− |p|−2s =
1− q1−2s

1− q1−s
∏
p|m(1 + |p|−s)−1. Substituting

this into the expression for G yields that
1− q1−2s

1− q1−s L(s, χ) =
L(s, χtriv)L(s, χ)

L(2s, χtriv)

∏
p|m(1 + |p|−s)−1 =

G(s)
∏
p|m(1 + |p|−s)−1 is a Dirichlet series with all coe�cients nonnegative.

◦ Suppose G(s)
∏
p|m(1 + |p|−s)−1 =

∑
f monic

h(f)

|f |s
.

◦ Rewriting in terms of u = q−s, and noting that L∗(u, χ) = L(s, χ) is a polynomial in u as we proved

earlier, we obtain the equality
1− qu2

1− qu
L∗(u, χ) =

∑∞
d=0[

∑
deg(f)=d h(f)]ud.

◦ Now suppose that L(1, χ) = L∗(q−1, χ) is equal to zero. Then 1− qu would divide L∗(u, χ), which would

mean that
1− qu2

1− qu
L∗(u, χ) is a polynomial in u. But then the right-hand side would also be a polynomial

in u. All of its coe�cients are nonnegative (as noted above), which means it cannot have a positive root
for u.
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◦ But, �nally, notice that
1− qu2

1− qu
L∗(u, χ) is zero when u = 1/

√
q. This is a contradiction, and so

L∗(q−1, χ) = L(1, χ) must be nonzero.

• Now that we know L(1, χ) vanishes for nontrivial characters χ, we can prove Dirichlet's theorem:

• Theorem (Analogue of Dirichlet's Theorem): Let m ∈ Fq[t] have positive degree and let a be relatively prime
to m. Then the Dirichlet density of the set of primes congruent to a (mod m) exists and is 1/Φ(m). In
particular, there are in�nitely many such primes.

◦ We have already obtained all of the necessary ingredients, so the proof is mostly a matter of putting
them all together.

◦ Proof: Recall the power series − log(1− x) =
∑∞
k=1 x

k/k, valid for |x| < 1.

◦ Then for any Dirichlet character χ, we have logL(s, χ) =
∑
p− log(1−χ(p)

|p|s
) =

∑
p

[∑∞
k=1

χ(p)k

k
|p|−ks

]
=∑

p

χ(p)

|p|s
+
∑
p

∑∞
k=2

χ(p)k

k
|p|−ks. The absolute value of the second term is bounded by

∑
p

∑∞
k=2

1

k
|p|−ks ≤∑∞

k=2

∑∞
d=1 q

dq−kds ≤
∑∞
n=1(n+ 1)q−ns, which is bounded as s→ 1+.

◦ Therefore, as s → 1+, we have logL(s, χ) =
∑
p

χ(p)

|p|s
+ O(1). In particular, we see that

∑
p |p|

−s
=

log(s− 1) +O(1) as s→ 1+, since L(s, χtriv) has a simple pole at s = 1.

◦ Now, by Fourier inversion (as we previously worked out) we have
∑
p≡a (mod m) |p|

−s
=
∑
p δa(p) |p|−s =

1

Φ(m)

∑
χ∈Ĝ

[
χ(a)

∑
p

χ(p)

|p|s
]
.

◦ So, the quotient for the Dirichlet density is

∑
p≡a (mod m) |p|

−s∑
p |p|

−s =

1

Φ(m)

∑
χ∈Ĝ

[
χ(a)

∑
p

χ(p)

|p|s
]

∑
p |p|

−s =

1

Φ(m)


∑
p-m |p|

−s∑
p |p|

−s +

∑
χ 6=χtriv

χ(a)
∑
p

χ(p)

|p|s∑
p |p|

−s

 =
1

Φ(m)

[
1−

∑
p|m |p|

−s

log(s− 1) +O(1)
+

∑
χ 6=χtriv

logL(s, χ) +O(1)

log(s− 1) +O(1)

]
.

◦ Now, taking the limit as s → 1+ makes the second term go to zero (since the numerator is �nite) and
the third term go to zero (since L(1, χ) 6= 0 for χ 6= χtriv), and so the value of the limit is just 1/Φ(m),
as claimed.

• We can, in fact, improve this argument to show that the natural density of the primes congruent to a modulo
m is equal to 1/Φ(m), not just the Dirichlet density.

◦ To do this requires showing that L(s, χ) is zero-free on a larger region: speci�cally, we need it to be
zero-free for Re(s) = 1, rather than just s = 1.

◦ The L-function is in fact zero-free on a much larger region: as we will eventually prove, the only zeroes
of L(s, χ) are on the line Re(s) = 1/2; this is the Riemann hypothesis for function �elds.

◦ Taking this zero-free result for granted, we again need to manipulate the series expressions for the L(s, χ).
This time, we will use in a more substantial way the fact that the L(s, χ) for χ 6= χtriv are polynomials
in u = q−s and compare the Euler products with their factorizations.

• Theorem (Strengthened Dirichlet Analogue): Let m ∈ Fq[t] have positive degree and let a be relatively prime

to m. Then the number of primes congruent to a (mod m) having degree N is equal to
1

Φ(m)

qN

N
+O(

qN/2

N
),

where the implied constant is independent of q and N .

◦ If we only know that the L-function is zero free for Re(s) > θ for some θ ∈ (1/2, 1), we instead get an

error term of O(
qθN

N
), which is still good enough to establish that the natural density of primes congruent

to a (mod m) equals 1/Φ(m).
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◦ Proof: For convenience, we �rst note the identity (*) u ∂
∂u log(1− αud)−1 =

∑∞
N=1 dα

kudN .

◦ As we showed previously, if χ 6= χtriv then L∗(u, χ) = L(q−s, χ) is a polynomial in u = q−s of degree at

most m − 1. Since its constant term is 1, we obtain a factorization of the form L∗(u, χ) =
∏m−1
i=1 (1 −

αi(χ)u) for some constants αi(χ) ∈ C.
◦ From the Euler product, we also have L∗(u, χ) =

∏
p-m(1 − χ(p)udeg p)−1 =

∏∞
d=1

∏
p-m,deg p=d(1 −

χ(p)ud)−1.

◦ Now apply the operator u ∂
∂u log to the equality

∏m−1
i=1 (1 − αi(χ)u) =

∏∞
d=1

∏
p-m,deg p=d(1 − χ(p)ud)−1

and compare coe�cients of u on both sides.

◦ For the LHS, using the identity (*) with d = 1 yields u ∂
∂u logL∗(u, χ) = −

∑m−1
i=1

∑∞
N=1 αi(χ)NuN =

−
∑∞
N=1

[∑m−1
i=1 αi(χ)N

]
uN .

◦ Letting cN (χ) = −
∑m−1
i=1 αi(χ)N yields the expansion u ∂

∂u log
∏m−1
i=1 (1 − αi(χ)u) =

∑∞
N=1 cN (χ)uN .

For χ = χtriv, we have cN (χ) = qN + O(1), while for χ 6= χtriv, by the Riemann hypothesis we have
|αi(χ)| ∈ {q0, q1/2} for each i, and so cN (χ) = O(qN/2).

◦ For the RHS, we have

u ∂
∂u logL∗(u, χ) =

∞∑
d=1

∑
p-m,deg p=d

u ∂
∂u log(1− χ(p)ud)−1

=

∞∑
d=1

∑
p-m,deg p=d

∞∑
k=1

dχ(p)kukd

=

∞∑
N=1

∑
d|N

∑
deg p=N/d

dχ(p)N/d

uN
by applying the identity (*) and then grouping together all of the terms of the same degree. This means
cN (χ) =

∑
d|N
∑

deg p=d dχ(p)d.

◦ Now, by separating out the terms with d = 1 from the others, we see cN (χ) =
∑
d|N
∑

deg p=N/d dχ(p)N/d =

N
∑

deg p=N χ(p) +
∑
d|N,d≥2

∑
deg p=N/d dχ(p)d. The absolute value of the second term is at most∑

d|N,d≥2

∑
deg p=N/d d ≤

∑
d|N,d≥2

qN/d

N/d
= O(qN/2).

◦ Therefore, we see cN (χ) = N
∑

deg p=N χ(p) +O(qN/2).

◦ Now we use our Fourier decomposition from earlier: we have
1

Φ(m)

∑
χ∈Ĝ χ(a)cN (χ) = N ·#{primes p ≡

a (mod m)}+O(qN/2) using the expression we just computed.

◦ Also, we have
∑
χ∈Ĝ χ(a)cN (χ) = qN + O(qN/2) by directly summing over characters: χ = χtriv con-

tributes the qN term and the other characters each contribute O(qN/2).

◦ Setting these two equal to one another yields #{primes p ≡ a (mod m)} =
1

Φ(m)
· q

N

N
+ O(

qN/2

N
), as

claimed.

• Exercise: For a,m ∈ Fq[t] with a relatively prime to m, show that the proportion of primes of degree N

congruent to a (mod m) is
1

Φ(m)
+O(q−N/2), where the implied constant is independent of q and N .

0.7 (Sep 24) dth Powers and dth-Power Residue Symbols

• Our next task is to discuss the analogue of another famous result from elementary number theory: Gauss's
celebrated law of quadratic reciprocity, along with its higher-order generalizations. A brief recap of the story
over Z:
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◦ If a ∈ (Z/pZ)∗, we say a is a quadratic residue if a ≡ b2 (mod p) for some b, and otherwise we say a is a
quadratic nonresidue.

◦ Since the quadratic residues are simply the image of the squaring map on (Z/pZ)∗, by the �rst isomor-
phism theorem there are (p − 1)/2 of them. (One may also simply enumerate them as 12, 22, . . . , [(p −
1)/2]2.)

◦ The Legendre symbol

(
a

p

)
is de�ned to be +1 on quadratic residues and −1 on quadratic nonresidues.

By writing a as a power of the generator of (Z/pZ)∗, one then obtains Euler's criterion: a(p−1)/2 ≡
(
a

p

)
(mod p), from which one sees that the Legendre symbol is multiplicative. Equivalently, it is a group
homomorphism from (Z/pZ)∗ to {±1}.
◦ Exercise: Another group homomorphism from (Z/pZ)∗ to {±1} is obtained by calculating the signature
of the permutation associated to multiplication by a, as an element of the symmetric group Sp−1. Prove
Zolotarev's lemma: this homomorphism is the same as the Legendre symbol.

• The law of quadratic reciprocity gives an unexpected relation between the Legendre symbols

(
p

q

)
and

(
q

p

)
for distinct odd primes p and q.

◦ Explicitly, as �rst proven by Gauss, we have

(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4. Equivalently,

(
p

q

)
=

(
q

p

)
if p or q is 1 mod 4, and otherwise

(
p

q

)
= −

(
q

p

)
if both p, q are 3 mod 4.

◦ A priori, it would seem that there is no reason for the values of

(
p

q

)
and

(
q

p

)
to be related to one

another, since they are discussing seemingly independent questions (whether p is a square mod q and
whether q is a square mod p).

◦ But in fact, these questions are related: for p∗ = (−1)(p−1)/2, the value of

(
p

q

)
determines whether the

ideal (p) splits in the ring of integers O√q∗ of the quadratic extension Q(
√
q∗) while the value of

(
q

p

)
determines whether the ideal (q) splits in the ring of integers of the quadratic extension Q(

√
p∗).

◦ These two questions are related because there are several ways to understand the splitting of (q) in O√p∗ .
◦ First, from basic algebraic number theory, to determine whether (q) splits in O√p∗ , one can study the

splitting of the minimal polynomial x2−x+
1− p∗

2
modulo q, which splits precisely when its discriminant

p∗ is a square: in other words, when

(
p∗

q

)
= 1.

◦ Alternatively, one may look at the action of the local qth-power Frobenius map inside the Galois group of
the cyclotomic �eld Q(ζp), whose unique quadratic sub�eld is Q(

√
p∗). Since the Galois group is cyclic,

the Frobenius element Frobq �xes Q(
√
p∗) if and only if q ∈ (Z/pZ)× lies in Gal(Q(ζp)/K). But this

group is the unique index-2 subgroup of (Z/pZ)∗, which is simply the quadratic residues, so this means

(q) splits precisely when

(
q

p

)
= 1.

◦ Comparing these two statements yields that

(
p∗

q

)
= 1 if and only if

(
q

p

)
= 1, and this can be shown

to be equivalent to the usual version of quadratic reciprocity.

◦ Exercise: For distinct odd primes p, q, show that

(
p∗

q

)
=

(
q

p

)
is equivalent to

(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4,

where p∗ = (−1)(p−1)/2.

◦ There are very many other proofs of quadratic reciprocity, many of which involve lengthy formal manip-
ulations of various sums and (generally) yield little to no intuition about why the result is actually true.
There is a fairly nice proof using Gauss sums that, suitably interpreted, is really the same as the one
given above.
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• We would like to generalize the reciprocity law to handle general dth powers in Fq[t]. We begin by describing
the dth powers:

• De�nition: If f ∈ Fq[t] is nonconstant and a is relatively prime to f , we say that a is a dth-power residue
modulo f when xd ≡ a (mod f) has a solution for x. (In other words, when a is the dth power of something
mod f .)

◦ Example: Over F2[t], we see t+ 1 is a quadratic residue modulo t3 + t+ 1 since t+ 1 ≡ (t2 + t+ 1)2 (mod
t3 + t+ 1).

◦ Example: Over F5[t], we see 3t2 + 3t+ 4 is a cubic residue modulo t3 + t+ 1 since 3t2 + 3t+ 4 ≡ (t2 + 2t)3

(mod t3 + t+ 1).

◦ By the Chinese remainder theorem, xd ≡ a (mod f) has a solution if and only if xd ≡ a (mod pd) has a
solution for each prime power pd in the factorization of f .

◦ Thus, we need only consider the case where the modulus is a prime power, and we can handle this case
fairly easily using our earlier analysis of the structure of (A/pdA)∗.

• We can start by looking at the prime-modulus case, since it is the simplest.

◦ As we have mentioned previously, (A/pA)∗ is the multiplicative group of the �nite �eld A/pA, so this
group has order qdeg p − 1 = p̃f deg p − 1.

◦ If d does not divide |p| − 1, then the dth power map on (A/pA)∗ is injective by Lagrange's theorem, so
it is a bijection, and so everything in (A/pA)∗ is a dth power.

◦ This means we can ignore divisors of d that aren't factors of |p| − 1, and so essentially we are reduced to
the situation where d divides |p| − 1.

◦ By analogy with Euler's criterion in Z, we would expect that the value of a(|p|−1)/d will identify whether
or not a is a dth power. This is indeed the case:

• Proposition (dth Roots Mod p): If p ∈ Fq[t] is irreducible, a is not divisible by p, and d is a divisor of |p| − 1,
then xd ≡ a (mod p) is solvable if and only if a(|p|−1)/d ≡ 1 (mod p).

◦ Proof 1: First, if xd ≡ a (mod p) then a(|p|−1)/d ≡ x|p|−1 ≡ 1 (mod p) by Euler.

◦ For the converse, recall that we showed previously that xd ≡ 1 (mod p) has d solutions mod p whenever
d divides |p| − 1.

◦ Therefore, the kernel of the dth-power map on (A/pA)∗ has size d, so by the �rst isomorphism theorem,
the image, which is precisely the set of dth powers, has size (|p| − 1)/d.

◦ But by the same observation, there are exactly (|p| − 1)/d solutions to the equation x(|p|−1)/d ≡ 1 (mod
p), so by the above, these must be exactly the dth powers.

◦ Proof 2: As shown previously, (A/pA)∗ is cyclic of order |p| − 1. Let u be a generator.

◦ Since every element in (A/pA)∗ is a power of u, it is easy to see that for any d dividing |p| − 1, the dth
powers in (A/pA)∗ are precisely {ud, u2d, u3d, . . . , ud(|p|−1)d = 1}. All of these elements clearly satisfy
x(|p|−1)/d ≡ 1 (mod p).

◦ Conversely, if a = uk has a(|p|−1)/d ≡ 1 (mod p), then uk(|p|−1)/d ≡ 1 (mod p) so since u has order |p|−1,
d must divide k.

• Now that we have analyzed the prime case, the prime-power case follows by �lifting� the solutions from the
prime case.

◦ This is a consequence of a much more general result known as Hensel's lemma, which we might as well
do in general.

• Proposition (Hensel's Lemma): If p ∈ Fq[t] is irreducible, a ∈ Fq[t], and r(x) is any polynomial such that
r(a) ≡ 0 (mod pd) and r′(a) 6≡ 0 (mod p), then there is a unique k modulo p such that r(a+ kpd) ≡ 0 (mod

pd+1). Explicitly, if u = f ′(a)−1 (mod p), then k = −uf(a)

pd
.
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◦ By repeatedly applying Hensel's lemma, we can lift a solution of r(a) ≡ 0 (mod p) to a solution modulo
p2, and then lift that to a solution modulo p3, and so on and so forth, until we have a solution to the
equation modulo any power of p.

◦ This iteration process yields a sequence of solutions x ≡ aj (mod pj) for each j, where aj+1 = aj −
1

r′(a)
r(aj), which one may recognize as the iteration procedure from Newton's root-�nding method. In

fact, if we instead think of solving the polynomial r(x) = 0 p-adically (which amounts to taking the
inverse limit lim←−(A/pdA)), this lifting procedure is precisely Newton's method with starting point x = a.

◦ Proof: First, by the binomial theorem we have (a+ pdk)n = an + nan−1pdk + [terms divisible by p2d] ≡
an + nan−1pdk (mod pd+1).

◦ Then if r(t) =
∑
cnt

n we see that r(a + pdk) ≡
∑
cn(an + nan−1pdk) ≡

∑
cna

n + pdk
∑
ncna

n−1 ≡
r(a) + pdk · r′(a) (mod pd+1).

◦ By hypothesis, r(a) +pdk · r′(a) is divisible by pd. So dividing the congruence r(a+kpd) ≡ 0 (mod pd+1)

by pd yields
r(a)

pd
+ kr′(a) ≡ 0 (mod p), which has the unique solution k ≡ −uf(a)

pd
(mod p), as claimed.

• This version of Hensel's lemma is quite a bit more than we really need here, but it will be helpful to have it
available later.

• Corollary (dth Roots Mod pe): If p ∈ Fq[t] is irreducible, d divides |p| − 1, and p does not divide a, then
xd ≡ a (mod p) has a root if and only if xd ≡ a (mod pe) has a root for every e ≥ 1.

◦ Proof: If there is a solution to xd ≡ a (mod pe) then clearly there is a solution mod p.

◦ Conversely, if there is a solution mod p, then we claim we may lift the solution mod pe using Hensel's
lemma.

◦ We just need to check that the derivative is not zero: for r(x) = xd we have r′(a) = dad−1. Then d 6= 0
mod p because d divides |p| − 1 = p̃f deg p − 1 and so d cannot be divisible by the characteristic p̃, and
also a 6= 0 mod p because p does not divide a. Thus, Hensel's lemma applies, and we are done.

• Corollary (Counting dth Powers): If p ∈ Fq[t] is irreducible and d divides |p| − 1, then there are Φ(pe)/d total
dth-power residues modulo pe.

◦ Proof 1: Count residue classes: as shown earlier there are (|p| − 1)/d = Φ(p)/d total dth-power residue
classes modulo p. By the corollary above, the dth-power residue classes modulo pe are precisely those
that reduce to a dth power modulo p. So the probability of selecting one is Φ(p)/(d |p|), and thus the
total number is |p|e · Φ(p)/(d |p|) = Φ(pe)/d.

◦ Proof 2 (sketch): The dth-power homomorphism commutes with reduction modulo p. Then just count
the sizes of the various kernels and images and use the �rst isomorphism theorem.

◦ Exercise: Show that for any monic polynomial m, there are Φ(m)/dλ(m) total dth powers modulo m,
where λ(m) is the number of distinct monic irreducible factors of m.

• Returning back to the prime case, in the particular case where d divides q − 1, then the dth roots of unity in
(A/pA)∗ actually lie inside Fq, because xd = 1 already has d solutions inside Fq (since F∗q is cyclic of order
q − 1).

◦ We have shown above that a is a dth power modulo p if and only if a(|p|−1)/d ≡ 1 (mod p).

◦ We can use this as the basis for our de�nition of the dth-power residue symbol, in analogy with Euler's
criterion over Z.

• De�nition: If p ∈ Fq[t] is irreducible and d divides q − 1, then we de�ne the dth-power residue symbol

(
a

p

)
d

to be the unique element of Fq congruent to a(|p|−1)/d modulo p.

◦ Example: For d = 2 over F3[t], we calculate

(
t

t2 + t+ 2

)
2

≡ t4 ≡ 2 (mod t2 + t+ 2).
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◦ Example: For d = 3 over F7[t], we calculate

(
t

t2 + 2t+ 2

)
7

≡ t16 ≡ 4 (mod t2 + 2t+ 2).

◦ Example: For d = 3 over F7[t], we calculate

(
t

t2 + t+ 6

)
7

≡ t16 ≡ 1 (mod t2 + t+ 6), which means t is

a cube modulo t2 + t+ 6.

• Proposition (Properties of Residue Symbols): If p ∈ Fq[t] is irreducible and d divides q−1, the following hold:

1.

(
a

p

)
d

= 0 if and only if p divides a.

2. If a ≡ b (mod p) then

(
a

p

)
d

=

(
b

p

)
d

.

3. The residue symbol is multiplicative: for any a, b,

(
ab

p

)
d

=

(
a

p

)
d

(
b

p

)
d

.

4.

(
a

p

)
d

= 1 if and only if a is a dth-power residue modulo p.

5. If ζ is any dth root of unity in Fq, then there exists a ∈ Fq[t] with
(
a

p

)
d

= ζ.

6. The residue symbol is a surjective group homomorphism from (A/pA)∗ to µd, the group of dth roots of
unity in Fq.

7. If d|d′ then
(
a

p

)
d

=

(
a

p

)d′/d
d′

.

8. If α ∈ Fq then
(
α

p

)
d

= α(q−1)/d·deg p.

◦ Proofs: (1)-(4) are trivial from the de�nition or results previously shown. (5) follows by the �rst isomor-
phism theorem, since the kernel of the (|p| − 1)/dth-power map has size (|p| − 1)/d hence the image has
size d. (6) is a rephrasing of (3) and (5).

◦ (7) follows by noting

(
a

p

)d′/d
d′
≡ (a(|p|−1)/d′)d

′/d = a(|p|−1)/d ≡
(
a

p

)
d

(mod p), and then observing that

since the residue symbols are both elements of Fq, the congruence mod p forces actual equality.

◦ For (8), �rst note that
|p| − 1

d
=
qdeg p − 1

d
= (1 + q + q2 + · · ·+ qdeg p−1)(q − 1)/d. Then since αq = α

by Fermat's little theorem in Fq, we have

(
α

p

)
d

≡ α(|p|−1)/d = (α · αq · αq2 · · · · · αqdeg p−1

)(q−1)/d =

αdeg p·(q−1)/d (mod p). Then as in (7), the congruence modulo p forces equality.

• We can now state the dth-power reciprocity law, which we will prove next time:

• Theorem (dth-Power Reciprocity): If d divides q−1 and P,Q are monic irreducible polynomials in Fq[t], then(
Q

P

)
d

= (−1)(q−1)(degP )(degQ)/d

(
P

Q

)
d

.

0.8 (Sep 29) The dth-Power Reciprocity Law

• To prove the reciprocity law, we �rst need a reciprocity result about roots of polynomials known as Weil
reciprocity:

• Lemma (Weil Reciprocity): If P (t) = (t− r1) · · · (t− rn) and Q(t) = (t−s1) · · · (t−sn) are monic polynomials
over a �eld F , with the ri, sj ∈ F , then

∏n
i=1Q(ri) = (−1)(degP )(degQ)

∏m
j=1 P (sj).

◦ Proof: Note that Q(ri) =
∏m
j=1(ri − sj) so

∏n
i=1Q(ri) =

∏n
i=1

∏m
j=1(ri − sj). In the same way,∏m

j=1 P (sj) =
∏m
j=1

∏n
i=1(sj − ri).
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◦ These expressions are the same up to switching the order of the products and scaling each of the mn =
(degP )(degQ) terms by −1, so the result follows.

• We can now prove the dth-power reciprocity law:

• Theorem (dth-Power Reciprocity): If d divides q−1 and P,Q are monic irreducible polynomials in Fq[t], then(
Q

P

)
d

= (−1)(q−1)(degP )(degQ)/d

(
P

Q

)
d

.

◦ The main idea of the proof is to exploit properties of the Frobenius map on the roots of P and Q in their
splitting �eld over Fq, and then use Weil reciprocity.

◦ Proof: From property (7) of the residue symbol, we have

(
a

p

)
d

=

(
a

p

)d′/d
d′

, so it is enough to prove the

reciprocity law when d = q − 1.

◦ Now let α be a root of P and β be a root of Q in a splitting �eld E/Fq for the polynomial PQ.

◦ Since E/Fq is a �nite-degree extension of a �nite �eld, its Galois group is cyclic and generated by the
qth-power Frobenius map.

◦ Also, since P and Q are irreducible over Fq, we must have the factorizations

P (t) = (t− α)(t− αq)(t− αq
2

) · · · (t− αq
deg P−1

)

Q(t) = (t− β)(t− βq)(t− βq
2

) · · · (t− βq
deg Q−1

)

since α, αq, αq
2

, ... are all the Galois conjugates of α and P is irreducible (with the same logic applying
to β and Q).

◦ Inside E[t], we have

(
Q

P

)
q−1

≡ [Q(t)](q
deg P−1)/(q−1) = [Q(t)]1+q+q2+···+qdeg P−1

= Q(t)Q(t)qQ(t)q
2 · · ·Q(t)q

deg P−1 ≡

Q(t)Q(tq)Q(tq
2

) · · ·Q(tq
deg P−1

) (mod P ) since Q(tq) = Q(t)q in characteristic q.

◦ Reducing both sides modulo the factor t − α of P (equivalently, evaluating both sides at t = α) then

yields

(
Q

P

)
q−1

≡ Q(α)Q(αq) · · ·Q(αq
deg P−1) (mod t − α). Since the right-hand side of this expression

is the product of the values of Q evaluated at the roots of P , it is the same for any other root of P we
choose in place of α.

◦ So by the Chinese remainder theorem, in fact

(
Q

P

)
q−1

≡ Q(α)Q(αq) · · ·Q(αq
deg P−1) (mod P ). But the

right-hand side is an element of E, and since it is a (q − 1)st root of unity (or alternatively, since it is
Galois-invariant), it must actually be in Fq. So since these quantities are congruent modulo P , they must
actually be equal as elements of Fq.

◦ This means

(
Q

P

)
q−1

= Q(α)Q(αq) · · ·Q(αq
deg P−1). In the same way,

(
P

Q

)
q−1

= P (β)P (βq) · · ·P (βq
deg Q−1).

◦ Weil reciprocity then says Q(α)Q(αq) · · ·Q(αq
deg P−1) = (−1)(degP )(degQ)P (β)P (βq) · · ·P (βq

deg Q−1), so

we see

(
Q

P

)
q−1

= (−1)(degP )(degQ)

(
P

Q

)
q−1

, which establishes the case d = q − 1.

◦ The case where d divides q − 1 follows immediately and gives the general statement above.

• Just as in the case of Q, to give a convenient method for calculating residue symbols, we can extend the
de�nition to include nonprime moduli (i.e., generalizing the Jacobi symbol):

• De�nition: If b ∈ Fq[t] has prime factorization b = uqb11 · · · qbnn for distinct monic irreducible qi and u ∈ F×q ,

then we de�ne the general residue symbol as
(a
b

)
d

=
∏n
j=1

(
a

qi

)bi
.

• Proposition (Properties of Residue Symbols, II): If b ∈ Fq[t] is nonzero and d divides q− 1, the following hold:

25



1.
(a
b

)
d
is either 0 or a dth root of unity, and

(a
b

)
d
6= 0 if and only if a, b are relatively prime.

2. If a1 ≡ a2 (mod b) then
(a1

b

)
d

=
(a2

b

)
d
.

3. The residue symbol is multiplicative on the top:
(a1a2

b

)
d

=
(a1

b

)
d

(a2

b

)
d
.

4. The residue symbol is multiplicative on the bottom:

(
a

b1b2

)
d

=

(
a

b1

)
d

(
a

b2

)
d

.

5. If gcd(a, b) = 1 and a is a dth-power residue modulo b, then
(a
b

)
d

= 1. (The converse need not hold.)

6. If d|d′ then
(a
b

)
d

=
(a
b

)d′/d
d′

.

7. If α ∈ Fq then
(α
b

)
d

= α(q−1)/d·deg b.

◦ Proofs: (1)-(4) follow straightforwardly from the de�nition, while (6) and (7) follow the same way as for

the residue symbol with prime modulus. For (5), if a ≡ cd (mod p) then
(a
b

)
d

=

(
cd

b

)
d

=
(c
b

)
d

= 1

since
(c
b

)
is a dth root of unity (since it is not zero since a, b are relatively prime).

◦ We will remark that the residue symbol
(?
b

)
d

: (A/bA)∗ → µd is still a group homomorphism since it is

multiplicative by (3), but it is not necessarily surjective when b is not prime. For example, if b = pd is

a dth power, then by (4) we see that
(a
b

)
d

=

(
a

p

)d
d

= 1 for all a ∈ (A/bA)∗. (This also shows that the

converse of (5) is false, as noted above.)

• We can write down the reciprocity law for general dth-power residue symbols:

• Theorem (General Reciprocity Law): If d divides q − 1 and a, b are any nonzero polynomials in Fq[t], then(a
b

)
d

= (−1)(q−1)(deg a)(deg b)/d[sgna](q−1)/d·deg b[sgnb]−(q−1)/d·deg a

(
b

a

)
d

.

◦ Proof (sketch): As in the prime case, reduce to the case d = q− 1. Then pull out the leading coe�cients
of a, b (these are where the sgna and sgnb terms come from) and then apply the de�nition of the general

residue symbol to write
(a
b

)
q−1

and

(
b

a

)
q−1

as products of residue symbols with prime moduli, apply

the prime-modulus reciprocity law, and tally up the results. The full details are left as an exercise.

• A standard application of quadratic reciprocity over Z is to characterize all of the prime moduli for which a
given integer m is a quadratic residue.

◦ Typical examples of such statements: −1 is a quadratic residue mod p when p ≡ 1 (mod 4), 3 is a
quadratic residue mod p when p ≡ 1, 11 (mod 12), 5 is a quadratic residue mod p when p ≡ 1, 4 (mod
5), and so forth.

◦ Aside from the special cases of −1 and 2, one may answer this question simply by factoringm as a product

of primes m = q1 · · · qk, so that

(
m

p

)
=

(
q1

p

)
· · ·
(
qk
p

)
, and then applying quadratic reciprocity to �ip

each of the quadratic residue symbols. The end result is that the statement

(
m

p

)
= +1 is equivalent to

a congruence condition for p modulo 4m, which one may calculate explicitly if desired.

• We can use this same type of argument to solve the analogous problem in function �elds:

• Theorem (Criterion for dth-Power Residues): Let m ∈ Fq[t] be monic and d|(q − 1), and let {a1, . . . , ak}
be coset representatives for the residue classes in (A/mA)∗ with

( a
m

)
d

= +1 and {b1, . . . , bk} be coset

representatives for the residue classes in (A/mA)∗ with

(
b

m

)
d

= −1 (if there are any). Then the following

hold:
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1. If deg(m), (q− 1)/d, or char(Fq) is even, then m is a dth power modulo an irreducible monic polynomial
p if and only if p ≡ ai (mod m) for some i.

2. If deg(m), (q − 1)/d, and char(Fq) are all odd, then m is a dth power modulo an irreducible monic
polynomial p if and only if either deg(p) is even and p ≡ ai (mod m) for some i, or deg(p) is odd and
p ≡ bi (mod m) for some i.

◦ Proof: Note that p ≡ ai (mod m) is equivalent to saying
( p
m

)
d

= 1, while p ≡ bi (mod m) is

equivalent to saying
( p
m

)
d

= −1.

◦ Since p and m are monic, by the reciprocity law we see

(
m

p

)
d

= (−1)(q−1)/d·deg(m) deg(p)
( p
m

)
d
.

◦ First, if q is even, then char(Fq) = 2: then −1 = 1 over Fq, so
(
m

p

)
d

=
( p
m

)
d
. Likewise, if deg(m)

or (q − 1)/d is even, then the exponent of −1 is even, so again we see

(
m

p

)
d

=
( p
m

)
d
. Together

with the observation above, (1) follows.

◦ For (2), if deg(m), (q − 1)/d, and char(Fq) are all odd, then −1 6= 1 and (−1)(q−1)/d·deg(m) deg(p) =

(−1)deg p. So

(
m

p

)
d

=
( p
m

)
d
if deg(p) is even while

(
m

p

)
d

= −
( p
m

)
d
if deg(p) is odd. This yields

(2).

• Example: Identify all monic irreducibles p ∈ F3[t] such that t is a square modulo p.

◦ There are two residue classes in (A/tA)∗, namely 1 and 2, and we see

(
1

t

)
2

= 1 while

(
2

t

)
2

= −1.

◦ Since deg(m) = 1, (q − 1)/d = 1, and char(Fq) = 3, we are in case (2). Thus, m is a quadratic residue
modulo the monic irreducible polynomial p precisely when deg(p) is odd and p ≡ 2 (mod t), or when
deg(p) is even and p ≡ 1 (mod t).

◦ For example, we see that t is a square modulo the irreducible polynomial t3 + 2t+ 2 ∈ F3[t], and indeed
with some more work, one may calculate t ≡ (t2 + t+ 2)2 (mod t3 + 2t+ 2).

◦ Exercise: Extend this example to describe all monic irreducibles p ∈ Fq[t] such that t is a square modulo
p for arbitrary �nite �elds Fq.

• Another interesting application of the dth-power reciprocity law is to establish a �Hasse principle�-type result
for dth powers.

◦ Obviously, if a polynomial with integer coe�cients has a solution in Z, then it also has solutions modulo
pk for all prime powers pk (equivalently, it has a p-adic solution for each p) and it also has a real solution.

◦ The Hasse principle asks when the converse of this observation is valid: if a polynomial has a p-adic root
and a real root, does it necessarily have a rational root? The general idea is that one may try to piece
together information modulo the prime powers for many primes p using the Chinese remainder theorem,
but it is not clear when this actually forces the existence of a global solution.

◦ As �rst proven by Minkowski for integer coe�cients (and then later extended by Hasse for number-�eld
coe�cients), for quadratic polynomials this local-global principle holds: if a quadratic polynomial has a
p-adic root and a real root, it necessarily has a rational root.

◦ The result is known to be false for cubic forms: Selmer's famous counterexample is the cubic equation
3x3 + 4y3 + 5z3 = 0, which has no rational solution but does have real solutions and p-adic solutions for
all p.

◦ Even in the absence of a literal Hasse-principle statement, in many cases one can analyze the precise
obstructions to lifting local solutions to global solutions. (An example of this sort of obstruction can be
found in the statement of the Grunwald-Wang theorem.)

• Theorem (Hasse Principle for dth Powers): Let m ∈ Fq[t] have positive degree and d|(q− 1). If xd ≡ m (mod
p) is solvable for all but �nitely many irreducible polynomials p, then xd = m has a solution in Fq[t] (i.e., m
is globally a dth power).
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◦ Proof: Letm = βqd11 · · · q
dk
k where the qi are distinct monic irreducibles and β is a constant. We �rst show

that if any di is not divisible by d, then there are in�nitely many irreducibles p such that

(
m

p

)
d

6= 1.

◦ To show this, suppose without loss of generality that d1 is not divisible by d. We inductively construct

an in�nite set of irreducibles {ri} with
(
m

ri

)
d

6= 1, so suppose we have a set (possibly empty to start)

{r1, . . . , rs} of monic irreducibles not dividing m with

(
m

ri

)
d

6= 1 for all i.

◦ Select any primitive dth root of unity ζd: then there exists an element c ∈ Fq[t] with
(
c

qi

)
d

= ζd by our

properties of the dth-power residue symbol.

◦ By the Chinese remainder theorem, there exist solutions a to the system of congruences a ≡ c (mod
q1), a ≡ 1 (mod q2 · · · qk), a ≡ 1 (mod r1 · · · rs). Select any such solution that is monic and has degree
divisible by 2d.

◦ For this a, we have
( a
m

)
d

=
∏k
i=1

(
a

qi

)di
d

= ζd1d 6= 1 since d1 is not divisible by d.

◦ Then by the reciprocity law, we then have
(m
a

)
d

= (−1)(q−1)/d·(degm)(deg a)
( a
m

)
d

=
( a
m

)
d
6= 1, since

the exponent of −1 has a factor of 2 from deg a.

◦ Since the general dth-power residue symbol is multiplicative on the bottom, there must be some monic

irreducible factor rs+1 of a such that

(
m

rs+1

)
6= 1 since

( a
m

)
d
6= 1. This monic irreducible factor is

relatively prime to r1 · · · rs since a ≡ 1 (mod r1 · · · rs), so we have found another monic irreducible to
add to our list.

◦ By induction, we can construct in�nitely many such irreducibles.

◦ Now, if xd ≡ m (mod p) is solvable for all but �nitely many irreducible polynomials p, then by the above,
each of the exponents di must be divisible by d. This means m = β · m̃d for some monic polynomial m̃,
so all that remains is to show that β is a dth power.

◦ For any irreducible p not dividing m, we have

(
m

p

)
d

=

(
β

p

)
d

= β(q−1)/d·deg p as we have previously

shown. Since there are irreducibles of any desired degree in Fq[t], select p to be one of degree relatively

prime to d with

(
m

p

)
d

= 1: then β(q−1)/d·deg p = 1 implies β(q−1)/d = 1, which is equivalent to saying

that β is a dth power. Then m itself is a dth power, as claimed.

0.9 (Oct 1) Transcendence and Localization

• We now move into the second major part of the course, which deals with algebraic function �elds: these are
function �elds of transcendence degree 1 over a general constant �eld F .

◦ Later, we will specialize to function �elds over Fq (equivalently, these are the �nite-degree �eld extensions
of Fq(t)), which along with algebraic number �elds (the �nite-degree �eld extensions of Q) constitute the
global �elds.

◦ Global �elds (to be considered as parallel to local �elds) share a number of common properties that we
will elucidate and study.

• We begin by reviewing some basic facts about transcendental extensions.

• De�nition: Let K/F be a �eld extension. We say a subset S of K is algebraically dependent over F if there
exists a �nite subset {s1, . . . , sn} ∈ S and a nonzero polynomial p ∈ F [x1, . . . , xn] such that p(s1, . . . , sn) = 0.
If there exists no such p for any �nite subset of S, we say S is algebraically independent.

◦ The general idea here is that a set of elements is algebraically dependent if they satisfy some algebraic
(i.e., polynomial) relation over F .
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◦ Example: If x1, . . . , xn are indeterminates inside F (x1, . . . , xn), the function �eld in n variables, then
the set {x1, . . . , xn} is algebraically independent over F .

◦ Example: Over Q, the set {π, π2} is algebraically dependent, since p(x, y) = x2 − y has p(π, π2) = 0.

◦ Example: Over Q, the set { 3
√

2} is algebraically dependent, since p(x) = x3 − 2 has p( 3
√

2) = 0.

◦ More generally, the set {α} is algebraically independent over F if and only if α is transcendental over F .

◦ Exercise: Show that the set {x + y, x2 + y2} is algebraically independent in F (x, y) for any �eld F of
characteristic not 2, but is algebraically dependent if F has characteristic 2.

◦ Example: In F (x, y), the set {x + y, x2 + y2, x3 + y3} is algebraically dependent, since p(a, b, c) =
a3 − 3ab+ 2c has p(x+ y, x2 + y2, x3 + y3) = 0.

• The notion of algebraic independence generalizes the notion of linear independence, and as such the two
concepts are related in various ways.

◦ It is easy to see that any subset of an algebraically independent set is algebraically independent, while
any set containing an algebraically dependent set is algebraically dependent.

◦ Since having a basis of a vector space is very convenient for calculations, we might therefore hope to de�ne
an analogous �transcendence basis� to be an algebraically independent set that generates the extension
K/F .

◦ Unfortunately, such a set need not exist: for example, Q(
√

2)/Q has no such set, because there are no
transcendental elements at all.

◦ The correct analogy is instead to observe that a basis for a vector space is a maximal linearly independent
set:

• De�nition: Let K/F be a �eld extension. A transcendence base for K/F is an algebraically independent
subset S of K that is maximal in the set of all algebraically independent subsets of K.

◦ Remark: The term �transcendence basis� is also used occasionally.

◦ By a straightforward Zorn's lemma argument, every extension has a transcendence base. (Exercise:
Write down this argument.)

◦ Example: The empty set ∅ is a transcendence base for Q(
√

2)/Q. More generally, K/F is algebraic if
and only if ∅ is a transcendence base.

◦ Example: The set {x} is a transcendence base for F (x) over F .

• Here are some of the fundamental properties of transcendence bases, many of which are analogous to properties
of vector spaces:

• Proposition (Transcendence Bases): Suppose K/F is a �eld extension and S is a subset of K.

1. If S is algebraically independent and α ∈ K, then S ∪ {α} is algebraically independent over F if and
only if α is transcendental over F (S).

◦ This is the algebraic analogue of the statement that if S is linearly independent, then S ∪ {α} is
linearly independent if and only if α is not in the span of S.

◦ Proof: Suppose S ∪ {α} is algebraically dependent. Then there exists si ∈ S and p ∈ F [x] with
p(α, s1, . . . , sn) = 0 and p 6= 0. View p as a polynomial in its �rst variable with coe�cients in
F [s1, . . . , sn]: there must be at least one term involving α, as otherwise p would give an algebraic
dependence in S. Then α is the root of a nonzero polynomial with coe�cients in F [s1, . . . , sn] ⊆
F (s1, . . . , sn) ⊆ F (S), so it is algebraic over F (S).

◦ Conversely, suppose that α is algebraic over F (S). Then α is the root of some nonzero polynomial
with coe�cients in F (S). Each coe�cient of this polynomial is an element of F (S); clearing denom-
inators yields a nonzero polynomial p with coe�cients in F [s1, . . . , sn] for the elements si ∈ S that
appear in these coe�cients. This polynomial yields an algebraic dependence in S ∪ {α}.

2. S is a transcendence base of K/F if and only if K is algebraic over F (S).
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◦ Proof: This follows from (1) and the maximality of transcendence bases: S is a transcendence base
if and only if no elements in K can be adjoined to S while preserving algebraic independence, and
by (1) this is equivalent to saying that all elements in K are algebraic over F (S).

3. If T is a subset of K such that K/F (T ) is algebraic, then T contains a transcendence base of K/F .

◦ Proof: Apply Zorn's lemma to the collection of all algebraically independent subsets of T , partially
ordered by inclusion.

◦ A maximal element M in this collection must then be a transcendence base for K/F : if β ∈ K then
β must be algebraic over K/F (M) by the maximality of M , and then M is a transcendence base by
(2).

4. If T is an algebraically independent subset of K, then T can be extended to a transcendence base of
K/F .

◦ Proof: This is the analogue of the fact that every linearly independent subset can be extended to a
basis, and the proof follows from a similar Zorn's lemma argument.

5. If S = {s1, . . . , sn} is a transcendence base for K/F and T = {t1, . . . , tm} is any algebraically inde-
pendent set, then there is a reordering of S, say {a1, . . . , an}, such that for each 1 ≤ k ≤ m, the set
{t1, t2, . . . , tk, ak+1, . . . , an} is a transcendence base for K/F .

◦ Proof: This is the analogue of the replacement theorem for linearly independent sets, and the proof
proceeds inductively in essentially the same way. (We will omit the details.)

6. If S is a (�nite) transcendence base for K/F , then any subset T of K having larger cardinality than S
must be algebraically dependent.

◦ Proof: If S = {s1, . . . , sn} is �nite, apply the replacement theorem (5) to S and T . At the end of the
replacement, the result is that {t1, . . . , tn} is a transcendence base. But then by (2), any additional
element of T would be algebraic over {t1, . . . , tn}, contradicting the algebraic independence of T .

7. Any two transcendence bases S and T for K/F have the same cardinality.

◦ Proof: If the bases are in�nite the result is immediate. If S has �nite cardinality n, then the result
follows by applying (6), since then T 's cardinality m must satisfy m ≤ n (since T is algebraically
independent and S is a transcendence base) and also n ≤ m (since S is algebraically independent
and T is a transcendence base).

• The result of the last part of the proposition shows that any two transcendence bases have the same cardinality,
and in analogy with the situation for vector spaces, this cardinality behaves somewhat like an extension degree:

• De�nition: Let K/F be a �eld extension. The transcendence degree of K/F , denoted trdeg(K/F ), is the
cardinality of any transcendence base of K/F .

• The key property of transcendence degree is that it is additive in towers:

• Proposition (Transcendence in Towers): If L/K/F is a tower of extensions, then trdeg(L/F ) = trdeg(L/K) +
trdeg(K/F ).

◦ The idea here is quite simple: we want to show that the union of transcendence bases for K/F and L/K
gives a transcendence base for L/F .

◦ Proof: First suppose that both trdeg(K/F ) and trdeg(L/K) are �nite, and let S = {s1, . . . , sn} and
T = {t1, . . . , tm} be transcendence bases forK/F and L/K. Then S∩T = ∅ since each ti is transcendental
over K.

◦ Furthermore, K is algebraic over F (S), so K(T ) is algebraic over F (T )(S) = F (S ∪ T ) by our results on
algebraic extensions.

◦ Then since L is algebraic over K(T ), we deduce that L is algebraic over F (S ∪T ), also by our results on
algebraic extensions.

◦ Thus, by property (3) above, S ∪ T contains a transcendence base of L/F .

◦ Finally, we claim S ∪ T is algebraically independent over F , so suppose that p(s1, . . . , sn, t1, . . . , tm) = 0
for some p ∈ F [x1, . . . , xn, y1, . . . , ym].
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◦ Separate monomial terms to write p(s1, . . . , sn, t1, . . . , tm) = 0 as a sum
∑
fi(s1, . . . , sn)gi(t1, . . . , tm) = 0

with fi ∈ F [x1, . . . , xn] and gi ∈ F [y1, . . . , ym].

◦ Now, since T is algebraically independent over F (S) ⊆ K, all of the fi(s1, . . . , sn) must be zero (as
elements of K). But since S is algebraically independent over F , that means all of the polynomials
fi(x1, . . . , xn) must be zero (as polynomials).

◦ This means p is the zero polynomial, and so S ∪ T is algebraically independent.

• Fields that are generated by a transcendence base are particularly convenient:

• De�nition: The extension K/F is purely transcendental if K = F (S) for some transcendence base S of K/F .

◦ Equivalently, K/F is purely transcendental when it is generated (as a �eld extension) by an algebraically
independent set.

◦ If S = {s1, . . . , sn}, then the purely transcendental extensionK = F (S) is ring-isomorphic to the function
�eld F (x1, . . . , xn) in n variables: it is not hard to check that the map sending si to xi is an isomorphism.

◦ If K/F has transcendence degree 1 or 2 and E/F is an intermediate extension, then in fact E is also
purely transcendental: the degree-1 case is a theorem of Lüroth that we will prove later, while the
degree-2 case is a theorem of Castelnuovo. In higher degrees, there do exist extensions that are not
purely transcendental, but it is not easy to verify this fact.

• Now let F be a �eld and K be an extension of F of transcendence degree 1.

◦ By the results above, there exists x ∈ K such that K/F (x) has transcendence degree 0, which is to say,
it is algebraic.

◦ Since we do not want to worry for the moment about in�nite-degree algebraic extensions, we will make
the further assumption that this extension K/F (x) has �nite degree.

• De�nition: We say K is an (algebraic) function �eld over F if there exists x ∈ K such that x is transcendental
over F and K/F (x) is �nite.

◦ Example: Q(x) is an algebraic function �eld over Q.
◦ Example: C(x,

√
x2 − 1) is an algebraic function �eld over C.

◦ Note that the algebraic closure of F inside K has �nite degree over F : this follows by noting that if E/F
is algebraic inside K, then [E : F ] = [E(x) : F (x)] ≤ [K : F (x)] <∞.

◦ So, without loss of generality, we may replace F by its algebraic closure inside K. In this case we call F
the constant �eld of K.

◦ If F is the constant �eld of K, then there are no elements of K that are algebraic over F other than the
elements of F themselves. Equivalently, every element of K\F is transcendental over F .

◦ Finally, since the transcendence degree of K/F is 1, for any two a, b ∈ K\F , there is some nonzero
polynomial g ∈ F [x, y] such that F [a, b] = 0.

0.10 (Oct 6) Localization, Discrete Valuations

• Now that we have some very basic facts about function �elds, our goal is to do number theory.

◦ In order to do this, however, we need to know how to de�ne primes in the function �eld context.

◦ Over Q, the primes arise as the prime ideals of the ring of integers Z, which we can de�ne starting from
Q purely in terms of integral closures. For other number �elds, we also de�ne their primes using integral
closures.

◦ However, this approach will not work for function �elds, because (as noted above) everything in K not
in F is transcendental over F , so there is no sensible way to de�ne a �ring of integers� inside K using
integrality.

◦ Instead, we need to use a di�erent sort of construction to give a sensible notion of a prime: that of a
discrete valuation on K.
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• In order to develop all of this properly, we �rst need to review some facts about localization.

• Proposition (Localization): Let R be a commutative ring with 1 and D be a multiplicatively closed subset
of R containing 1. Then there exists a commutative ring D−1R, the localization of R at D, and a ring
homomorphism π : R → D−1R such that any for any ring homomorphism ψ : R → S sending 1 to 1 and
such that ψ(d) is a unit in S for every d ∈ D, there exists a unique homomorphism Ψ : D−1R→ S such that
Ψ ◦ π = ψ.

◦ More succinctly, any homomorphism ψ : R → S such that ψ maps all of the elements of D into units
necessarily extends to a homomorphism Ψ : D−1R→ S.

◦ The main idea is simply to de�ne �fractions� r/d with r ∈ R and d ∈ D via an appropriate equivalence
relation, and then to write down the usual rules of fraction arithmetic and verify that all of the de�nitions
are well posed.

◦ Proof (outline): De�ne an equivalence relation on elements of R ×D by setting (r, d) ∼ (s, e) whenever
there exists y ∈ D such that y(ds − er) = 0; it is straightforward to check that ∼ is an equivalence
relation.

◦ Denote the equivalence class of (r, d) by the symbol r/d and the set of all equivalence classes by D−1R,
and de�ne the two operations r/d+s/e = (re+ds)/(de) and r/d ·s/e = (rs)/(de) on D−1R. It is tedious
but straightforward to see that these operations make D−1R into a commutative ring with 1.

◦ Now de�ne π(r) = r/1 and suppose Ψ : D−1R→ S is a homomorphism with Ψ ◦ π = ψ.

◦ Then we must have Ψ(r/1) = (Ψ ◦ π)(r) = ψ(r), and also 1 = Ψ(1/1) = Ψ(1/d)Ψ(d/1), meaning that
Ψ(1/d) = ψ(d)−1. Then Ψ(r/d) = Ψ(r/1)Ψ(1/d) = ψ(r)ψ(d)−1.

◦ But it is easy to see that this choice of Ψ does work, so it is the only such homomorphism.

• The point here is that D−1R is the smallest ring in which all elements of D become units.

◦ When D contains no zero divisors (which is automatically the case if R is a domain and D does not
contain zero), then R injects into D−1R via r 7→ r/1.

◦ A particular useful case of localization is to construct Q from Z (we take D = Z\{0} and R = Z) or
more generally to construct the �eld of fractions of an integral domain R (take D = R\{0}).

• We also note in passing that we can localize any R-module M in the same way: one simply writes down the
same construction using pairs (m, d) with m ∈M and d ∈ D in place of pairs (r, d).

◦ Alternatively, one can obtain the localization of an R-module using tensor products: D−1M ∼= M ⊗R
D−1R. (This tensor product just extends scalars from R to D−1R, which is exactly what D−1M is.)

◦ Exercise: Show that localization commutes with sums, intersections, quotients, �nite direct sums, and is
exact.

◦ Exercise: Show that if I is an ideal of R, then D = R\I is multiplicatively closed if and only if I is prime.

• Our main situation of interest is that of localizing at a prime: this is the case where R is an integral domain
and D = R\P is the complement of a prime ideal P of R.

◦ Exercise: Show that if P is a prime ideal and D = R\P , then D−1R is a local ring with unique maximal
ideal D−1P = π(P ) = eP , the extension of the ideal P to D−1R.

◦ The utility of localizing at a prime is that it isolates the ring's behavior at that prime.

◦ Example: The localization of Z at the prime ideal (p) is the ring Z(p) = {a/b ∈ Q : p - b} of rational
numbers whose denominator is not divisible by p. Its unique maximal ideal is pZ(p), the set of multiples
of p. The quotient ring Z(p)/pZ(p) is isomorphic to Z/pZ.
◦ Note that Z(p) is not the ring of p-adic integers Zp: the p-adic integers are obtained by taking a completion
of the localization Z(p) under the p-adic metric (which we will de�ne later).

◦ Example: Let k be a �eld and take R to be the ring of k-valued functions on a set S. If we let Ma

be the set of functions vanishing at a point a ∈ S, then Ma is a maximal ideal of R. The localization
RMa

= {f/g ∈ R : g(a) 6= 0} is the ring of k-valued rational functions de�ned at a. The unique maximal
ideal of Ma is the ideal of all k-valued rational functions vanshing at a.
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• This second example illustrates the utility of localizing at a prime, because it allows us to study the local
behavior of a rational function near the point a.

◦ For example, the elements of Ma are precisely those rational functions vanishing at a, while the elements
of M2

a are the rational functions that vanish to order 2 at a (i.e., have a double root), and so forth.

◦ More generally, if we localize a domain at a principal prime ideal, by looking at powers of the maximal
ideal, we can measure what power of a prime a given element is divisible by.

• We now formalize all of this using discrete valuations, which provide us a way to identify primes using only
the �eld structure:

• De�nition: Let F be a �eld. A discrete valuation on F is a surjective function v : F× → Z such that
v(ab) = v(a) + v(b) for all a, b ∈ F and v(a + b) ≥ min(v(a), v(b)) for all a, b ∈ F× with a + b 6= 0. The set
R = {r ∈ F× : v(r) ≥ 0} ∪ {0} is called the valuation ring of v.

◦ For convenience, if v is a discrete valuation we often also write v(0) = ∞, in which case we can ignore
the various exceptions in the de�nition above (e.g., v(a+ b) ≥ min(v(a), v(b)) now holds for all a, b).

◦ In general, we say an integral domain R is a discrete valuation ring (DVR) if it is the valuation ring for
some discrete valuation on its �eld of fractions.

◦ Example: For a �xed prime p, the p-adic valuation on Q, which has vp(p
n r

s
) = n for p - r, s, is a discrete

valuation. (For example, v2(4) = 2, v2(
1

3
) = 0, and v2(

3

4
) = −2: the valuation simply gives the power of

p in a rational number.) The associated valuation ring is the set of rational numbers whose denominator
is not divisible by p: this is Z(p), the localization of Z at (p).

◦ Example: For a �xed irreducible polynomial p, the p-adic valuation on Fq(t), which has vp(p
n r

s
) = n for

p - r, s, is a discrete valuation. (For example, vt(t
3) = 3, vt(

t

t+ 1
) = 1, and vt+1(

t

t+ 1
) = −1.) The

associated valuation ring is the set of rational functions whose denominator is not divisible by p: this is
A(p), the localization of A = Fq[t] at (p).

◦ In the two examples above, the valuation rings are both obtained as localizations. We can in fact
construct DVRs by localizing in more generality.

◦ Exercise (Corollary 8 from Section 16.2 of Dummit/Foote): If R is a Noetherian integrally-closed domain
and P is a minimal nonzero prime ideal of R, then RP is a DVR. Deduce in particular that if R is a
Dedekind domain and P is a nonzero prime ideal, then RP is a DVR.

• Proposition (Properties of DVRs): Let R be a discrete valuation ring with �eld of fractions F and valuation
v. Also t ∈ R be any element with v(t) = 1 (such an element is called a uniformizer). Then the following
hold:

1. For any r ∈ F×, either r or 1/r is in R.

2. An element u ∈ R is a unit of R if and only if v(u) = 0. In particular, if ζ ∈ F is any root of unity, then
v(ζ) = 0.

3. If x ∈ R is nonzero and v(x) = n, then x can be written uniquely in the form x = utn for some unit
u ∈ R.

4. Every nonzero ideal of R is of the form (tn) for some n ≥ 0.

5. The ring R is a Euclidean domain (hence also a PID and a UFD) and also a local ring.

6. The ring S is a DVR if and only if it is a PID and a local ring but not a �eld.

◦ Proofs: Exercises.

• We will also remark that a discrete valuation v on a �eld F naturally makes F into a metric space using the
non-Archimedean metric dv(a, b) = 2−v(a−b). Explicitly:

1. We clearly have dv(a, b) ≥ 0 with equality if and only if a = b.
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2. Since v(−1) = 0 by (2) in the proposition above, we have v(a − b) = v(b − a) and thus dv(a, b) =
2−v(a−b) = 2−v(b−a) = dv(b, a).

3. From v(x+y) ≥ min(v(x), v(y)) we have v(a−b) ≥ min(v(a−c), v(c−b)), so negating yields −v(a−b) ≤
max(−v(a− c),−v(c− b)). Then dv(a, b) = 2−v(a−b) ≤ max(2−v(a−c), 2−v(c−b)) = max(dv(a, c), dv(c, b)).

◦ We could also replace 2 by any real number greater than 1 in the de�nition of the metric without a�ecting
anything.

◦ With this metric, we can then speak fruitfully of Cauchy sequences, write down the metric topology on
F , and take completions. (Completing Q under the p-adic metric yields the p-adic �eld Qp, while the
completion of its valuation ring Z yields the ring of p-adic integers Zp.)

• We now have enough background to discuss primes in function �elds. The point of all of these preliminaries
is that there is a natural interplay between discrete valuations on F and the primes associated to F , at least
in the case of F = Q.

• De�nition: If K is a function �eld over F , a prime P of K is the maximal ideal of a discrete valuation ring R
containing F whose �eld of fractions is K. The associated valuation on K is denoted ordP .

◦ Explicitly, the idea is that if we have a discrete valuation on K, then the valuation ring R is a local ring
whose unique maximal ideal represents a prime of K.

• It is worth going through why this de�nition is (up to some haziness) really the same as the usual one in the
case K = Q that we already understand.

◦ If we have a discrete valuation v on Q, then v(−1) = v(1) = 0 and so v(n) ≥ 0 for all integers n. This
means that the valuation ring R contains Z.
◦ Exercise: If v is a discrete valuation on Q, the set P = {n ∈ Z : v(n) > 0} is a prime ideal of Z.

◦ By the exercise, P = (p) for some prime p. Then v(a) = 0 for p - a, so if v(p) = r we see v(pn
a

b
) = rn

for p - a, b. Since discrete valuations are onto and v(p) > 0, we must have n = 1, and so v is the usual
p-adic valuation on Q.
◦ Therefore, the only discrete valuations on Q are the p-adic valuations. The corresponding valuation ring
is then Z(p) with unique maximal ideal pZ(p).

◦ We see that for each integer prime p, we obtain a unique prime ideal P = pZ(p) inside the associated a
valuation ring of Q. The collection of valuations vp, evaluated on a rational number α ∈ Q, measures
�how divisible� the element α is by each of the primes p.

◦ Note also that in this case, the quotient of the valuation ring R = Z(p) by its maximal ideal P = pZ(p)

is isomorphic to Z/pZ, which has cardinality p: the size of this quotient R/P naturally gives us a way
to measure the size of the prime P .

• We can do something quite similar in the function �eld case:

• Proposition (Degrees of Primes): If K is a function �eld over F and P is a prime with valuation ring R, then
the quotient R/P is a �nite-dimensional F -vector space. We de�ne the degree of P to be the dimension of
this vector space.

◦ Proof: Since P is a maximal ideal of R and contains F , R/P is a �eld extension of F , so we just need to
show its degree over F is �nite.

◦ Suppose y ∈ P\F . As noted earlier, y is transcendental over F and K/F (y) is a �nite-degree extension.
We claim that [R/P : F ] ≤ [K : F (y)].

◦ To see this, suppose that x1, x2, . . . , xm ∈ R have the property that their reductions x1, x2, . . . , xm ∈ R/P
are F -linearly independent, and suppose there is a linear dependence over F (y): say f1(y)x1 + f2(y)x2 +
· · ·+ fm(y)xm = 0 for some fi(y) ∈ F [y].

◦ If we cancel any common factors of y from the fi(y), and then reduce modulo P , we obtain a linear
dependence of the xi in R/P , contradiction (the point is that not all of the fi are divisible by y, so at
least one of them has a nonzero reduction modulo P ).
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◦ Thus, any linearly independent set in R/P lifts to a linearly independent set in K, so we obtain the
claimed inequality.

• Let's work all of this out in the case we mostly understand already: the purely transcendental extension
K = F (t).

◦ From our discussion, if p is any irreducible polynomial in A = F [t], we obtain a discrete valuation ring
associated to the prime p as the localization R = A(p) and its unique maximal ideal is P = pA(p).

◦ Then R/P ∼= A/(p), in which case the dimension of R/P as an F -vector space is the same as the

dimension of A/(p) as an F -vector space, and this is simply deg(p), since {1, t, . . . , tdeg p−1} is a basis for
A/(p).

◦ Thus, the degree as de�ned above agrees perfectly with our normal sense of the degree of a polynomial.

◦ The associated p-adic valuation vp is the same as the one we discussed earlier: vp(p
n r

s
) = n for p - r, s:

it pick out the power of the prime p that divides a rational function f = pn
r

s
∈ F (t).

◦ Localizing A at a prime ideal yields almost all of the possible discrete valuation rings attached to F [t].

◦ But there is, in fact, one more: the valuation v∞(f/g) = deg(g)/deg(f), whose associated valuation
ring is obtained by localizing A′ = F [t−1] at the prime ideal (t−1). The resulting prime is known as the
prime at in�nity, and its degree is 1.

◦ Exercise: Prove that the p-adic valuations vp along with v∞ are the only discrete valuations on F (t)/F .
(Use a similar argument to the one for Q by identifying all possible uniformizers.)

◦ The general philosophy is that there will be a few �in�nite primes�, and the rest are ��nite primes� that
arise from localizing at a prime ideal. (Over Q, the in�nite prime corresponds to the usual absolute value
|·| resulting in the completion R, but this is not a discrete valuation.)

• We can also give a brief explanation of some of the terminology (e.g., �function �eld�).

◦ Suppose P is a prime of K/F where F is algebraically closed (e.g., F = C). Then the quotient R/P is
a �nite-degree �eld extension of F hence is simply (isomorphic to) F itself.

◦ For any element a ∈ K, we can then simply �read o�� the values of a at the various primes P by
interpreting a(P ) as the image of a inside the quotient R/P ∼= F .

◦ This is why K/F is called a function �eld, since we may think of the actual elements of K as F -valued
functions on the primes P . The elements of F correspond to constant functions, which is why we refer
to F as the constant �eld of K.

◦ Furthermore, as we will discuss later, we can think of the primes of P geometrically as �places� or �points�.

◦ For K = C(t), for example, we obtain a �nite prime Pr corresponding to each element t − r for r ∈ C,
along with the in�nite prime. Explicitly, Pr is the collection of rational functions vanishing at r (which
is the unique maximal ideal of the ring R of all rational functions de�ned at r), and the evaluation-at-r
map yields an explicit isomorphism R/Pr ∼= C.
◦ Together, the �nite primes Pr along with the in�nite prime form the complex projective line P1(C) =
C ∪ {∞}, which we may view analytically as being the Riemann sphere, and the �eld K consists of all
of the C-valued rational functions on the Riemann sphere.

0.11 (Oct 8) Student Presentations of HW1

0.12 (Oct 15) Divisors and the Divisor Group

• Our main goal now is to state, show, and use the Riemann-Roch theorem, which is the most fundamental
basic theorem about function �elds. The �rst ingredient is divisors:

• De�nition: The divisor group of K, written DK , is the additive free abelian group generated by the primes
of K.
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◦ The elements of DK are of the form D =
∑
P nPP for nP ∈ Z, where all but �nitely many of the nP are

zero. We will write ordP (D) = nP .

• De�nition: The degree of a divisor D =
∑
P nPP is deg(D) =

∑
P nP deg(P ). The degree map is a homo-

morphism from DK to Z; its kernel is the set of degree-0 divisors.

◦ Note that this sum is well de�ned since all but �nitely many nP are zero.

• If a ∈ K× is nonzero, we can attach a divisor to it by calculating its order at each prime P of K.

• De�nition: We de�ne the divisor of an element a ∈ K× as div(a) =
∑
P vP (a)P . The divisors of the form

div(a) for some a ∈ K× are called principal divisors.

◦ We will often also write ordP (a) (the order of a at P ) interchangeably with vP (a) (the P -adic valuation
of a).

◦ Remark: In many sources, the divisor of a is often written (a). In our context, this can lead to ambiguities,
since the same notation is also used for the ideal generated by a.

◦ A priori, it is not clear we have actually given a well-de�ned divisor: to show this we need to establish
that vP (a) = 0 for all but �nitely many primes P .

◦ Assuming this for the moment, since ordP (a/b) = ordP (a) − ordP (b), summing over all primes shows
that div(a/b) = div(a)− div(b), so the principal divisors are a subgroup of the divisor group DK .

• We must still show that the divisor of an element is actually well de�ned:

• Proposition (Divisors of Elements): For any a ∈ K×, we have vP (a) = 0 for all but �nitely many primes P of
K.

◦ Proof: First, if a ∈ F×, then for any prime P the associated valuation ring R contains F . In particular,
since a ∈ F× this means a is a unit in R hence has valuation 0. This means vP (a) = 0 for all P , and so
div(a) = 0.

◦ Now suppose a 6∈ F×, so a is transcendental over F and K/F (a) is �nite.

◦ If P is a prime of K and vP (a) > 0, then by de�nition there is a discrete valuation ring R such that a is
not a unit. Then R contains F [a], and since R is integral over F [a], it embeds into the integral closure
of F [a] inside K.

◦ We lose nothing by enlarging R, so now assume R is the integral closure of F [a] in K: then R is a
Dedekind domain2 since it is Noetherian, integrally closed, and the localization of R at any nonzero
prime is a discrete valuation ring.

◦ Since R is a Dedekind domain, every nonzero ideal can be factored uniquely as a product of prime ideals.
So write Ra = pb11 pb22 · · · p

bk
k for distinct prime ideals p1, p2, . . . , pk. Localizing at the prime pi yields a

unique prime Pi of K, and since all of the other ideals become invertible, we see ordPi
(a) = bi, and

ordQ(a) ≤ 0 for any other prime Q.

◦ In particular, we see that there are only �nitely many primes for which vP (a) > 0.

◦ In the same way, if vP (a) < 0, by doing the same calculation for a−1 (i.e., by taking R′ to be the integral
closure of F [a−1] inside K and factoring R′a−1 = qc11 · · · q

cl
l as a product of prime ideals) we see that

there are also only �nitely many primes for which vQ(a) < 0.

◦ Thus, the divisor div(a) =
∑
P vP (a)P is well de�ned, as claimed.

• Note that the proof given above gives an algorithm for computing divisors of elements: inside the integral
closure of F [a] (and F [a−1]) inside K, we compute the prime ideal factorization of the ideal (a) (or (a−1));
then the exponents of the various primes give the corresponding valuations.

◦ Let's work this out in the case of K = C(t): suppose we have a nonconstant rational function a =
f

g
,

which we factor as a = u
(t− r1)a1 · · · (t− rk)ak

(t− s1)b1 · · · (t− sl)bl
for distinct r1, . . . , rk, s1, . . . , sl ∈ C and some unit

factor u ∈ C×.
2For additional reference about Dedekind domains, including the factorization result we quote here, see section 16.3 of Dummit/Foote.
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◦ Each of the monic irreducibles t − ri and t − sj yields a unique prime of K. We have vPt−ri
(a) = ai

and vPt−sj
(a) = −bj for each i, j, and the valuation at every other �nite prime is 0. Also, we have

v∞(a) = deg(g)− deg(f) =
∑
bj −

∑
i ai.

◦ Therefore, div(a) = a1Pt−r1 + · · ·+ akPt−rk − b1Pt−s1 − · · · − blPt−sl + [
∑
j bj −

∑
i ai]∞.

◦ Notice in particular that deg(div(a)) =
∑
i ai −

∑
bj + [

∑
j bj −

∑
i ai] = 0, which is to say, the divisor

of any element of K× has degree zero.

◦ Furthermore, we see that the primes with positive order at a correspond precisely to the zeroes of a = f/g
(and the order of a at that prime is the order of vanishing of a there), while the primes with negative
order correspond to poles (and the order of a at that prime is the order of the pole there).

◦ We can also give a similar calculation for K = F (t) where F is not algebraically closed in terms of the
monic irreducible factors of a = f/g. The resulting divisor decomposition is essentially just the prime
factorization of the rational function f/g:

◦ Exercise: ForK = F (t), if a = u
pa11 · · · p

ak
k

qb11 · · · q
bl
l

for u ∈ F× and distinct monic irreducibles p1, . . . , pk, q1, . . . , ql

having associated primes P1, . . . , Pk, Q1, . . . , Ql, show that div(a) = a1P1 + · · · + akPk − b1Q1 − · · · −
blQl + [

∑
j bj deg(qj)−

∑
i ai deg(pi)]∞.

• Motivated by the calculations for K = C(t), we can also pick out the zeroes (respectively, poles) of an element
by extracting only the portion of its divisor with positive (respectively, negative) coe�cients:

• De�nition: If a ∈ K× has divisor div(a) =
∑
P nPP , we de�ne div+(a) =

∑
P max(0, nP )P =

∑
P :nP>0 nPP

and div−(a) =
∑
P min(0, nP )P =

∑
P :nP<0 nPP .

◦ Notice that div(a) = div+(a)− div−(a) for any element a.

◦ Remark: There are various other notations for these quantities that are often used, such as (a)0 for div+

and (a)∞ for div−, which are intended to evoke the idea of picking out the zeroes and poles of a.

◦ For a =
f

g
= u

(t− r1)a1 · · · (t− rk)ak

(t− s1)b1 · · · (t− sl)bl
in C(t), we have div+(a) = a1P1+· · ·+akPk (plus [deg g−deg f ]∞

if deg g − deg f > 0) and div−(a) = b1Q1 + · · ·+ blQl (plus [deg g − deg f ]∞ if deg g − deg f < 0).

◦ Exercise: For any �eld F , if f(t), g(t) ∈ F [t] are relatively prime, show that [F (t) : F ( f(t)
g(t) )] =

max(deg f, deg g). [Hint: Use Gauss's lemma to show that q(y) = f(y) − f(t)
g(t) g(y) ∈ F ( f(t)

g(t) )[y] is the

minimal polynomial of t over F ( f(t)
g(t) ).]

◦ In the example above, we can also compute that deg(div+(a)) = deg(div−(a)) = max(deg f, deg g), and
by the exercise above, this quantity is equal to the extension degree [K : F (a)]. In fact, this result is
true in general:

• Theorem (Divisor Degrees): For any a ∈ K×, we have deg(div+(a)) = deg(div−(a)) = [K : F (a)]. As a
consequence, deg(div(a)) = 0.

◦ We will defer the proof for F = Fq until later, since it requires a number of ingredients we have not
developed yet. The general case we will skip (the result is not that di�cult, but it is not especially
enlightening for what we will be doing).

◦ Our main observation here is that the divisor of an element a ∈ K× always has degree 0, which is to say,
the principal divisors are actually a subgroup of the group of degree-0 divisors.

• De�nition: We say two divisors D1 and D2 are linearly equivalent (and write D1 ∼ D2) if D1−D2 is principal.
The resulting equivalence classes (i.e., divisors modulo principal divisors) form a group called the class group,
or the Picard group, of K.

◦ Exercise: Verify that this relation is an equivalence relation and that the equivalence classes are the
elements in the quotient group of divisors modulo principal divisors.

◦ Some notation for these various groups: Div(K) = DK is the group of all divisors on K, Div0(K) is the
group of degree-0 divisors on K, Cl(K) = Pic(K) = Div(K)/[principal divisors] is the class group of K.
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◦ Since principal divisors all have degree zero, we can also form the reduced Picard group Pic0(K) =
Div(K)/[principal divisors].

• For K = F (t), the reduced Picard group is trivial:

• Proposition (Reduced Picard Group of F (t)): If K = F (t), then Pic0(K) = Div(K)/[principal divisors] is the
trivial group, and Pic(K) ∼= Z.

◦ Remark: It can be shown that K = F (t) is essentially the only situation where Pic0(K) is trivial.

◦ Proof: The result is equivalent to showing that every divisor of degree 0 is principal, so suppose D =∑
P bPP has degree 0.

◦ Let a =
∏
P 6=∞ p(t)bp , where p(t) is the irreducible polynomial associated to the �nite prime P of K.

◦ Then ordP (a) = bp for each prime P 6= ∞. But since
∑
P bP deg(P ) = 0 by the assumption on D, and

deg(div(a)) = 0 as well, we must have ord∞(a) = b∞ also.

◦ Then ordP (a) = bp for all primes P , meaning that div(a) = D and so D is principal as claimed.

◦ The statement that Pic(K) ∼= Z follows immediately from Div(K)/Div0(K) ∼= Z.

• To �nish the discussion here, we remark on the analogy with the case of algebraic number �elds.

◦ If K/Q is an algebraic number �eld, we have an exact sequence
1→ [units of OK ]→ K∗ → [fractional ideals of OK ]→ [ideal class group of K]→ 1.

◦ If K/F is an algebraic function �eld, the analogous exact sequence is
1→ F ∗ → K∗ → Div0(K)→ Pic0(K)→ 1.

◦ The constant �eld of K plays the role of the units of an algebraic number �eld, the group of degree-0
divisors plays the role of the fractional ideals in the ring of integers, and the reduced Picard group plays
the role of the ideal class group.

• We now put a partial ordering on divisors motivated by the idea of divisibility for integers and rational
functions: the idea is that if we look at p-adic valuations of elements of Q, we can identify the elements of Z
as those whose valuations are nonnegative at every prime p.

• De�nition: If a divisor D =
∑
P nPP has nP ≥ 0 for all primes P , we say D is e�ective and we write D ≥ 0.

We extend this notion to a partial ordering on divisors by writing D1 ≤ D2 if and only if D2−D1 is e�ective.

◦ Exercise (easy): Check that the relation D1 ≤ D2 is a partial ordering on divisors.

◦ The partial ordering on divisors allows us to specify the order of zeroes and poles: to illustrate, for
K = C(t), saying that f has a pole of order at most 2 at z = 0 and a zero of order at least 3 at z = 1 is
equivalent to saying div(f) ≥ −2Pz−0 + 3Pz−1.

• De�nition: If D is a divisor, the Riemann-Roch space associated to D is the set L(D) = {a ∈ K× : div(a) ≥
−D} ∪ {0}. Equivalently, an element a ∈ K is in L(D) if and only if vP (a) ≥ −vP (D) for all primes P of K.

◦ When D is e�ective, L(D) represents all rational functions whose poles are �no worse� than D.

◦ More generally, if D =
∑
P nPP −

∑
QmQQ with ni,mi > 0, then L(D) consists of all a ∈ K such that

a has a zero of order at least mQ at each prime Q, and may have poles only at the primes P , of order at
most nP at P .

◦ It is not hard to see that L(D) is an F -vector space: if a, b ∈ L(D), then a+b ∈ L(D) because vP (a+b) ≥
min(vP (a), vP (b)) for each prime P , and ca ∈ L(D) for all c ∈ F since vP (ca) = vP (c) + vP (a) = vP (a)
since vP (c) = 0 for all primes P .

◦ Example: For K = F (t) and D = Pt, we can see that L(D) = span(1, t−1), since the only possible
poles of an element f/g ∈ L(D) function occur at t = 0 (of order 1) and the function must also have
deg g ≥ deg f since there is no pole at the in�nite prime P∞.

◦ Example: For K = F (t) and D = 3P∞, we can see that L(D) = span(1, t, t2, t3) since the function f/g
has no poles except a pole of order at most 3 at P∞ (meaning that deg g ≤ deg f + 1), which is to say,
f/g is a polynomial of degree at most 3.
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◦ Example: For K = F (t) and D = −Pt, we can see that L(D) = {0}, since any nonzero element
f/g ∈ L(D) would need to be zero at t = 0 and de�ned at all other primes, but this cannot occur
because g would have to be constant, but then deg f > deg g would force f/g to have a pole at P∞.

◦ Example: For arbitrary K, we have L(0) = F , since div(a) = 0 for all a ∈ F×, but any element
x ∈ K×\F necessarily has at least one pole (at any prime associated to a prime occurring in the prime
factorization of the ideal generated by x−1 in the integral closure of F [x−1] inside K).

◦ Exercise: Determine L(D) when K = F (t) for D = Pt − P∞, Pt + P∞, and Pt + Pt−1.

◦ Exercise: Write down an interesting divisor of positive degree for K = F (t) and then compute a basis
for the Riemann-Roch space L(D).

0.13 (Oct 20) The Riemann-Roch Theorem and Applications

• We now study the dimensions of these Riemann-Roch spaces.

• De�nition: If D is a divisor, we de�ne `(D) = dimF L(D).

◦ Examples: By the examples worked out above, for K = F (t) we have l(Pt) = 2, l(3P∞) = 4, and
l(−Pt) = 0.

◦ Example: For an arbitrary K, we have `(0) = 1, since L(0) = F .

• Proposition (Properties of l(D)): Let K be a function �eld over F and D be a divisor of K.

1. If D1 ≤ D2, then `(D1) ≤ `(D2).

◦ Proof: This follows immediately from the de�nition, since D1 ≤ D2 clearly implies that L(D1) is a
subspace of L(D2).

2. If D1 ∼ D2, then L(D1) ∼= L(D2) and so `(D1) = `(D2).

◦ Proof: If D1 = D2 + div(g), then the map from L(D1) to L(D2) sending f 7→ fg is easily seen to be
an isomorphism of vector spaces since it has an inverse map h 7→ h/g.

3. If deg(D) ≤ 0, then L(D) = {0} and l(D) = 0 except when D = div(a) is principal, in which case
L(D) = span(a) and l(D) = 1.

◦ Proof: Suppose f ∈ L(D) and f 6= 0. Then 0 = deg(div(f)) ≥ deg(−D) = −deg(D).

◦ Furthermore, equality can hold only if D = −div(f) for some f ∈ K×, in which case D is principal.

◦ If D is principal, then `(D) = `(0) = 1 by (2), and L(D) = Fa = span(a) by the same calculation.

4. If D1 and D2 are divisors with D1 ≤ D2, then dimF (L(D2)/L(D1)) ≤ deg(D2)− deg(D1).

◦ Proof: Induct on the sum of the coe�cients of the primes in the e�ective divisor D2−D1. The base
case D2 −D1 = 0 is trivial.

◦ For the inductive step, suppose that D2 = D1 + P for some prime P , and choose x ∈ K such that
vP (x) = vP (D2) = vP (D1) + 1.

◦ Then for any y ∈ L(D2), we have vP (xy) = vP (x) + vP (y) ≥ vP (D2) − vP (D2) ≥ 0, so xy ∈ RP
where R is the valuation ring associated to the prime P .

◦ By composing with the evaluation map at P (i.e., taking the quotient of RP by PRP and then viewing
this as isomorphic to R/P ), we obtain an F -linear transformation ϕ : L(D2) → RP /PRP ∼= R/P
with ϕ(y) = (xy)(P ).

◦ Then y ∈ ker(ϕ) if and only if (xy)(P ) = 0 if and only if vP (xy) ≥ 1 if and only if vP (y) ≥
1− vP (D2) = −vP (D1), and this last statement is equivalent to y ∈ L(D1).

◦ Thus, by the �rst isomorphism theorem, we have an injection from L(D2)/L(D1) to R/P . Taking
dimensions yields dimF (L(D2)/L(D1)) ≤ dimF (R/P ) = deg(P ).

◦ This establishes the inductive step, so the general result follows.

5. For any e�ective divisor D, we have `(D) ≤ deg(D) + 1. In fact, this inequality holds for any divisor D
of degree ≥ 0.
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◦ Proof: For e�ective divisors, this follows immediately by induction on the degree of D using (4),
starting with the base case l(0) = 1.

◦ For general divisors, the result is trivial if `(D) = 0, so suppose otherwise that `(D) ≥ 1 and let
a ∈ L(D) be nonzero. Then div(a) ≥ −D which is equivalent to D − div(a−1) ≥ 0.

◦ Then for D′ = D − div(a−1), we see that D is equivalent to the e�ective divisor D′, and so by (2)
we have `(D) = `(D′) ≤ deg(D′) + 1 = deg(D) + 1, as required.

6. For any divisor D, the quantity `(D) is �nite.

◦ Proof: If deg(D) < 0 then (3) gives `(D) = 0, while if deg(D) ≥ 0 then (5) gives `(D) ≤ deg(D) + 1.

• What we would like to be able to do now is to calculate the actual dimension `(D) for arbitrary divisors D.
Rather than delaying the point, we will now get right to our main result:

• Theorem (Riemann-Roch): For any algebraic function �eld K/F , there exists an integer g ≥ 0, called the
genus of K, and a divisor class C, called the canonical class of K, such that for any divisor C ∈ C and any
divisor A ∈ Div(K), we have `(A) = deg(A)− g + 1 + `(C −A).

◦ Remarks: The divisor class C, as we will explain at length later in the case of Riemann surfaces, is the
divisor class associated with the Weil di�erentials of K.

• We will not prove the general function-�eld version of the Riemann-Roch theorem, since it requires a fair bit
of background to develop the necessary results about Weil di�erentials.

◦ Instead, we will go through the proof of the analytic version of Riemann-Roch for Riemann surfaces,
which contains most of the main ideas but is more accessible since the complex-analytic notion of a
di�erential is quite natural.

• For now, we will run through some consequences of the Riemann-Roch theorem.

• Proposition (Corollaries of Riemann-Roch): Let K/F be an algebraic function �eld.

1. For any divisor A with deg(A) ≥ 0, we have deg(A)− g + 1 ≤ `(A) ≤ deg(A) + 1.

◦ Proof: We showed the upper bound earlier using an inductive argument. The lower bound follows
immediately from Riemann-Roch since `(C −A) ≥ 0.

2. For C ∈ C we have `(C) = g and deg(C) = 2g − 2.

◦ Proof: First set A = 0 in Riemann-Roch: this yields `(0) = deg(0)− g + 1 + `(C), so since `(0) = 1
and deg(0) = 0, we get `(C) = g.

◦ Now set A = C in Riemann-Roch: this yields `(C) = deg(C) − g + 1 + `(0), and so deg(C) =
`(C) + g − 1− `(0) = 2g − 2.

3. If deg(A) ≥ 2g − 2, then `(A) = deg(A)− g + 1 except when A ∈ C (in which case `(A) = g).

◦ Proof: If deg(A) ≥ 2g−2, then deg(C−A) ≤ 0, and so `(C−A) = 0 except when C−A is principal
(i.e., when A ∈ C).
◦ When `(C − A) = 0 Riemann-Roch immediately gives `(A) = deg(A) − g + 1, and when A ∈ C we
have `(A) = g by (2).

4. The genus g is unique, as is the equivalence class C.
◦ Proof: Pick A of su�ciently large degree: then deg(A) − `(A) + 1 = g by (3), so g is uniquely
determined.

◦ For C, if `(A) = deg(A)− g + 1 + `(C − A) = deg(A)− g + 1 + `(D − A) for some other divisor D,
then `(C −A) = `(D −A) for all A.

◦ Setting A = C yields `(D − C) = 1 and setting A = D yields `(C − D) = 1, and these are
contradictory unless D − C is principal, which is to say, D ∼ C.

• Let's use Riemann-Roch to examine function �elds of small genus. We start with the simplest genus g = 0.

◦ By Riemann-Roch, we have `(A) = deg(A) + 1 + `(C −A) for any divisor A, and also deg(C) = −2.
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◦ Also, by (3), if deg(A) ≥ −1 then `(A) = deg(A) + 1. In particular, since deg(−C) = 2, we have
`(−C) = 3.

◦ Now, for any prime P , we have `(P ) ≤ deg(P ) + 1. So, if P is any prime with P ≤ C (there must be at
least one since deg(−C) is positive), we see `(P ) ≤ `(−C) = 3. Thus, deg(P ) must be either 1 or 2.

◦ First suppose that there is a prime P of degree 1. Then `(P ) = 2. Since F is a subspace of L(P ), there
is a basis of L(P ) of the form {1, x} for some x 6∈ F .
◦ Then since deg(div(x) + P ) = 1 and div(x) + P ≥ 0, we must have div(x) + P = Q for some prime Q
(necessarily of degree 1). Then div(x) = P −Q, and so [K : F (x)] = deg(div+(x)) = deg(P ) = 1, which
means K = F (x).

◦ Exercise: Show in this case that the canonical class contains every divisor of K of degree −2.

◦ Now suppose there is no prime P of degree 1: per earlier, we have a prime P ≤ C of degree 2.

◦ Then `(P ) = 3, so again since L(P ) contains F , we may take a basis for L(P ) of the form {1, x, y} for
some F -linearly independent x, y 6∈ F .
◦ In the same way as above, we see that div(x) = P −Q and div(y) = P −R for some (necessarily distinct)
primes Q and R of degree 2.

◦ Then [K : F (x)] = deg(div+(x)) = 2 and [K : F (y)] = deg(div+(y)) = 2 also. Since F (x) 6= F (y) (by
linear independence and the fact that K is a degree-2 extension of both), we see K = F (x, y).

◦ Furthermore, Riemann-Roch says that `(2P ) = 1 + deg(2P ) = 5, but we can �nd six di�erent elements
in L(2P ), namely {1, x, y, x2, xy, y2}. They must therefore be F -linearly dependent, so we see that x and
y satisfy some quadratic relation ax2 + bxy + cy2 + dx+ ey = f .

◦ Geometrically, this case corresponds to a conic, while the case K = F (x) corresponds to a line (since we
can think of F (x) = F (x, y) where y is a linear function of x).

• We can use similar ideas to study the case where the genus g is equal to 1.

◦ In this case, for g = 1 Riemann-Roch and its corollaries say that `(A) = deg(A) + `(C − A), that
deg(C) = 0 and `(C) = 1, and that if deg(A) ≥ 1 then `(A) = deg(A).

◦ Unlike the case g = 0, we are not necessarily guaranteed to have a prime of any given degree any more,
since we cannot use C to construct a prime of small degree � indeed, since deg(C) = 0 and `(C) = 1, in
fact C is principal (and C ∼ 0).

◦ So let us instead merely suppose that we do have a prime P of degree 1. Then `(2P ) = 2, so choose a
basis {1, x} for L(2P ), where we necessarily must have vP (x) = 2 since x 6∈ L(P ). Then `(3P ) = 3, so
choose a basis {1, x, y} for L(3P ), where we must necessarily have vP (y) = 3 since y 6∈ L(2P ).

◦ Then, as above, [K : F (x)] = deg(div+(x)) = 2 and [K : F (y)] = deg(div+(y)) = 3, so since 2 and 3 are
relatively prime, we see K = F (x, y).

◦ Now we would like to identify what kind of algebraic relation x, y must satisfy (they are, after all,
algebraically dependent), which we can do by looking at the spaces L(kP ) for larger values of k, since
the various monomials xiyj will all only have poles at P .

◦ We have `(4P ) = 4, but we can only identify 4 elements that must lie in this space: {1, x, y, x2}. (In
fact, they are all linearly independent since they all have di�erent valuations at P .)

◦ Likewise, `(5P ) = 5, but we only have 5 elements in this space: {1, x, y, x2, xy}, but again, these elements
are all linearly independent since they have di�erent valuations at P .

◦ But now consider `(6P ) = 6: we can generate 7 elements in this space: {1, x, y, x2, xy, x3, y2}. We
must therefore have a linear dependence among these elements, and in fact since x3 and y2 are the only
elements with valuation 6 at P , they must both occur with nonzero coe�cients.

◦ By rescaling x, y appropriately, we obtain an algebraic relation of the form y2 +a1xy+a3y = x3 +a2x
2 +

a4x + a6 for some a1, a2, a3, a4, a6 ∈ F : this is an elliptic curve, and the corresponding function �eld
K = F (x, y) is called an elliptic function �eld. (The indices on the coe�cients ai are listed that way
because they are giving the �missing� pole valuation at P for the corresponding monomial term.)

◦ When the characteristic of F is not 2 or 3, we may complete the square in y and the cube in x to obtain
a simpler equation y2 = x3 +Ax+B.
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• Our analysis, even in these comparatively simple situations, indicates a correspondence between algebraic
function �elds and algebraic plane curves.

◦ As we will discuss later at length, there is an equivalence of the following two categories:

1. (Objects) Algebraic function �elds K/F of transcendence degree 1 where K ∩ F = F
(Morphisms) Field injections �xing 1 (up to isomorphism)

2. (Objects) Smooth projective curves de�ned over F
(Morphisms) Non-constant rational maps de�ned over F (up to isomorphism)

◦ The correspondence is obtained by associating a smooth curve C with the �eld of rational functions
de�ned on C.

• We will now use Riemann-Roch in our speci�c case of interest with base �eld F = Fq. Our �rst result is that
there necessarily exist divisors of all degrees:

• Proposition (Existence of Degree-1 Divisors): If K is a function �eld over Fq, then there exists a divisor D of
degree 1 over K, and hence there exist degrees of all degrees over K.

◦ Proof (sketch): Let P be a prime of K and let σ = Frobq be the q-power Frobenius automorphism of K.

◦ Exercise: If R is the valuation ring of P , show that σR is also a valuation ring with maximal ideal σP , and
that σ gives an isomorphism of R/P with σR/σP . Show also that for any a ∈ K, vσP (a) = vP (σ−1a).

◦ By the exercise, σP is also a prime of K and it has the same degree as P , so σP − P has degree 0.

◦ It can be shown that σP −P is equal to σD−D for some degree-0 divisor D (this is essentially Hilbert's
theorem 90), which means σ(P −D) = P −D.

◦ Then P −D is a divisor that is �xed by the Frobenius map, which (one may show) necessarily implies
that P −D has degree 1. (The principle is the same as the observation that the elements of Fq �xed by
Frobenius are precisely the elements of Fq, which generate extensions of degree 1.)

• As an immediate consequence of the proposition above, we obtain an exact sequence 0→ Pic0(K)→ Pic(K)→
Z→ 0.

◦ Our next goal is to show that the reduced Picard group is �nite.

• Proposition (Finiteness of the Class Group): Let K be a function �eld over F = Fq. Then the following hold:

1. For any n ≥ 1, the number of primes of K having degree n is �nite.

◦ Proof: Let x ∈ K\F , so that [K : F (x)] is �nite. If P is a prime of K having degree n, then P lies
over some prime of F (x) of degree ≤ n.
◦ Since there are only �nitely many primes in F (x) of degree ≤ n, and there are only �nitely many
di�erent primes in a �nite-degree extension [K : F (x)] that lie above a particular prime in F (x)
(speci�cally, this number is bounded by the extension degree), we see that there are only �nitely
many primes of K.

◦ Exercise: Show that the number of primes of degree ≤ n in K is at most [K : F (x)]qn for any
x ∈ K\F .

2. For any n ≥ 0, the number of e�ective divisors of K having degree n is �nite.

◦ Proof: Suppose D =
∑
P nPP is e�ective and has degree n. Then deg(P ) ≤ deg(D) = n for each

prime P appearing with a positive coe�cient.

◦ By (1), there are only �nitely many possible primes P of degree at most n. For each such prime P ,
the coe�cient nP is at most n/deg(P ), so there are �nitely many possible choices for each nP .

◦ Thus, there are only �nitely many possible terms nPP that can appear in D, and so the number of
e�ective divisors of degree n is �nite.

◦ Exercise: Give an explicit upper bound in terms of [K : F (x)], q, and n for the number of e�ective
divisors of degree n in K.

3. The reduced Picard group Pic0(K) is �nite.
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◦ Proof: Let D be a divisor of degree 1. If A is any divisor of degree 0, then deg(gD + A) = g, so
`(gD +A) ≥ deg(gD +A)− g + 1 = 1 by Riemann-Roch.

◦ Pick any nonzero f ∈ L(gD +A): then div(f) + gD +A ≥ 0 is some e�ective divisor B.

◦ Then A ∼ B − gD, so since there are �nitely many possible B by (2), and gD is �xed, there are
�nitely many possible classes for A.

4. If hK is the class number of K (the cardinality of Pic0(K)), then there are exactly hK divisor classes of
each possible degree.

◦ Proof: Let D be a divisor of degree 1. Then for any divisor A of degree n, we see A−nD has degree
0, and so by (3) there are hK possible classes for A− nD up to equivalence.

◦ Since nD is �xed, this means there are hK possible classes for A up to equivalence, as required.

0.14 (Oct 22) Proof of Riemann-Roch Over C

• We now discuss the details of Riemann-Roch in the case F = C, where we can give an essentially complete
argument (aside from some reliance on a few facts from complex analysis and di�erential topology).

◦ Under the correspondence of curves and function �elds, we are analyzing smooth complex projective
curves, which are the same as 1-dimensional complex di�erentiable manifolds.

◦ If we instead work over the reals, we can equivalently think of a 1-dimensional complex di�erentiable
manifold as a compact Riemann surface X.

◦ In this situation, the genus g also represents the topological genus of X (i.e., the number of �holes� in
the surface, also equal to 1− χ/2 where χ is the Euler characteristic).

◦ The primes of the function �eld K are then simply the points P in X (since we are over C, all of the
primes have degree 1).

◦ The elements of the function �eld K are then the meromorphic functions on X (i.e., the functions that
are complex-di�erentiable except at a �nite set of poles).

◦ For f ∈ K×, the divisor div(f) =
∑
P∈X vP (f)P tabulates the zeroes and poles of f : if vP (f) = k > 0

then f has a zero of order k at P , while if vP (f) = −k < 0 then f has a pole of order k at P .

◦ Two divisors D1 and D2 are equivalent when D1 −D2 is principal, which is to say, when they di�er by
the divisor of a meromorphic function.

◦ We can also deduce a few facts about divisors of functions analytically (rather than algebraically as we
did earlier).

◦ For example, suppose div(f) = 0: then f has no poles and is therefore holomorphic, but since X is
compact this means |f | is bounded and so by Liouville's theorem, f is constant. (This also shows that
the only functions holomorphic on all of X are the constants.)

◦ Exercise: For any nonzero meromorphic f on X, show that deg(div(f)) = 0. [Hint: Use Cauchy's

argument principle: for any contour C,
1

2πi

´
C

f ′

f
dz = Z −P is the number of zeroes minus the number

of poles in C.]

• So far all of the basic theory is the same. However, on a di�erentiable manifold, we also have a natural notion
of a meromorphic di�erential dω.

◦ Spec�cially, a meromorphic 1-form (also called a meromorphic di�erential) is a di�erential that may
locally be written as dω = f(z) dz for some meromorphic function f , where z is the local coordinate.
(Being more precise requires a careful discussion of local coordinates and charts.)

◦ Example: If X is the Riemann sphere with its usual coordinate z on C and 1/z on C ∪ {∞}\{0}, some

examples of meromorphic di�erentials are z dz (it has a zero at 0 and a pole at ∞) and
z

z + 1
dz (it has

a zero at 0 and a pole at −1).

◦ We can then de�ne the divisor of a meromorphic di�erential dω = f dz as div(dω) =
∑
P∈X vP (f)P .

◦ If dω1 and dω2 are two meromorphic di�erentials, then dω1/dω2 = f1/f2 is locally a ratio of meromorphic
functions hence is itself a meromorphic function.
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◦ This means all meromorphic di�erentials share the same divisor class: this is the canonical class C.
◦ We also have the natural notion of a holomorphic di�erential, which is a meromorphic di�erential having
no poles. (This is the di�erential analogue of an e�ective divisor.)

◦ From di�erential topology, we have the following fundamental fact: the dimension of the vector space of
holomorphic di�erentials onX is equal to the genus g. (Very roughly speaking, we can obtain independent
holomorphic di�erentials by integrating around non-contractible paths on X.)

◦ Exercise: Explain why this fact is equivalent to saying `(C) = g.

• Our goal now is to give a concrete way to understand the dimension `(C −A) for a divisor A.

◦ We can do this by de�ning a space of di�erentials that mimics the Riemann-Roch space L(D) = {a ∈
K : div(a) ≥ −D}.

• De�nition: If D is a divisor on a compact Riemann surface X, we de�ne Ω(D) to be the space of di�erentials
dζ such that div(dζ) ≥ D.

◦ In the same way as for L(D), it is easy to see that Ω(D) is an F -vector space.

◦ Note that Ω(0) is the space of holomorphic di�erentials on X, which has dimension g as we noted earlier.

• Proposition: For any divisor D on a compact Riemann surface X, if C = div(ω) for a meromorphic di�erential
ω, then Ω(D) ∼= L(C −D).

◦ Proof: Suppose that dζ ∈ Ω(D) and consider dζ/dω: it is some meromorphic function f , and we have
div(f) = div(dζ/dω) = div(dζ) − div(dω) ≥ D − C, so f ∈ L(C − D). (Remember that the de�nition
for the Riemann-Roch space L has a minus sign!)

◦ Thus, the map dζ 7→ dζ/dω is a linear transformation from Ω(D) to L(C−D), and since clearly the map
f 7→ f dω is an inverse, it is an isomorphism.

• We now have most of the necessary ingredients for Riemann-Roch. The key additional piece is to introduce
the calculation of residues of functions and di�erentials at a point P .

◦ Given a nonzero rational function f , we may write f as a Laurent series centered at P : i.e., as f =∑∞
n=k akz

k where k = vP (f) (which may be positive or negative) and z is the local uniformizer at P .
We de�ne the residue of f at P to be the coe�cient a−1.

◦ By Cauchy's residue theorem, we can also calculate residues via integration:
´
C
f(z) dz = 2πi

∑
P ResP (f),

where the sum is over all points P inside the contour C. In particular, by reversing the orientation of
the curve and summing the results, we can see that the sum over all P of the residues of f is zero. (This
is essentially just Stokes's theorem.)

◦ In particular, if we have an e�ective divisor D = P1 + P2 + · · · + Pk for distinct points Pi, we obtain a
map ϕ : L(D)→ Ck by taking ϕ(f) = (ResP1(f),ResP2(f), . . . ,ResPk

(f)). The kernel of this map is the
set of functions g ∈ L(D) whose residue is zero at each Pi, but this would mean g is holomorphic on all
of X, hence constant.

◦ Thus, we obtain an exact sequence 0→ C→ L(D)
ϕ→ Ck.

• Intuitively, the statement of Riemann-Roch now comes from trying to answer the question: how close is the
map ϕ to being surjective? In other words, what conditions are there on the values of the residues of a
meromorphic function in L(D) at the points Pi?

◦ We can answer this question by looking at the residues of holomorphic and meromorphic di�erentials.

◦ If dω ∈ Ω(0) is holomorphic, we de�ne the residue of dω at P as the residue of the ratio
dω

dz
at P where

dz is the local uniformizer at P (this is well-de�ned because
dω

dz
is a meromorphic function).

◦ In the same way as for functions, the sum of the residues of any meromorphic di�erential over all points
must be zero: thus, for each dω ∈ Ω(0) and f ∈ L(D), we see that the sum of the residues of f dω must
be zero. This means each di�erential imposes a linear condition on the possible choices of residues for f .
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◦ More precisely, if D = P1 + P2 + · · · + Pk for distinct points Pi, we obtain a map ψ : Ω(0) → Ck by
taking ψ(D) = (ResP1(dω),ResP2(dω), . . . ,ResPk

(dω)). The kernel of this map is the set of di�erentials
dω ∈ Ω(0) whose residue is zero at each Pi, which is to say, dω ∈ Ω(D).

◦ Thus, we obtain another exact sequence 0→ Ω(D)→ Ω(0)
ψ→ Ck.

◦ The images of the two maps ϕ and ψ are orthogonal by the observation made above: for any f ∈ L(D) and

any ω ∈ Ω(0), the inner product of ϕ(f) and ψ(dω) is
∑k
i=1 ResPi

(f) ·ResPi
(dω) =

∑k
i=1 ResPi

(f dω) = 0
by Stokes's theorem.

◦ So, since the images of ϕ and ψ are orthogonal, we see that dim(imϕ) + dim(imψ) ≤ k = deg(D).

◦ By the nullity-rank theorem, since ker(ϕ) = C we get dim(imϕ) = dim(L(D))− 1 = `(D)− 1.

◦ Likewise, since ker(ψ) = Ω(D) we get dim(imψ) = dim(Ω(0))− dim(Ω(D)) = g − `(C −D).

◦ Thus, we obtain the inequality `(D)− 1 + g − `(C −D) ≤ deg(D).

• If we had equality everywhere (i.e., if the images of ϕ and ψ were actually orthogonal complements) then we
would get the Riemann-Roch theorem!

◦ As it is, we only have the weaker statement that `(D)− 1 + g − `(C −D) ≤ deg(D), which is known as
Riemann's inequality (and only in the case where D is e�ective and a sum of distinct points P1 + · · ·+Pk,
though we can remove the restriction that D is a sum of distinct points using a limiting argument).

◦ One can in fact establish that the images of ϕ and ψ are orthogonal complements with quite a bit more
work.

◦ In the event that C −D is also e�ective, however, we can extract the desired result just from Riemann's
inequality: in such a case, we have `(D)−1 + g− `(C−D) ≤ deg(D) and also `(C−D)−1 + g− `(D) ≤
deg(C −D) = deg(C)− deg(D), so adding the two inequalities yields 2g − 2 ≤ deg(C).

◦ But since deg(C) = 2g − 2 (another calculation we take for granted), we must have equality in both
cases.

◦ This establishes Riemann-Roch for divisorsD where bothD and C−D are e�ective divisors (or equivalent
to e�ective divisors, since as we showed, `(D1) = `(D2) when D1 ∼ D2).

◦ In fact, this is nearly enough to get the general result, since as we showed, if L(D) 6= 0 then D is
equivalent to an e�ective divisor. In general, one needs to verify that when `(C − D) = 0, one has
deg(D) ≥ `(D)− 1 + g.

◦ Assuming the inequality deg(D) ≥ `(D)− 1 + g, one obtains the general statement of Riemann-Roch: if
both D and C −D are equivalent to e�ective divisors, the result is as above, and if D is but C −D is
not, the result follows from deg(D) ≥ `(D)− 1 + g, and if C −D is but D is not, the result is equivalent
by interchanging D and C −D.

◦ Finally, if neither D nor C−D is equivalent to an e�ective divisor (i.e., if `(D) = `(C−D) = 0), then by
the inequality above we must have deg(D) ≥ g − 1 and deg(C −D) ≥ g − 1. But since deg(C) = 2g − 2
this forces deg(D) = g − 1, in which case we do get deg(D) = `(D)− 1 + g − `(C −D), as required.

0.15 (Oct 27) Di�erentials, Residues, and Zeta Functions in Function Fields

• To summarize, the main tools used in proving Riemann-Roch involve studying the relationships between
divisors and di�erentials, and using structural statements about residues of functions and di�erentials. In
order to prove Riemann-Roch in an arbitrary function �eld K, we would need to develop the analogues of all
of these ingredients over K.

◦ We already have divisors and can de�ne the residue of an element of K at a prime P by using series
expansions in terms of uniformizers, similarly to how it works generally in C.
◦ Explicitly, given a nonzero element a ∈ K× and a prime P , we can express a as a Laurent series with
coe�cients in the residue �eld R/P with respect to a �xed uniformizer t at P .

◦ For simplicity �rst suppose that vP (a) ≥ 0: then a ∈ R is de�ned at P . Let ϕ : R → R/P be the
projection map, by de�nition the �value� of a at P is ϕ(a) = a0; then a− a0 ∈ P so a = a0 + b1t for an
element b1 ∈ R.

45



◦ Now let ϕ(b1) = a1, so b1 − a1 ∈ P and thus b1 = a1 + b2t for some b2 ∈ R: now a = a0 + a1t+ b2t
2. We

may clearly continue this process inde�nitely to generate a power series expansion a = a0+a1t+a2t
2+· · · .

◦ Exercise: Let P be a prime of the function �eld K with valuation ring R and residue �eld E = R/P .
Show that the power series expansion method yields a one-to-one ring homomorphism of the metric space
R (under the metric induced by the discrete valuation vP ) into the formal power series ring E[[t]] (under
the metric induced by the order valuation vt, giving the lowest-degree term with a nonzero coe�cient).

◦ For arbitrary rational a ∈ K× with vP (a) = d we may apply this method to obtain a power series
expansion for t−da, and then scale by td to obtain a Laurent expansion.

◦ Finally, we can de�ne the residue resP,t(a) of an element a ∈ K× at a prime P with respect to the
uniformizer t to be the coe�cient a−1 in its corresponding Laurent expansion. When P has degree 1, in
particular, the residue �eld R/P is (naturally isomorphic to) K, and we can correspondingly view the
residue as an element of K.

• However, giving a reasonable analogue of a di�erential is more challenging. The most standard approach is
to use Weil di�erentials, but the ideas can also be formulated using the more natural notion of derivations on
modules.

• De�nition: Let K/F be a function �eld and M be an F -module (i.e., a vector space over F ). A derivation of
K/F into M is an F -linear transformation D : K →M such that D(ab) = aD(b) + bD(a) for all a, b ∈ K.

◦ In other words, a derivation is an F -linear function that also obeys the Leibniz formula for the product
rule.

◦ Example: The usual derivative map D : F (t)→ F (t) with D(f(t)) = f ′(t) is a derivation.

◦ Exercise: Suppose D : K →M is a derivation of K/F into M . Show the following:

1. D(c) = 0 for all c ∈ F .
2. (Quotient Rule) D(a/b) = [bD(a)− aD(b)]/b2 for all a ∈ K, b ∈ K×.
3. (Chain Rule 1) For any f(x) ∈ F [x] and any a ∈ K, we have D(f(a)) = f ′(a)D(a) where f ′ is the

usual formal derivative of f .

◦ For any x ∈ K\F , the chain rule shows that the value of a derivation D on F [x] is completely determined
by the value D(x), and the quotient rule then extends this observation from F [x] to F (x). If K = F (x)
is purely transcendental, then clearly the value of the derivation on K is completely determined by D(x),
but otherwise, K is a �nite extension of F (x).

◦ Unfortunately, if we do not make a good choice for x, then the value D(x) need not determine the value
of D on all of K, since for example if char(K) = p and x = yp for some y ∈ K then D(x) = D(yp) = 0,
but D need not be identically zero on all of K.

◦ Fortunately, this is essentially the only possible problem: one can show in fact that if x is a separating element
of K/F (one for which K/F (x) is �nite and separable) then the value of D(x) completely determines D
on all of K.

◦ Exercise: Suppose K/F is a function �eld with x ∈ K\F and where K/F (x) is separable. If D1 and D2

are derivations from K/F to M and D1(x) = D2(x), show that D1(a) = D2(a) for all a ∈ K. [Hint:
First show D1 and D2 agree on F (x). Then for any y ∈ K, apply D1 and D2 to its minimal polynomial
m(y) = 0 over F (x); separability ensures that m′(y) is not the zero polynomial.]

◦ It can likewise be shown that if x is a separating element of K/F , then a derivation de�ned on F (x)/F
extends uniquely to a derivation de�ned on K/F . (We omit the precise details, since they are fairly
technical and unenlightening.)

◦ Applying this extension result to the natural di�erentiation map D : F (x) → K with D(f(x)) = f ′(x)
yields that for any separating element x of K/F there exists a derivation Dx : K → K such that
Dx(x) = 1: this map corresponds to �derivation with respect to x�.

◦ Exercise: For a function �eld K/F , let DerK denote the space of derivations D : K → K.

1. Show that DerK is a K-vector space under pointwise addition and scalar multiplication.

2. Show that for any derivation D ∈ DerK and any a ∈ K× we have D = D(x) ·Dx. Deduce that DerK
is 1-dimensional (as a K-vector space).
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• We can �nally de�ne di�erentials in terms of derivations, as follows:

• De�nition: Let K/F be a function �eld and Z be the set of ordered pairs (a, x) such that a ∈ K and x is a
separating element of K/F . De�ne an equivalence relation ∼ on pairs via (a, x) ∼ (b, y) when b = a ·Dy(x),
and denote the equivalence class of (a, x) as the di�erential a dx.

◦ Exercise: If x and y are separating elements of a function �eld K/F , show the chain rule: that Dx =
Dx(y) ·Dy as functions on K. Deduce that ∼ is in fact an equivalence relation.

◦ We have a natural K-module structure on the space DiffK of di�erentials of K/F , as follows: for any
�xed separating element z ∈ K and any di�erentials a dx and b dy, we have a dx = [aDz(x)] dz and
b dy = [bDz(y)] dz by the chain rule, so we may de�ne a dx+ b dy = [aDz(x) + bDz(y)] dz.

◦ It is easy to see by another application of the chain rule that this addition operation is well de�ned, as
is the natural scalar multiplication c · (a dx) = (ca) dx for c ∈ K.

◦ Exercise: Show that the map d : K → DiffK via d(a) = 1 da when a is a separating element and d(a) = 0
when a is non-separating is a derivation of K/F .

◦ The space DiffK is the natural �module of di�erentials� of K/F , in that any other derivation of K/F
into a module M must factor through DiffK : explicitly, if D : K →M is a derivation, then there exists
a unique F -linear map µ : DiffK →M with D = µ ◦ d.
◦ The module of di�erentials DiffK is a 1-dimensional K-module with basis {dz} for any separating z ∈ K,
as follows from the observations above: the elements of DiffK are a dz for a ∈ K, and 1 dz 6= 0 since
(1, z) is not equivalent to (0, z).

◦ Since this module is 1-dimensional, we may then de�ne the quotient of one di�erential by another by
setting (a dz)/(b dz) = a/b ∈ K. In particular, if x ∈ K is separating, then the quotient dy/dx is de�ned
for any y ∈ K, and indeed we have dy/dx = Dx(y) by the chain rule. (This also explains why we call it
the chain rule, since in this formulation Dx(z) = Dx(y) ·Dy(z) says that dz/dx = (dy/dx)(dz/dy).)

◦ The di�erential quotient also shows up when calculating residues with respect to di�erent uniformizers:
if s and t are both uniformizers at a prime P of degree 1 (so that the residue of a is an element of K),
then resP,s(a) = resP,t(a · ds/dt), as one can show by comparing the series expansions using the chain
rule.

◦ We may, at last, use this to de�ne the residue of a di�erential at a prime of degree 1: for any choice
of uniformizer t, we set resP (a dt) = resP,t(a); the change-of-uniformizer formula above ensures that the
residue does not depend on which uniformizer t we select.

◦ With some e�ort, one can then prove that for a nonzero di�erential dω, the residue resP (dω) = 0 for all
but �nitely many primes P (i.e., any nonzero di�erential has �nitely many zeroes and poles), and thus
we may attach a divisor to a di�erential dω by setting div(dω) =

∑
P resP (dω)P .

◦ Exercise: If K/F is a function �eld and F is algebraically closed, show that all nonzero di�erentials lie
in the same divisor class.

◦ Finally, we obtain an analogue of the residue theorem we observed earlier for C: for any function �eld
K/F where F is algebraically closed and any di�erential dω of K/F , we have

∑
P resP (dω) = 0.

◦ As a �nal remark, we note that we can drop the hypothesis that F is algebraically closed by using the
Galois action to work over appropriate sub�elds of F (the e�ect being that a degree-d prime of F will
correspond to a sum of d degree-1 primes over the algebraic closure of F ).

• We now begin our next major task, that of constructing zeta functions for function �elds.

◦ We use essentially the same de�nition as for Fq[t], using the fact that e�ective divisors of K are the
natural analogues of the monic polynomials in Fq[t], aside from some small considerations about the
prime at ∞.

• De�nition: If K is a function �eld over Fq and A ≥ 0 is an e�ective divisor, the norm of A is NA = qdegA.

◦ The norm is multiplicative: if A,B ≥ 0, then N(A+B) = qdeg(A+B) = N(A)N(B).

• De�nition: If K is a function �eld over Fq, the zeta function of K is ζK(s) =
∑
A≥0(NA)−s =

∑
A≥0 q

−s degA.
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◦ Exercise: Show using the divisor-counting results from earlier that the zeta function ζK(s) =
∑
A≥0 q

−s degA

converges absolutely for Re(s) > 1. (We will later improve those estimates, but the weak ones in the
earlier exercises are good enough here.)

◦ By grouping together the e�ective divisors by degree, we see that ζK(s) =
∑∞
n=1

bn
qns

where bn is the

number of e�ective divisors of degree n.

◦ For K = Fq(t), the zeta function of K is almost identical to that of the subring A = Fq[t], aside from
the behavior of the prime at in�nity.

◦ Explicitly, any monic polynomial p ∈ A yields a unique class of e�ective divisors of the form div(p)+nP∞
for n ≥ deg(p), and conversely, for any e�ective divisor D =

∑
P nPP of K, we get a unique associated

monic polynomial p ∈ A as p =
∏
P 6=∞ p

vPi
(D)

i .

◦ Exercise: Show that ζFq(t)(s) = (1− q−s)−1ζFq [t](s) =
1

(1− q1−s)(1− q−s)
.

◦ Also, since the norm is multiplicative, we get an Euler product for the zeta function: ζK(s) =
∏
P (1 −

NP−s)−1. It is also absolutely convergent for Re(s) > 1.

◦ By grouping the primes together by degree, we see that ζK(s) =
∏∞
d=1(1 − q−ns)−ad where ad is the

number of primes of K of degree d.

• To go further, we need to improve our estimates on divisor-counting.

• Proposition (Divisor-Counting): Let K be a function �eld over Fq.

1. For any divisor A of K, the number of e�ective divisors equivalent to A is (q`(A) − 1)/(q − 1).

◦ Proof: As we have previously noted several times, that there exists an e�ective divisor B equivalent
to A if and only if there exists f ∈ K× such that B = div(f) +A ≥ 0, if and only if f ∈ L(A).

◦ Thus, if `(A) = 0, the formula is correct, since there are no e�ective divisors equivalent to A.

◦ If `(A) > 0, then consider the function from L(A)\{0} to the e�ective divisors equivalent to A given
by f 7→ div(f) + A. This map is surjective, and also f, g will have the same image precisely when
div(f) = div(g), which is to say, when div(f/g) = 0, i.e., when f/g ∈ F×q .
◦ Thus, since the function is surjective, the cardinality of the domain is #[L(A)\{0}] = q`(A) − 1, and
each �ber has size q − 1, the cardinality of the image is (q`(A) − 1)/(q − 1), as claimed.

2. If the hK divisor classes of degree n are represented by A1, . . . , Ah, then the number of e�ective divisors

of degree n is
∑h
i=1

q`(Ai) − 1

q − 1
.

◦ Proof: As noted in our earlier proposition, there are exactly hK divisor classes of degree n.

◦ By the well-de�nedness of divisor classes, each e�ective divisor class of degree n is equivalent to
exactly one of A1, . . . , Ah, so summing over the divisor classes and applying (1) yields the result.

3. The zeta function ζK(s) =
∑
A≥0(NA)−s, and also its Euler product ζK(s) =

∏
P (1 −NP−s)−1, both

converge absolutely for Re(s) > 1.

◦ Proof: By Riemann-Roch, if deg(A) > 2g − 2 then `(A) = deg(A)− g + 1.

◦ Applying (2) shows that for n > 2g − 2, the number bn of e�ective divisors of degree n is h ·
qdeg(A)−g+1 − 1

q − 1
= O(qn).

◦ Thus, the zeta function sum is bounded in absolute value by
∑∞
n=1O(qn)q−ns, which converges

absolutely for Re(s) > 1.

◦ Similarly, for the Euler product, by the usual results about convergence of products, ζK(s) =∏∞
d=1(1 − q−ds)−ad will converge provided

∑∞
d=1 ad

∣∣qds∣∣ converges, but ad ≤ bd, so it does con-
verge for Re(s) > 1.
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0.16 (Oct 29) The Weil Conjectures

• Our next goal is to prove the Weil conjectures for K. The general statement of the Weil conjectures for
projective varieties over Fq (equivalently, for function �elds of arbitrary �nite transcendence degree) are as
follows:

• Theorem (Weil Conjectures): Let K be an algebraic function �eld of transcendence degree n over its constant
�eld Fq, with associated zeta function ζK(s). (Equivalently, let Y be a nonsingular n-dimensional projective
variety de�ned over Fq.) Then the following properties hold:

1. (Rationality) The zeta function ζK(s) is a rational function of u = q−s. More speci�cally, ζK(s) =∏2n
i=0 pi(u)(−1)i+1

=
p1(u)p3(u) · · · p2n−1(u)

p0(u)p2(u) · · · p2n(u)
for appropriate polynomials pi(u) ∈ 1+ tZ[t], where p0(u) =

1− u, p2n(u) = 1− qnu, and pi(u) =
∏
j(1− αi,ju) for some αi,j ∈ C.

2. (Functional Equation / Poincaré Duality) The zeta function has a functional equation ζK(n − s) =
±qnE/2uEζK(s), where E = 2 − 2g is the Euler characteristic of K. In particular, the map α 7→ qn/α
maps the zeroes of pi to the zeroes of p2n−i.

3. (Riemann Hypothesis) For each i, j, the inverse zeroes αi,j of pi have |αi,j | = qi/2. Equivalently, all of
the zeroes of pk(u) lie on the line Re(u) = k/2.

4. (Betti Numbers) If K is the function �eld of a nonsingular variety X de�ned over an algebraic number
�eld with good reduction modulo p̃ = char(Fq), then the degree of pi is the ith Betti number of the space
X(C) of complex points on X.

• In our situation, we have n = 1 (i.e., for curves), in which case the Weil conjectures read as follows:

1. ζK(s) is a rational function of u = q−s: speci�cally, ζK(s) =
LK(u)

(1− u)(1− qu)
for some polynomial

LK(u) =
∏
j(1− αju).

2. For ξK(s) = q(g−1)sζK(s), we have ξK(1− s) = ξK(s).

3. The roots of LK all lie on the line with Re(s) = 1/2.

4. The degree of LK is 2g.

• Exercise: Using the explicit formula ζFq(t)(s) =
1

(1− q−s)(1− q1−s)
, verify the Weil conjectures forK = Fq(t).

• The Weil conjectures have a long history. Here is a brief summary of some of it:

◦ In the early 1800s, Gauss identi�ed some components of these general results in particular examples for
certain curves, in the context of counting points on elliptic curves modulo p.

◦ In 1924, Artin conjectured the general results for curves and Hasse independently proved the results for
elliptic curves.

◦ In 1949, Weil formulated the general statement of the Weil conjectures (he had previously established
Artin's conjectured statements in the case of curves).

◦ Establishing the Weil conjectures in full took the development of about 20 more years' worth of algebraic
geometry machinery: Dwork proved (1) in 1960, while Grothendieck proved (1), (2), and (4) in the 1960s,
and Deligne �nished (3) in 1973.

• At this point, we can prove parts (1), (2), and (4) of the Weil conjectures in our setting using the Riemann-
Roch theorem.

◦ The main idea in the proof of (1) is to use the simple estimate given by Riemann-Roch for the number
of e�ective divisors of large degree. To establish (2) requires using the full statement for divisors of low
degree. Once (1) and (2) are established, (4) is quite simple, requiring only a calculation of the degree
of a polynomial.

◦ Proof (1): Write u = q−s and set ZK(u) = ζK(s) =
∑∞
n=0 bnu

n where bn is the number of e�ective
divisors of degree n over K.
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◦ As we showed earlier, for n > 2g − 2 we have bn = hK ·
qn−g+1 − 1

q − 1
where hK is the class number of K

and g is the genus of K. Thus,

ZK(u) =

2g−2∑
n=0

bnu
n +

∞∑
n=2g−1

hK
qn−g+1 − 1

q − 1
un

=

2g−2∑
n=0

bnu
n +

hK
(q − 1)

[ ∞∑
n=2g−1

qn−g+1un −
∞∑

n=2g−1

un

]

=

2g−2∑
n=0

bnu
n +

hK
(q − 1)

[
qg

1− qu
− 1

1− u

]
u2g−1.

◦ Therefore, we have

(1− u)(1− qu)ZK(u) = (1− u)(1− qu)

2g−2∑
n=0

bnu
n +

hK
(q − 1)

[qg(1− u) + (1− qu)]u2g−1

so LK(u) =

2g−2∑
n=0

bnu
n(1− u)(1− qu) + hK

qg − 1

q − 1
u2g−1 + hK

q − qg

q − 1
u2g.

Each term is a polynomial with integral coe�cients (since q− 1 divides qg − 1 and q− qg), and the total
degree is clearly at most 2g, as required.

◦ Furthermore, setting u = 0 yields LK(0) = 1, so LK(u) ∈ 1+tZ[t]. Also, setting u = 1 yields LK(1) = hK
and setting u = 1/q yields LK(1/q) = qg−1hK . In particular, we see that LK is nonzero at 1 and 1/q, so
ZK(u) = ζK(s) does indeed have poles at s = 0 and s = 1, as required.

◦ Proof (2): As calculated in (1), we have ZK(u) =
∑2g−2
n=0 bnu

n +
hK

(q − 1)

[
qg

1− qu
− 1

1− u

]
u2g−1.

◦ Also, from our proposition earlier, we have bn =
∑

deg(A)=n

q`(A) − 1

q − 1
, where the sum is over the hK

divisor classes A of degree n.

◦ Plugging this in and multiplying by q − 1 to clear denominators yields

(q − 1)ZK(u) =

2g−2∑
n=0

 ∑
deg(A)=n

(q`(A) − 1)

un + hK
qgu2g−1

1− qu
− hK

u2g−1

1− u

=
∑

0≤deg(A)≤2g−2

q`(A)udeg(A) + hK
qgu2g−1

1− qu
− hK

1

1− u
.

◦ Therefore,

(q − 1)ξK(s) = (q − 1)u1−gZK(u) = u1−g
∑

0≤deg(A)≤2g−2

q`(A)udeg(A) + hK
qgug

1− qu
− hK

u1−g

1− u

=
∑

0≤deg(A)≤2g−2

q`(A)udeg(A)−g+1 + hK
(qu)g

1− qu
− hK

u−g

1− u−1
.

◦ We claim that this last expression is invariant under the substitution u 7→ q−1u−1. This is clearly the
case for the last two terms (since they are interchanged and each get a minus sign under the substitution),
so we need only check the result for the sum.

◦ Substituting u 7→ q−1u−1 in the sum yields
∑

0≤deg(A)≤2g−2 q
`(A)(qu)− deg(A)+g−1 =

∑
0≤deg(A)≤2g−2 q

`(C−A)udeg(C−A)−g+1

using Riemann-Roch and the fact that deg(C) = 2g − 2.

◦ But again, since deg(C) = 2g− 2, this sum is the same as the original since the map A 7→ C −A merely
reverses the order of the terms in the summation.
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◦ Therefore, we see that (q − 1)ξK(1− s) = (q − 1)ξK(s), as claimed.

◦ Proof (4): As calculated in (1), we see that LK has degree at most 2g.

◦ But as also calculated in (1), we have LK(0) = 1, and by (2) since q−gu−2gLK(u) = LK(q−1u−1), taking
u→∞ shows that LK(u)/u2g → qg is nonzero, which means LK(u) has degree exactly 2g.

• We do not have all of the necessary tools to establish the Riemann hypothesis part of the Weil conjectures
yet.

◦ However, we can do half of it: by (2), since q−gu−2gLK(u) = LK(q−1u−1), the map u 7→ q−1u−1 must
permute the roots π1, π2, . . . , π2g of LK , which means that (suitably ordered) we must have πi = q/π2g−i.

◦ Equivalently, this says that the roots of ζK(s) come in pairs, re�ected across the line Re(s) = 1/2. The
Riemann hypothesis is that all of these roots actually lie on the line Re(s) = 1/2 itself.

• Even though we cannot actually prove the Riemann hypothesis right now, we can still give some of its
applications.

• Proposition (Hasse-Weil Bound): If K is a function �eld of genus g over Fq, then the number a1 of prime
divisors of K of degree 1 satis�es the inequality |a1 − q − 1| ≤ 2g

√
q.

◦ Equivalently, if one phrases this in terms of algebraic curves, it says that the number of Fq-points a1 of
a smooth projective curve de�ned over Fq satis�es |a1 − q − 1| ≤ 2g

√
q.

◦ This result was shown for genus g = 1 (i.e., for elliptic curves) by Hasse in 1933 and subsequently
generalized by Weil to larger genus in 1949.

◦ Proof: We have ZK(u) =
∑∞
n=0 bnu

n =

∏2g
i=1(1− πiu)

(1− u)(1− qu)
.

◦ Thus, logZK(u) =
∑2g
i=1 log(1− πiu)− log(1− u)− log(1− qu), so

u
d

du
[logZK(u)] =

u

1− u
+

qu

1− qu
+

2g∑
i=1

πiu

1− πiu

=

∞∑
n=1

(1 + qn −
2g∑
i=1

πni )un.

◦ In particular, the coe�cient of u1 of u
d

du
[logZK(u)] is 1 + q −

∑2g
i=1 πi.

◦ But since ZK(u) =
∏∞
d=1(1−ud)−ad , we also have u d

du
[logZK(u)] =

∑∞
d=1 ad

dud

1− ud
=
∑∞
n=1[

∑
d|n dad]u

n.

◦ In particular, the coe�cient of u1 of u
d

du
[logZK(u)] is also a1.

◦ So, by the triangle inequality, we have a1 = q + 1 −
∑2g
i=1 πi, so |a1 − q − 1| =

∣∣∣∑2g
i=1 πi

∣∣∣ ≤∑2g
i=1 |πi| =

2g
√
q, where the last equality follows by the Riemann hypothesis |πi| = q1/2.

• Exercise: Show that if q ≥ 4g2, then there must exist primes of degree 1 in K.

• Proposition (Class Number Bounds): If K is a function �eld of genus g over Fq, then the class number hK
satis�es (

√
q − 1)2g ≤ hK ≤ (

√
q + 1)2g.

◦ Proof: As we noted previously, hK = LK(1) =
∏2g
i=1(1− πi) =

∏2g
i=1(πi − 1).

◦ Since |πi| = q1/2, the absolute value of the product is bounded below by (
√
q − 1)2g and above by

(
√
q + 1)2g, as required. Since hK is positive, we obtain the stated bounds.

• Exercise: Show that if q > 4 and g > 0, then the class number of K is greater than 1.

• We can also use a similar calculation to establish the analogue of the prime number theorem for K.
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• Theorem (Prime Number Theorem for Function Fields): If K is a function �eld of genus g over Fq and an is

the number of primes of K having degree n, then an =
qn

n
+O(

qn/2

n
).

◦ Proof: As we calculated above,
∑∞
n=1(1 + qn −

∑2g
i=1 π

n
i )un = u

d

du
[logZK(u)] =

∑∞
n=1[

∑
d|n dad]u

n.

◦ Thus, we have
∑
d|n dad = 1 + qn −

∑2g
i=1 π

n
i , so by Mobius inversion and the fact that |πi| = q1/2, we

obtain the formula

an =
1

n

∑
d|n

µ(d)[1 + qn/d −
2g∑
i=1

π
n/d
i ]


=

1

n

(1 + qn −
2g∑
i=1

πni ) +
∑

d|n,d<n

µ(d)[1 + qn/2 −
2g∑
i=1

πn/d]


=

1

n

[
qn + 2gO(qn/2) +O(qn/2)

]
=

qn

n
+O(

qn/2

n
)

as claimed.

• In the proof above, if we replace the Riemann hypothesis assumption |πi| = q1/2 by the weaker estimate
|πi| ≤ qα then we instead get an error term of O(qα/n).

◦ For completeness, we can give a fairly simple argument now that a bound of this nature does hold for
some α < 1.

• Proposition (Zero-Free Region for Zeta): If K is a function �eld over Fq, then ζK(s) has no zeroes on the
line Re(s) = 1, and thus there exists an α < 1 such that |πi| ≤ qα for each of the inverse zeroes π1, . . . π2g of
ζK(s).

◦ Our proof that there are no zeroes on Re(s) = 1 mimics the proof in the classical case over Q.
◦ In the classical case, zero-free regions to the left of Re(s) = 1 have been established, but they approach

Re(s) = 1 as Im(s) → ∞. We are able to obtain an improvement in the function �eld case (i.e., the
second part, which allows us to move a uniform distance away from Re(s) = 1) because the zeta function
is periodic in the imaginary direction, so we need only identify its zeroes on a compact region.

◦ Proof: First, note that 3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0 for real θ.

◦ If we write s = σ + it with σ > 1, then the real part of log ζK(s) is

Re[log ζK(s)] = Re[
∑
P

− log(1−NP−s)]

= Re[
∑
P

∞∑
m=1

1

m
NP−sm]

=
∑
P

∞∑
m=1

1

m
NP−mσ cos(t · log(NP )m).

◦ Now, by replacing t with 0, t, and 2t, using the trigonometric identity above for θ = log(NP )m, and
summing over all P and all m, we see that 3Re[log ζK(σ)] + 4Re[log ζK(σ+ it)] + Re[log ζK(σ+ 2it)] ≥ 0.

◦ Exponentiating therefore yields |ζK(σ)|3 · |ζK(σ + it)|4 · |ζK(σ + 2it)| ≥ 1 for all σ > 1 and all real t.

◦ Recall that we have shown ζK(s) is a rational function of u = q−s and its only poles are simple poles
at s = 1 and s = 1/q. In particular, it is periodic with period 2πi/ log q, and so the poles on the line
Re(s) = 1 are located at the multiples of 2πi/ log q.

◦ Now suppose that ζK(1 + it) = 0; note that we must have t 6= 0, since ζK(s) has a single simple pole at
s = 1.

52



◦ Then
ζK(σ + it)

σ − 1
is bounded as σ → 1. Also, (σ − 1)ζK(σ) is bounded as σ → 1 again since ζK(s) has

a simple pole at s = 1. Finally, ζK(σ + 2it) is bounded as σ → 1 as long as t is not an odd multiple of
π/ log q.

◦ In such a case, we see that (σ− 1) · |(σ − 1)ζK(σ)|3 ·
∣∣∣∣ζK(σ + it)

σ − 1

∣∣∣∣4 · |ζK(σ + 2it)| is equal to (σ− 1) times

a product of three bounded quantities as σ → 1, so the limit as σ → 1 is zero. This is impossible, since
the limit must be ≥ 1 by the inequality above.

◦ If t is an odd multiple of 2π/ log q, which is to say, when q−(1+it) = −1/q, we require a di�erent
approach. As we will prove later, we have LK(−1) = hK2/hK , where K2 = KFq2 (i.e., the �eld obtained
by extending the constant �eld of K from Fq to Fq2).
◦ Then ζK(1+it) = ZK(−1/q), which is nonzero by the functional equation and the fact that LK(−1) 6= 0.

◦ We conclude that ζK(1 + it) 6= 0 for all real t, as required.

◦ For the second part, we have just shown that ζK(s) does not vanish for Re(s) = 1. Furthermore, since
ζK(s) is represented by an absolutely-convergent Euler product for Re(s) > 1, it does not vanish there,
and so by the functional equation, ζK(s) also does not vanish for Re(s) ≤ 0.

◦ Therefore, for πi = qβi , we have 0 < Re(βi) < 1. If we then take α = max(Re(βi)), then α < 1 since
there are only 2g total βi. Then |πi| ≤ qα as required.

0.17 (Nov 3) A�ne Space and A�ne Curves

• So far, our development and study of function �elds has been analogous to number theory (with a little
analysis thrown in).

◦ However, a key part of the story is the correspondence between function �elds and projective curves, and
in many cases, thinking in terms of curves using algebraic geometry is more natural.

◦ For example, there is another very important interpretation of the zeta function in terms of counting
points on curves over Fq and its �nite-degree extensions.

◦ In order to exploit this correspondence as fully as possible (which is necessary in order to motivate the
proof of the Riemann hypothesis for curves), we will now give a brisk treatment of algebraic varieties,
with a particular focus on algebraic curves.

• First, the basics of a�ne space:

◦ De�nition: For a �eld k, we de�ne a�ne n-space An(k) = {(x1, x2, . . . , xn) : xi ∈ k} to be the set of
n-tuples of elements of k. The elements of An(k) are called points.

◦ De�nition: For f ∈ k[x1, . . . , xn], we de�ne the vanishing locus of f to be V (f) = {P ∈ An(k) : f(P ) =
0}, the set of points P ∈ An(k) where f vanishes. We extend this de�nition to subsets T ⊆ k[x1, . . . , xn]
by setting V (T ) = ∩f∈TV (f) = {P ∈ An(k) : f(P ) = 0 for all f ∈ T}.
◦ Exercise: Draw V (x), V (x2), V (y − x), V (y − x2), V (xy), V (x, y), and V (y2 − x3) in A2(R).

◦ De�nition: For a subset S ⊆ An(k), we de�ne the ideal of functions vanishing on S to be I(S) = {f ∈
k[x1, . . . , xn] : f(P ) = 0 for all P ∈ S}. It is easy to see that I(S) is an ideal of k[x1, . . . , xn] for any set
S.

◦ Exercise: Identify I(S) in R[x, y] for S = {(t, 0) : t ∈ R}, {(t2, t) : t ∈ R}, {(1, 1)}, {(0, 0), (1, 1)},
{(cos t, sin t) : t ∈ R}, and {(t, sin t) : t ∈ R}.

• We have various properties of the maps V and I:

1. If I is the ideal generated by T ⊆ k[x1, . . . , xn], then V (T ) = V (I). Thus, we need only consider the
behavior of V on ideals, meaning that we will only consider I and V as maps I : [sets] → [ideals] and
V : [ideals]→ [sets].

2. V (0) = An(k), V (1) = ∅, and V (x1 − a1, . . . , xn − an) = {(a1, . . . , an)}.
3. I(∅) = k[x1, . . . , xn], I(An) = 0 when k is in�nite, and I({(a1, . . . , an)}) = (x1 − a1, . . . , xn − an).
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4. V (∪iIi) = ∩iV (Ii) and V (IJ) = V (I) ∪ V (J).

5. For ideals I and J , if I ⊆ J then V (I) ⊇ V (J), and for sets X and Y , if X ⊆ Y then I(X) ⊇ I(Y ).
(Thus, both I and V are inclusion-reversing.)

6. For any subset S of k[x1, . . . , xn], S ⊆ I(V (S)) and V (S) = V (I(V (S))).

7. For any subset X of An(k), X ⊆ V (I(X)) and I(X) = I(V (I(X))). Furthermore, I(X) is a radical3

ideal.

◦ Proofs: Exercises.

• De�nition: For a �eld k, an a�ne algebraic set in An(k) is a subset of An(k) of the form V (I) for some ideal
I.

◦ Examples: Single points {(a1, . . . , an)} = V (x1 − a1, . . . , xn − an) are a�ne algebraic sets by (2) above.
The sets {(t, 0) : t ∈ k} = V (y) and {(t2, t3) : t ∈ k} = V (y2 − x3) are a�ne algebraic sets.

◦ By (4), we see that a�ne algebraic sets are closed under �nite unions and arbitrary intersections, and
(3) shows that An and ∅ are a�ne algebraic sets.

◦ Thus, if we consider a�ne algebraic sets to be closed (with the open sets therefore being their comple-
ments), we obtain a topology on An(k). This topology is known as the Zariski topology.

◦ By Hilbert's basis theorem, every ideal of k[x1, . . . , xn] is �nitely generated, so by (4) above, we see
that every a�ne algebraic set is of the form V (f1) ∩ V (f2) ∩ · · · ∩ V (fi) for some polynomials f1, . . . , fi.
(Equivalently, the complements of the sets V (fi) form a base for the Zariski topology.)

◦ It is natural to seek �minimal� elements under the Zariski topology.

• De�nition: An a�ne algebraic set V is reducible if it can be written as V = V1 ∪ V2 where V1, V2 6= V , and it
is irreducible otherwise.

• We have a few more properties:

8. V is irreducible if and only if I(V ) is a prime ideal of k[x1, . . . , xn].

◦ Proof: If V = V1 ∪ V2 with V1, V2 6= V , then I(V1) and I(V2) both properly contain V : if f ∈ I(V1)\V
and g ∈ I(V2)\V then fg ∈ I(V1) ∩ I(V2) = I(V ), meaning that I(V ) is not prime.

◦ Conversely, if fg ∈ I(V ) with f, g 6∈ I(V ), we can take V1 = V ∩ V (f) and V2 = V ∩ V (g): then
V1 ∪ V2 = V and V1, V2 6= V so V is reducible.

9. Any a�ne algebraic set V can be written uniquely as a union of irreducible a�ne algebraic sets V1 ∪ V2 ∪
· · · ∪ Vn such that Vi 6⊆ Vj for any i 6= j. (These sets Vi are the irreducible components of V .)

◦ This is the geometric version of primary decomposition (generalizing the notion of prime factorization of
elements).

◦ Proof: For existence, let F be the collection of all V that cannot be written as a union of irreducible
a�ne algebraic sets and consider the collection I = {I(V ) : V ∈ F}, and suppose F is nonempty.

◦ Since I is a collection of ideals in the Noetherian ring k[x1, . . . , xn], it has a maximal element. The
corresponding set V is then a minimal element of F . If V is irreducible we obviously have a contradiction,
and if V is not irreducible then it can be written as a proper union V = V1 ∪ V2, but by minimality,
V1 and V2 can both be written as a union of irreducible a�ne algebraic sets. In either case we get a
contradiction, so F is empty.

◦ We may freely assume that Vi 6⊆ Vj for any i 6= j by throwing away any Vi that is a subset of another Vj .

◦ For uniqueness, suppose V = W1 ∪ · · · ∪Wk is another decomposition. Then Vi = ∪kj=1(Vi ∩Wj) so since
Vi is irreducible we must have Vi ∩Wj = Vi for some j, meaning Vi ⊆ Wj . By symmetry we must also
have Wj contained in some Vi′ , but then Vi ⊆ Vi′ which forces i = i′ and then equality holds every, so
Vi = Wj .

◦ Thus, each V is equal to some W . In the same way, we see each W is equal to some V , so we are done.

3Recall that if I is an ideal of a commutative ring R, then the radical rad(I) = {r ∈ R : rn ∈ I for some n ≥ 1}, and I is a radical
ideal if I = rad(I). (Note that rad(I) is an ideal, as is easily seen via an application of the binomial theorem.)
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• Exercise: If k is �nite, show that the irreducible a�ne algebraic sets in An(k) are ∅ and single points.

• Exercise: If k is in�nite, show that the irreducible a�ne algebraic sets in A2(k) are ∅, A2(k), single points,
and curves of the form V (f) for a monic irreducible polynomial f ∈ k[x, y]. [Hint: Show that if f, g ∈ k[x, y]
are relatively prime, then (f, g) contains a nonzero polynomial in k[x] and a nonzero polynomial in k[y].]

• Although it may appear that I and V should behave like inverses, they are not quite.

◦ For example, even in A1(k), we have V (x2) = {0} so that I(V (x2)) = (x). The point here is that I = (x2)
is not a radical ideal, and in this case, I(V (I)) = rad(I).

◦ However, even if I is radical, it is not always true that I(V (I)) = rad(I): for example, in A1(R) we have
V (1 + x2) = ∅ so that I(V (1 + x2)) = R[x].

◦ Indeed, there is no subset S of A1(R) with I(S) = (1+x2) since the only set S with I(S) ⊇ (1+x2) is the
empty set. The issue here is that R is not algebraically closed: if instead we work in C, then S = {i,−i}
does have I(S) = (1 + x2).

• When the �eld k is algebraically closed, we do in fact solve all of the issues described above; this is the main
content of Hilbert's Nullstellensatz:

• Theorem (Hilbert's Nullstellensatz, weak version): If k is an algebraically closed �eld and I is a proper ideal
of k[x1, . . . , xn], then V (I) 6= 0.

◦ Proof: Since I ⊆ J implies V (I) ⊇ V (J), it su�ces to show the result when I is a maximal ideal (since
any non-maximal ideal is contained in a maximal ideal, and so its vanishing locus is at least as big as
that of the maximal ideal).

◦ If I is maximal, then k[x1, . . . , xn]/I is a �eld extension of k: we claim it is equal to k. Assuming this,
then for each i we would have xi = ai for some ai ∈ k in the quotient ring, meaning that xi− ai ∈ I and
thus I contains (x1 − a1, . . . , xn − an).

◦ But then since (x1 − a1, . . . , xn − an) is actually maximal (the quotient ring is isomorphic to the �eld
k), we must have I = (x1 − a1, . . . , xn − an), in which case V (x1 − a1, . . . , xn − an) = {(a1, . . . , an)} is
nonempty as claimed.

◦ Exercise: Prove Zariski's lemma: a �eld L that is �nitely generated over k as a ring is �nitely generated
over k as a module. [Hint: Induct on the number of generators.]

◦ By Zariski's lemma, since L = k[x1, . . . , xn]/I is a �eld extension of k that is �nitely generated as a ring
(since I is �nitely generated) it is necessarily �nitely generated as a module. This means it has �nite
degree over k, but since k is algebraically closed, we must have L = k as required.

• Using the so-called �Rabinowitsch trick� we may bootstrap this statement into the full Nullstellensatz:

• Theorem (Hilbert's Nullstellensatz, strong version): If k is an algebraically closed �eld and I is any ideal of
k[x1, . . . , xn], then I(V (I)) = rad(I).

◦ Explicitly, if the polynomial g vanishes whenever f1, . . . , fr vanish, then there exists some N and some
ci ∈ k[x1, . . . , xn] such that gN = c1f1 + · · ·+ crfr.

◦ Proof: It is easy to see that rad(I) ⊆ I(V (I)): if fn ∈ I, then fn and hence f vanishes on V (I).

◦ Now suppose g ∈ I(V (f1, . . . , fr)) and de�ne the ideal J = (f1, . . . , fr, xn+1g − 1) of k[x1, . . . , xn, xn+1].

◦ By hypothesis, V (J) = ∅ since all of f1, . . . , fr vanishing implies that xn+1g − 1 = −1.

◦ Thus, the weak Nullstellensatz, J cannot be a proper ideal, so 1 ∈ J . This means 1 =
∑r
i=1Ai(x1, . . . , xn+1)fi+

B(x1, . . . , xn+1)(xn+1g − 1) for some polynomials Ai, B.

◦ Plug in xn+1 = 1/y and then clear denominators in y to obtain an equation of the form yN =∑r
i=1 Ci(x1, . . . , xn, y)fi +D(x1, . . . , xn, y)(g − y).

◦ Now evaluate both sides at y = g: this yields gN =
∑r
i=1 Ci(x1, . . . , xn, g(x1, . . . , gn))fi, which is precisely

of the desired form.

• Per the Nullstellensatz and its various implications, we see that I and V give nice bijections between various
sets in An(k) and ideals of k[x1, . . . , xn].
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◦ By the full Nullstellensatz, since I(V (I)) = rad(I), we obtain a correspondence between radical ideals
and a�ne algebraic sets.

◦ Furthermore, by the weak Nullstellensatz, if I is a proper ideal then V (I) must contain some point
(a1, . . . , an), whence I is contained in I({(a1, . . . , an)}) = (x1 − a1, . . . , xn − an). But since the quotient
of k[x1, . . . , xn] by (x1 − a1, . . . , xn − an) is isomorphic to k via the evaluation map p 7→ p(a1, . . . , an),
the latter ideal is maximal. Thus, the maximal ideals of k[x1, . . . , xn] correspond precisely with points
(a1, . . . , an).

◦ Also, by the full Nullstellensatz, if I is a prime ideal, then I(V (I)) = rad(I) = I since prime ideals
are radical, and so by property (8) earlier, we see that V (I) is irreducible. Thus, the prime ideals of
k[x1, . . . , xn] correspond with irreducible a�ne algebraic sets.

◦ To summarize, we have the following correspondences:

[A�ne algebraic sets]
I
�
V

[Radical Ideals]

[Irreducible a�ne algebraic sets]
I

�
V

[Prime Ideals]

[Points of An(k)]
I
�
V

[Maximal Ideals]

• Now we can bring function �elds into the discussion.

• De�nition: If k is algebraically closed, an irreducible a�ne algebraic set in An(k) is called an a�ne variety. The
coordinate ring of an a�ne variety V is the ring Γ(V ) = k[x1, . . . , xn]/I(V ), and its associated �eld of rational functions
(or function �eld) k(V ) is the �eld of fractions of Γ(V ).

◦ Exercise: Let F(V, k) be the ring of k-valued functions on V . We say f ∈ F(V, k) is a �polynomial
function� if there exists g ∈ k[x1, . . . , xn] such that f(P ) = g(P ) for all P ∈ V . Show that Γ(V ) is the set
of equivalence classes of polynomial functions under the relation g1 ∼ g2 if g1(P ) = g2(P ) for all P ∈ V .
◦ By the exercise above, the coordinate ring of V can be thought of as the collection of distinct polynomial
functions on V , and thus the �eld of rational functions is, quite explicitly, the collection of rational
functions on V .

• Rational functions can have poles, which are points P ∈ V where the function is not de�ned.

• De�nition: If V is an a�ne variety, we say f ∈ k(V ) is de�ned at a point P if f = a/b for some a, b ∈ Γ(V )
and b(P ) 6= 0. If f is de�ned at P , its value f(P ) is the ratio a(P )/b(P ) ∈ k. The local ring of V at P ,
denoted OP (V ), is the set of rational functions f ∈ k(V ) that are de�ned at P .

◦ As we have essentially discussed already in the context of the function �eld F (t) in one variable, the
local ring OP (V ) is in fact a local ring, with maximal ideal mP (V ) given by the elements f ∈ OP (V )
that vanish at P .

◦ The points P for which f is not de�ned are the poles of f , since they are necessarily zeroes of its
denominator.

◦ Exercise: Show that Γ(V ) = ∩P∈VOP (V ): in other words, that a function with no poles is a polynomial.
(Note of course that k is algebraically closed here!)

• We will emphasize here that there may be numerous ways to write f = a/b as a quotient of polynomials,
and it may be necessary to work with di�erent �equivalent� formulas in order to verify that f is de�ned at a
particular point P .

• Example: Consider the a�ne variety V = V (y2 − x2 + 1) in A2(k) for k = C and the rational function

f =
x− 1

y
∈ k(V ).

◦ It is clear from the expression f =
x− 1

y
that f is de�ned at all points P = (x, y) ∈ V where y 6= 0.
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◦ However, because Γ(V ) = k[x, y]/(y2 − x2 + 1), we see that y2 = x2 − 1 in Γ(V ), by factoring and

rearranging we see that
x− 1

y
=

y

x+ 1
inside k(V ). Therefore, f is also equal to

y

x+ 1
, and this latter

expression shows that f is also de�ned at the point (1, 0).

◦ On the other hand, there is no way to rewrite f =
x− 1

y
in such a way that it is de�ned at (−1, 0): if

x− 1

y
=
p

q
then (x − 1)q = yp but then evaluating both sides at P = (−1, 0) produces −2q(P ) = 0,

which is a contradiction.

◦ Remark: More generally, the same argument shows that if the expression for f(P ) is of the form a/0 for
a 6= 0, then f is not de�ned at P . (If, of course, we obtain an expression 0/0, then f could possibly be
de�ned at P .)

• De�nition:If V is an a�ne variety with function �eld k(V ), its dimension is de�ned to be the transcendence
degree of k(V ) over k. An a�ne curve is an a�ne variety of dimension 1.

◦ Examples:V (y − x) and V (y2 − x2 + 1) are a�ne curves in A2(k).

◦ If we think of V = V (I) as being cut out from An(k) by the generators of I, then the dimension (as
de�ned above) agrees with the intuitive topological sense of the dimension of V (I) as a (hyper)surface,
when k = C.

• We outline some facts about a�ne plane curves (i.e., a�ne curves in A2(k)):

1. Via the correspondence C 7→ V (f), an a�ne plane curve C is the same as a nonconstant monic irreducible
polynomial f ∈ k[x, y]. We de�ne the degree of C to be the degree of the corresponding polynomial f .

◦ Proof: As noted in an exercise earlier, the irreducible a�ne sets in A2(k) are ∅ (dimension 0),
single points (dimension 0), A2(k) (dimension 2), and the sets of the form V (f) where f is a monic
irreducible polynomial (these are the only sets of dimension 1, so they are the only curves).

2. If P is a point of the a�ne curve C = V (f), we say P is a singular point if fx(P ) = fy(P ) = 0, and
otherwise we say P is a nonsingular point (or smooth point or simple point). We say that C itself is
smooth if all points of C are smooth points.

◦ The main idea here is that a point P is singular if and only if C does not have a well-de�ned tangent
line at P .

◦ To �nd the tangent line(s) to a curve at a point P , we simply expand the de�ning polynomial f as
a local Taylor series centered at P = (x0, y0), i.e., as f = a0,0 + a1,0(x−x0) + a0,1(y− y0) + a2,0(x−
x0)2 + a1,1(x − x0)(y − y0) + a0,2(y − y0)2 + · · · . Then the tangent lines are obtained by factoring
the lowest-degree homogeneous component appearing in the factorization.

◦ In particular, since a0,0 = f(P ) = 0, a1,0 = fx(P ), and a0,1 = fy(P ) by the usual Taylor expansion,
we see that there is a unique tangent line precisely when the linear term does not vanish (i.e., P has
multiplicity 1), which is to say, precisely when fx(P ) and fy(P ) are not both zero.

◦ Example: The point (0, 0) lies on the variety V (x + x3 − 2y − y5). Writing the curve locally near
(0, 0) yields f = (x− 2y) + x3 − y5, and the lowest-degree homogeneous component is x− 2y. Here,
the curve has a unique tangent line at (0, 0) given by x − 2y = 0 (which one may check explicitly
using calculus).

◦ Example: The variety V (y2 − x2 − x3) has a singular point at (0, 0). Writing the curve locally near
(0, 0) yields f = −x2 + y2 − x3, and the lowest-degree homogeneous component is (−x2 + y2) =
(−x+ y)(−x− y). Here, the curve has two di�erent tangent lines, y = x and y = −x, which is made
very clear by actually graphing y2 = x3 + x2 (the curve crosses itself at (0, 0)).

◦ Example: The variety V (y2− x3) has a singular point at (0, 0). Writing the curve locally near (0, 0)
yields f = y2 − x3, and the lowest-degree homogeneous component is y2. Here, the curve has a
double tangent line y = 0, which can be seen by graphing y2 = x3 (the curve has a cusp at (0, 0)).

◦ The degree of the lowest term with a nonzero coe�cient in the local expansion of f at P is called
the multiplicity of P . One may show that for su�ciently large n, the multiplicity of C at P is equal
to dimk(mn

P /m
n+1
P ), where mP is the maximal ideal of the local ring OP at P .
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3. A point P is on an a�ne curve C is smooth if and only if the local ring OP (C) is a discrete valuation
ring.

◦ Proof: We will show more speci�cally that if L : {ax+ by+ c = 0} is any line through P not tangent
to C at P , then the image of L in OP (C) is a local uniformizer.

◦ For this, apply a linear change of variables to move P to (0, 0), to make y the tangent direction, and
x the line through P not tangent to C at P . Then (regardless of the behavior at P ), the maximal
ideal mP (V ) of the local ring OP (V ) is generated by x and y.

◦ Furthermore, following the linear change of variables, the local expansion of f is f = y+[terms of degree ≥
2], which is of the form yg(x, y) + x2h(x, y) for some polynomials g, h ∈ k[x, y] where g(0, 0) = 1. In

the coordinate ring Γ(C) = k[x, y]/(f), we have yg = −x2h, and so y = −x2h

g
in the function �eld

k(V ). Since g(0, 0) = 1 is not zero, this shows y is de�ned at P and in fact evaluates to zero at P ,
so y ∈ mP and y is a multiple of x. Thus, x generates mP , which establishes the claimed result.

◦ For the converse, we invoke the fact noted above that for su�ciently large n, the multiplicity of C
at P is equal to dimk(mn

P /m
n+1
P ), where mP is the maximal ideal of the local ring OP at P . Here,

since the multiplicity is equal to 1 by hypothesis, the valuation of y must actually equal 1.

4. If C1 = V (f) and C2 = V (g) are two distinct a�ne plane curves sharing no common component, then
their intersection C1 ∩ C2 = V (f, g) is �nite. We may associate a divisor to this intersection C1 ∩ C2 as∑
P∈C1∩C2

nPP , where nP is the intersection number of C1∩C2 at P given by nP = dimkOP (A2)/(f, g).

◦ For polynomials in one variable, the ideal (f, g) is principal and generated by the gcd of f and g.
(One may check that the intersection number at a point P , under the de�nition above, is the power
of t− P that divides their gcd.)

◦ For polynomials in two variables (f, g) will no longer be principal, but it still carries the natural
sense of being a �common divisor�. Thus, we can think (roughly) of the divisor

∑
P∈C1∩C2

nPP as
describing the precise way in which the curves intersect.

◦ It is not particularly obvious that this value dimkOP (A2)/(f, g) is really the right de�nition. It is not
hard to see that the value is invariant under linear changes of coordinates, and that the intersection
number is 1 whenever P is a simple point of C1 and C2 where C1 and C2 meet transversally (i.e.,
their tangent lines at P are di�erent). It is also additive when we take unions of curves.

◦ We will not really use this particular formulation of divisors; it is merely some motivation for how
divisors arise in a fairly natural way in the context of curves.

• With all of this in hand, we can see that if C is a smooth a�ne curve over an algebraically closed �eld k, then
the points of C all correspond to primes of the associated function �eld k(C), since by hypothesis the local
rings are all DVRs.

◦ However, even for A1(k), there is one prime missing, namely, the prime at ∞, which does not arise as
the local ring corresponding to any point of C.

• To �x this issue, we instead need to work instead with projective varieties, which will neatly solve this issue
of �missing primes�.

0.18 (Nov 5) Student Presentations of HW2

0.19 (Nov 10) Projective Space and Projective Curves

• First, the basics of projective space:

◦ De�nition: For a �eld k, we de�ne projective n-space Pn(k) = {[x0 : x1 : · · · : xn] : xi ∈ k not all zero}/ ∼,
where P ∼ Q if P = λQ for some nonzero λ ∈ k. Equivalently, Pn(k) is the set of lines through the
origin in An+1(k).

◦ We use the notation [x0 : x1 : · · · : xn] to evoke the idea of considering only the ratios between the
coordinates, since (for example) in P1(k) the points [1 : 1] and [2 : 2] are the same. The coordinates xi
of a point P ∈ Pn(k) are not well-de�ned, but since the equivalence is only up to scaling by a nonzero
constant, the statement �xi = 0� is still well-de�ned, as are the ratios xi/xj .
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◦ For the set Ui = {[x0 : x1 : · · · : xn] : xi = 1}, we can see that Ui looks exactly like An(k) (if we just
delete the coordinate xi = 1), and Pn(k) = ∪ni=0Ui.

◦ The complement of the set Ui is the hyperplane xi = 0, and it looks exactly like Pn−1 (if we just delete
the coordinate xi = 0).

◦ Thus, somewhat informally, we have Pn(k) = An(k) ∪ Pn−1(k), where we can think of An(k) as being
the points with xn = 1 and Pn−1(k) as being the points with xn = 0.

◦ Example: We have P1(k) = {[x : 1] : x ∈ k} ∪ {[1, 0]}, which looks like A1 along with a point at ∞.

• We cannot sensibly plug a projective point into an arbitrary polynomial, since the result is not well-de�ned
even up to scaling4. However, for our purposes we only need to describe vanishing sets, which (at least) have
a chance of being better behaved.

◦ For example, for f(x, y) = x2 − y2, it is reasonable to say that the projective point [1 : 1] should be in
the vanishing set for f : not only do we have f(1, 1) = 0, but in fact for any point [t : t] equivalent to
[1 : 1], we have f(t, t) = 0 as well.

◦ On the other hand, for g(x, y) = x− y2, it is less reasonable to say that [1 : 1] should be in the vanishing
set for f : although f(1, 1) = 0, in general f(t, t) = t− t2 need not be zero for other values of t.

◦ One option would be to say that P ∈ Pn(k) is in the vanishing set of f ∈ k[x0, . . . , xn] if f(P ) = 0 for
all choices of coordinates for P .

◦ Exercise: Suppose k is an in�nite �eld, P ∈ An+1\{0}, and f ∈ k[x0, . . . , xn]. If we write f = f0 +
f1 + · · · + fd for homogeneous5 polynomials fi of degree i, show that f(λP ) = 0 for all λ ∈ k× if and
only if fi(P ) = 0 for all i. [Hint: Use linear algebra and the fact that Vandermonde determinants are
nonvanishing.]

◦ Per the exercise above, we see that when k is an in�nite �eld, requiring f(P ) = 0 for all choices of
coordinates for P is equivalent to requiring that all of the homogeneous components of f vanish.

◦ For consistency with �nite �elds (which have nonzero polynomials that vanish everywhere, causing issues
with the argument above), we instead de�ne the vanishing of a polynomial f on a projective point P in
terms of homogeneous components.

• De�nition: If f ∈ k[x0, . . . , xn] is a polynomial with f = f0 + f1 + · · ·+ fd for homogeneous polynomials fi of
degree i, we say that f vanishes at P ∈ Pn(k), and write f(P ) = 0, if fi(P ) = 0 for each i.

◦ Note that fi(λP ) = λif(P ) so the vanishing condition on fi does not depend on which equivalent
coordinates are used for P .

◦ Example: The polynomial f(x, y) = x2− y2 vanishes at the projective point [1 : 1] since its only nonzero
homogeneous component x2 − y2 vanishes at P , but the polynomial g(x, y) = x − y2 does not since its
homogeneous components are x and −y2 and these do not vanish at [1 : 1].

◦ The main theme is that when we want to work with polynomials in projective space, we want to consider
only homogeneous polynomials.

• Now that we have given a reasonable de�nition of vanishing for projective points, we can de�ne the projective
versions of the operators V and I:

• De�nition: If S is any set of polynomials in k[x0, . . . , xn], we de�ne the vanishing locus V (S) = {P ∈ Pn(k) :
f(P ) = 0 for all f ∈ S}. Conversely, ifX is any set of points in Pn(k), we de�ne the ideal of functions vanishing on X
as I(X) = {f ∈ k[x0, . . . , xn] : f(P ) = 0 for all P ∈ X}.

◦ Exercise: Identify V (x0), V (x2
0), V (x1 − x0), V (x1 − x2

0), V (x2
1 − x2

0), V (x0, x1), V (x0, x1, x2), and
V (x0x1 − x2

2) in P2(k).

4For example, if f(x, y) = x2+y2, we could try to de�ne f on the projective point [1 : 2] by plugging in x = 1 and y = 2, thus yielding
the value 5, but this clashes with attempting to de�ne f on [2 : 4] by plugging in x = 2 and y = 4 to obtain 20, since [1 : 2] = [2 : 4] as
points in P1(k).

5Recall that a polynomial is homogeneous of degree d if all of its monomial terms have total degree d. For example, x2y− 3x3 +xyz
is homogeneous of degree 3.
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◦ Exercise: Show that all of the basic properties of the a�ne operators I and V also hold for the projective
I and V (suitably modi�ed):

1. If I is the ideal generated by T ⊆ k[x0, . . . , xn], then V (T ) = V (I).

2. V (0) = Pn(k), V (1) = ∅, and V ({aixj − ajxi}0≤i,j≤n) = {[a0 : a1 : · · · : an]}.
3. I(∅) = k[x0, . . . , xn], I(Pn) = 0 when k is in�nite, and I({[a0 : a1 : · · · : an]}) = ({aixj −
ajxi}0≤i,j≤n).

4. V (∪iIi) = ∩iV (Ii) and V (IJ) = V (I) ∪ V (J).

5. For ideals I and J , if I ⊆ J then V (I) ⊇ V (J), and for sets X and Y , if X ⊆ Y then I(X) ⊇ I(Y ).

6. For any subset S of k[x0, . . . , xn], S ⊆ I(V (S)) and V (S) = V (I(V (S))).

7. For any subset X of Pn(k), X ⊆ V (I(X)) and I(X) = I(V (I(X))). Furthermore, I(X) is a radical
ideal.

• Owing to our de�nition of vanishing in terms of homogeneous components, the ideals of sets in Pn(k) have an
additional property:

• De�nition: An ideal I of k[x0, . . . , xn] is homogeneous if, for any f ∈ I with homogeneous decomposition
f = f0 + f1 + · · ·+ fd, it is true that each component fi ∈ I.

◦ It is easy to see that I(X) is homogeneous, since for any f = f0 + f1 + · · ·+ fd ∈ I(X), by de�nition of
vanishing we see that for any P ∈ X we have fi(P ) = 0 and so fi ∈ I(X).

◦ Exercise: Show that an ideal I of k[x0, . . . , xn] is homogeneous if and only if I is generated by �nitely
many homogeneous polynomials.

• We also have a projective version of the Nullstellensatz, which is essentially the same as the a�ne version
except that we must account for the fact that the vanishing locus of the ideal (x0, x1, . . . , xn) in Pn is empty
since [0 : 0 : · · · : 0] is not a point of Pn:

• Theorem (Projective Nullstellensatz): Let k be an algebraically closed �eld and I be a homogeneous ideal of
k[x0, . . . , xn]. Then the following hold:

1. (Weak) V (I) = ∅ if and only if I contains all monomials of su�ciently large degree, if and only if rad(I)
contains (x0, . . . , xn).

2. (Strong) If V (I) 6= ∅, then I(V (I)) = rad(I).

◦ The proofs are similar to those of the a�ne Nullstellensatz, and are left as exercises.

◦ Owing to the fact that its vanishing locus is trivial, and thus can essentially be ignored when doing
computations, the ideal (x0, x1, . . . , xn) in k[x0, . . . , xn] is called the irrelevant ideal.

• Next, we de�ne algebraic sets, varieties, and coordinate rings in Pn. The ideas proceed essentially the same
way:

• De�nition: A projective algebraic set is a set in Pn(k) of the form V (I) for some ideal I of k[x0, . . . , xn]. A
projective algebraic set V is reducible if it can be written as V = V1∪V2 where V1, V2 6= V , and it is irreducible
otherwise. A projective variety is an irreducible projective algebraic set.

◦ By essentially the same arguments as in the a�ne case, V is irreducible if and only if I(V ) is a prime
ideal of k[x0, . . . , xn], and any projective algebraic set can be written uniquely as a union of irreducible
components V1 ∪ V2 ∪ · · · ∪ Vn such that Vi 6⊆ Vj for any i 6= j.

• De�nition: If V is a projective variety, then its (homogeneous) coordinate ring is the integral domain Γ(V ) =
k[x0, . . . , xn]/I(V ).

◦ As before, we may decompose the polynomials f ∈ Γ(V ) as f = f0 +f1 + · · ·+fd where fi is homogeneous
of degree i.

◦ Since I(V ) is prime, the coordinate ring is an integral domain, so its fraction �eld is well de�ned. Unlike
in the a�ne case, however, the elements of this fraction �eld do not generally determine functions on V ,
because a ratio of polynomials need not be a function on V .
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◦ The �rst obvious issue is that for a ratio
f

g
=
f0 + f1 + · · ·+ fd
g0 + g1 + · · ·+ gd

, the various homogeneous terms in the

numerator and denominator will not transform the same way if we choose a di�erent representative for
the projective point P ∈ V at which we are attempting to evaluate f/g. (For example: what is the value

of
x+ y2

x+ y
at the projective point [1 : 1]?)

◦ To handle this issue, we must only have a single homogeneous component in the numerator and de-
nominator. But even here, in order for the ratio to be well-de�ned, the degrees of the numerator and
denominator must be equal.

◦ When we restrict to rational functions of this form, however, we do obtain well-de�ned functions on

projective points: if f, g are both homogeneous of degree d, then
f(λP )

g(λP )
=
λdf(P )

λdg(P )
=
f(P )

g(P )
, so the ratio

f/g is well de�ned regardless of the representative of P we use.

• De�nition: If V is a projective variety, its function �eld k(V ) is the set of elements z in the fraction �eld of Γ(V )

such that z can be written in the form z =
f

g
for some homogeneous polynomials f, g ∈ k[x0, . . . , xn] of the

same degree. We say z is de�ned at a point P ∈ V if z =
f

g
for some g with g(P ) 6= 0. The local ring of V at P

is OP (V ) = {z ∈ k(V ) : z is de�ned at P} with maximal ideal mP (V ) = {z ∈ OP (V ) : z(P ) = 0}.

◦ As in the a�ne case, we may require di�erent expressions z = f/g at di�erent points P .

• Example: Consider the a�ne variety V = V (Y 2 +Z2−X2) in P2(C) and the rational function f =
X − Z
Y

∈
k(V ).

◦ It is clear from the expression f =
X − Z
Y

that f is de�ned at all points P = [X : Y : Z] ∈ V where

Y 6= 0, which is to say, at all points of the form [X : 1 : Z] after rescaling. The only points of V with
Y = 0 are those with X2 = Z2, which gives two points: [1 : 0 : 1] and [1 : 0 : −1].

◦ However, because Γ(V ) = k[x, y]/(Y 2 + Z2 −X2), we see that Y 2 = X2 − Z2 in Γ(V ), by factoring and

rearranging we see that
X − Z
Y

=
Y

X + Z
inside k(V ). Therefore, f is also equal to

Y

X + Z
, and this

latter expression shows that f is also de�ned at the point [1 : 0 : 1] (and in fact it vanishes there).

◦ On the other hand, there is no way to rewrite f =
X − Z
Y

in such a way that it is de�ned at [1 : 0 : −1]:

if
X − Z
Y

=
p

q
then (X −Z)q = Y p but then evaluating both sides (as polynomials in X,Y, Z) at X = 1,

Y = 0, Z = −1 produces −2q(1, 0,−1) = 0, which is a contradiction since this means q(P ) = 0.

◦ Remark: Note that this is just the projective version of the example we did earlier for the a�ne variety
V = V (y2 + 1− x2) in A2.

• As clearly indicated by the similarity of the calculations in the example above and the nearly-identical a�ne
example from earlier, there is quite a lot of interplay between projective and a�ne spaces.

◦ One such correspondence is obtained by viewing Pn as the lines through the origin in An+1, so for any
set S in Pn we may write down the set of its corresponding points in An+1 by converting the point
[x0 : x1 : · · · : xn] to the point (x0, x1, . . . , xn).

◦ Explicitly, if S ⊆ Pn, the cone C(S) of S in An+1 is the set {(x0, x1, . . . , xn) : [x0 : x1 : · · · : xn] ∈
S} ∪ {(0, 0, . . . , 0)}.
◦ Exercise: When V is a nonempty projective algebraic variety, show that Ia�ne(C(V )) = Iprojective(V ),
and when I is a homogeneous ideal with Vprojective(I) 6= ∅, show that C(Vprojective(I)) = Va�ne(I).

• Although the cone of a variety shares the same underlying ideal, and thus has the same coordinate ring and
function �eld, its dimension is di�erent.
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◦ We would like instead to think of Pn as being An plus a hyperplane at ∞, and so an a�ne variety in An
should give rise to one that looks essentially the same in Pn, except for having some additional points in
the hyperplane at ∞.

◦ The main idea, as exempli�ed by comparing the example above to its a�ne version, is that of homoge-
nization and dehomogenization.

• De�nition: If F ∈ k[x0, x1, . . . , xn] is a polynomial, its dehomogenization with respect to x0 is F∗ =
F (1, x1, . . . , xn). Inversely, if f ∈ k[x1, . . . , xn] is a polynomial, its homogenization with respect to x0 is

f∗ = x
deg(f)
0 f(x1/x0, x2/x0, . . . , xn/x0).

◦ More explicitly, if f ∈ k[x1, . . . , xn] has homogeneous decomposition f = f0 + f1 + · · · + fd, then
f∗ = xd0f0 + xd−1

0 f1 + · · ·+ fd.

◦ Example: The homogenizations of x2
1 +x2, 4 +x1x3− 3x5

4, and 1 are x2
1 +x0x2, 4x5

0−x3
0x1x3− 3x5

4, and
1 respectively.

◦ Example: The dehomogenizations of x2
0 + 3x0x1 + x1x2, x

3
0 + 4x0x

2
2 + x3

3, and x
2
0 are 1 + 3x1 + x1x2,

1 + 4x2
2 + x3

3, and 1 respectively.

◦ The main idea is that dehomogenizing removes the variable x0 by setting it equal to 1 (thereby usually
creating a non-homogeneous polynomial in the remaining variables x1, . . . , xn) while homogenizing takes
a non-homogeneous polynomial in x1, . . . , xn and makes it homogeneous in x0, x1, . . . , xn by using the
extra variable x0 to make all of the terms have the same degree.

◦ Homogenization and dehomogenization are essentially inverses of one another, aside from occasionally
losing powers of x0.

◦ Exercise: Show that (FG)∗ = F∗G∗, (fg)∗ = f∗g∗, (f∗)∗ = f , (F∗)
∗ = F/x

vx0 (f)
0 , (F +G)∗ = F∗ +G∗,

and x
deg(f)+deg(g)−deg(f+g)
0 (f + g)∗ = x

deg(g)
0 f∗ + x

deg(f)
0 g∗.

• Our interest here is that homogenizing an a�ne equation creates a projective one, and dehomogenizing a
projective equation yields an a�ne one, thereby giving a correspondence between a�ne varieties and projective
varieties.

◦ Motivating Example: Homogenizing the a�ne equation x1 + x2 = 1 yields the projective equation
x1 + x2 = x0. An a�ne point (x1, x2) satisfying x1 + x2 = 1 then yields a projective point [1 : x1 : x2] =
[y0 : y1 : y2] satisfying y1 + y2 = y0. If we compare the a�ne points to the projective ones, we see that
the projective variety consists of the points [1 : x1 : x2], which all correspond to a�ne points, along with
one additional point [0 : 1 : −1] which we think of as the point at ∞ on this line.

◦ Motivating Example: Dehomogenizing the projective equation x2
2x0 = x3

1+x1x
2
0 yields the a�ne equation

x2
2 = x3

1 + x1. A projective point [x0 : x1 : x2] satisfying x2
2x0 = x3

1 + x1x
2
0 then yields an a�ne point

(y1, y2) = (x1/x0, x2/x0) satisfying y2
2 = y3

1 + y1, as long as x0 6= 0. When we dehomogenize, the
projective points [x0 : x1 : x2] with x0 = 0 �disappear� from the a�ne curve (note here that there is only
one such point, namely [0 : 1 : 0]).

• In order to make this precise, we can extend homogenization to ideals and then to a�ne algebraic sets:

• De�nition: If I = (f1, . . . , fk) is an ideal of k[x1, . . . , xn], the homogenization of I is the ideal I∗ = (f∗1 , . . . , f
∗
k )

generated by the homogenizations of the generators of I. Conversely, if J is an ideal of k[x0, x1, . . . , xn], the
dehomogenization of J is the ideal J∗ = {g∗ : g ∈ J} of dehomogenizations of the elements of J (and is
generated by the dehomogenizations of the generators of J).

◦ Per the de�nition, we see immediately that I∗ is a homogeneous ideal.

◦ Note also that the homogenization of I is not simply the set of homogenizations of elements of I (the
latter is not generally an ideal, since it is not closed under scaling by x0), but rather the ideal generated
by these homogenizations; this is why the two de�nitions appear slightly di�erent. The dehomogenization
of J is, however, just the set of dehomogenizations of elements of J .

◦ Example: For I = (x2
1, x1 + x2

2), we have I∗ = (x2
1, x0x1 + x2

2).

◦ Example: For J = (x2
0x1, x

2
1 + x2

2), we have J∗ = (x1, x
2
1 + x2

2) = (x1).
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• De�nition: If V is an a�ne algebraic set, then for I = Ia�ne(V ) we de�ne the homogenization of V to be
the projective algebraic set V ∗ = Vprojective(I

∗). Conversely, if W is a projective algebraic set, then for
J = Iprojective(W ) we de�ne the dehomogenization of W to be the a�ne algebraic set W∗ = Va�ne(J∗).

◦ Example: If W = V (x2
0x1 + x0x

2
2) in P2, then J = I(W ) = (x2

0x1 + x0x
2
2) so J∗ = (x1 + x2

2) and thus
W∗ = V (x1 + x2

2) in A2.

◦ Example: If V = V (x1 + x2
2) in A2, then I = I(V ) = (x1 + x2

2) so I∗ = (x0x1 + x2
2) and then V ∗ =

V (x0x1 + x2
2) in P2.

◦ In the pair of examples above, we can see that (W∗)
∗ = V (x0x1 + x2

2) is not equal to W (the de�ning
polynomial is now missing a factor of x0, resulting in a loss of most points of the form [0 : x1 : x2] from
W ), whereas (V ∗)∗ is equal to V .

• These examples typify the general behavior of homogenizing and dehomogenizing: up to some minor issues
regarding losing powers of x0, these operations are essentially inverses, and thus allow us to go back and forth
between Pn and An.

• Proposition (Homogenization of A�ne Sets): Let k be an algebraically closed �eld, let H∞ = V (x0) denote
the hyperplane at ∞ inside Pn, and let U0 = Pn\H∞ be its complement. Also let V, V1, V2 be a�ne algebraic
sets and W,W1,W2 be projective algebraic sets.

1. For any V we have (V ∗)∗ = V .

2. For ϕ0 : An → Pn with ϕ0(x1, . . . , xn) = [1 : x1 : · · · : xn], we have V ∗ ∩ U0 = ϕ0(V ).

3. If V1 ⊆ V2 ⊆ An then V ∗1 ⊆ V ∗2 ⊆ Pn, and if W1 ⊆W2 ⊆ Pn then (W1)∗ ⊆ (W2)∗ ⊆ An.
4. If V is irreducible in An then V ∗ is irreducible in Pn.
5. If V ⊆ An then V ∗ is the smallest projective algebraic set in Pn that contains ϕ0(V ).

6. If V = ∪iVi is an irreducible decomposition in An, then V ∗ = ∪iV ∗i is an irreducible decomposition in
Pn.

7. If V is a nonempty proper algebraic subset of An, then no component of V ∗ lies in or contains H∞.

8. If W is a nonempty proper algebraic subset of Pn and no component of W lies in or contains H∞,
then W∗ is a proper algebraic subset of An and (W∗)

∗ = W . More generally, for any W we have
W = (W∗)

∗ ∪ (H∞ ∩W ).

◦ Proofs: (1)-(3) are immediate from properties of (de)homogenization and V and I.

◦ (4) follows by observing that if I is prime then so is I∗.

◦ For (5), suppose that W ⊆ Pn contains ϕ0(V ). Then for any f ∈ I(W ), we must have f∗ ∈ I(V ), so

f = x
vx0

(f)
0 (f∗)

∗ ∈ I(V ) as well. Therefore, I(W ) ⊆ I(V )∗ so W contains V ∗.

◦ For (6), note that (4) shows that each V ∗i is irreducible and (3) shows that none of them contain
another. Also, ∪iV ∗i is also the smallest projective algebraic set that contains ∪iϕ0(Vi) = ϕ0(V ) so
it equals V ∗ by (5).

◦ For (7), we may assume by (6) that V is irreducible. Then V ∗ is not a subset of H∞ because (2)
tells us that V ∗ ∩ U0 = ϕ0(V ) 6= ∅. For the other part, by the Nullstellensatz, since V is a proper
subset of An we have I(V ) 6= 0: then for any nonzero f ∈ I(V ) we see that f∗ is not a multiple of
x0. But if V

∗ contains H∞, then I(V )∗ ⊆ I(H∞) = (x0), which is a contradiction.

◦ For (8), assume again by (6) that W is irreducible. Since ϕ0(W∗) ⊆ W , it is enough to show
that W ⊆ (W∗)

∗, which follows by (3) from showing I(W∗) ⊆ I(W ). So suppose f ∈ I(W∗): then
fn ∈ I(W )∗by the Nullstellensatz, which means xk0(fn)∗ ∈ I(W ) for some power k. But since I(W ) is
prime and x0 6∈ I(W ) becauseW is not contained in V (x0) = H∞, this means (fn)∗ = (f∗)n ∈ I(W ),
so again by primality this means f∗ ∈ I(W ) as required. The second part follows by analyzing the
various possible cases for W ∩H∞.

• Per (1), (4), and (5) above, if we identify V with its image ϕ0(V ) in Pn, we can view V ∗ as being the
projective closure of the a�ne variety V .

◦ In particular, if we ignore varieties contained entirely within the hyperplane H∞, then (7) and (8) tell
us that we have a natural bijection between nonempty a�ne and projective varieties.
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◦ Based on the simplicity of the relationship between V and V ∗, it is natural to expect that the function
�elds of V and V ∗ should be the same, which is in fact the case:

• Proposition (Equivalence of Function Fields): If V is an a�ne variety with projective closure V ∗, then the
function �elds k(V ) and k(V ∗) are isomorphic. Furthermore, if P is any point on V with corresponding point
P ∗ on V ∗, then the isomorphism of k(V ) and k(V ∗) also yields an isomorphism of OP (V ) with OP∗(V ∗) and
of mP (V ) with mP∗(V

∗).

◦ Proof: Suppose that f ∈ Γ(V ∗) is a homogeneous polynomial in k[x0, . . . , xn]/I(V ∗). By dehomogenizing,
we get a residue class f∗ ∈ k[x1, . . . , xn]/I(V ); note that this residue class is well de�ned by (1) from the
proposition above.

◦ We may extend this map on coordinate rings to one on the fraction �elds k(V ∗) to k(V ) by taking
ψ(f/g) = f∗/g∗ for any homogeneous polynomials f and g of the same degree. (Note that this map is
simply dehomogenization; the point is that it is still well de�ned up to equivalence.)

◦ On the other hand, we also have a natural inverse map from k(V ) to k(V ∗) by homogenizing: explicitly,

we may take τ(p/q) = x
deg(q)−deg(p)
0 p∗/q∗, which is a quotient of homogeneous polynomials of the same

degree and is therefore an element of k(V ∗).

◦ Since ψ is clearly a ring homomorphism, we see that k(V ∗) is isomorphic to k(V ). It is also easy to see
that this isomorphism restricts to an isomorphism on the corresponding local rings, since g(P ) 6= 0 if
and only if g∗(P

∗) 6= 0, and f(P ) = 0 if and only if f∗(P
∗) = 0.

0.20 (Nov 12) Rational Maps and Extensions of Function Fields

• We can also homogenize and dehomogenize with respect to other variables (e.g., x1, x2, ... , xn); there is no
particular reason to use x0 speci�cally, other than convenience.

◦ In particular, since the intersection of the hyperplanes V (x0), V (x1), ... , V (xn) in Pn is empty, their com-
plements cover Pn. Each of these complements corresponds to a copy of An obtained by dehomogenizing
with respect to the corresponding variable.

◦ Thus, if W is any projective variety, we may analyze any point of W �a�nely�, inside one of the possible
dehomogenizations of W .

◦ Since our interest is in plane curves, we will use uppercase letters (X,Y ,Z) for the variables of projective
equations and lowercase letters (x,y,z) for the variables of a�ne equations, and indicate which variable
is being homogenized or dehomogenized.

◦ For example, we may dehomogenize the projective equation Y 2Z = X3 + 3XZ2 with respect to X to
obtain the a�ne equation y2z = 1+3z2, or with respect to Y to obtain the a�ne equation z = x3 +3xz2,
or with respect to Z to obtain the a�ne equation y2 = x3 + 3x.

◦ By dehomogenizing, we see that the projective point [1 : 2 : 1] on Y 2Z = X3 +XZ2 corresponds to the
a�ne point (y, z) = (2, 1) on y2z = 1 + z2, the a�ne point (x, z) = (1/2, 1/2) on z = x3 + xz2, and the
a�ne point (x, y) = (1, 2) on y2 = x3 + 3x.

◦ Likewise, the projective point [0 : 1 : 0] on Y 2Z = X3 +XZ2, which disappears on the two a�ne curves
y2z = 1 + z2 and y2 = x3 + x since the dehomogenized variable is zero, still corresponds to a point
(x, z) = (0, 0) on z = x3 + xz2.

◦ We think of the projective point [0 : 1 : 0] as being a �point at in�nity� on the a�ne curve y2 = x3 +x; if
we want to study its local ring, we can simply work instead with the other dehomogenization z = x3+xz2,
where it corresponds to (0, 0).

• We can see, therefore, that working with projective curves nearly addresses the issue of �missing� points at
in�nity, which (in the language of function �elds) corresponds to primes at in�nity.

◦ Furthermore, by working with appropriate dehomogenizations, we may import all of our terminology
and results about a�ne plane curves from earlier without much change: e.g., projective plane curves are
of the form V (f) for a homogeneous irreducible polynomial f ∈ k[X,Y, Z], a point of V is nonsingular
when fx, fy, fz are not all zero, and so forth.
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◦ Exercise: Show that if f ∈ k[X1, . . . , Xn] is homogeneous of degree d, then X1fX1 + · · ·+XnfXn = df .
(This is a famous result of Euler.) Deduce that for a homogenous f ∈ k[X,Y, Z], if two of fX , fY , fZ
are zero then the third is as well.

◦ Let us now be more precise about the correspondence between smooth projective curves and function
�elds over an algebraically closed �eld k.

◦ If we have a smooth projective curve C, then its associated function �eld k(C) is a function �eld that
has transcendence degree 1 over its constant �eld k (in our language). Each point P on the curve has an
associated local ring OP (C) that corresponds to a prime of the function �eld; each of these local rings is
a DVR since C is smooth.

◦ If we have a function �eld K/k of transcendence degree 1, to construct the associated curve, �rst choose
any prime P of K (necessarily of degree 1 since k is algebraically closed). Then the associated DVR OP
is �nitely generated as a ring over k, so since it is a domain, it is isomorphic to k[x1, . . . , xn]/I for some
prime ideal I. If we take C = V (I), we obtain an a�ne curve whose function �eld is K. With some
additional work, one can eventually show that the projective closure of this a�ne curve (whose function
�eld is also K, as we showed above) is smooth.

• So far, we have mostly been assuming that the constant �eld k is algebraically closed. In particular, since we
want to focus on function �elds over Fq, we need to remove this assumption.

◦ Explicitly, suppose V is a variety over k and E is a sub�eld of k. We would naively like to de�ne the set
of E-points of V as V ∩ An(E) if V is a�ne, and as V ∩ Pn(E) if V is projective.

◦ We may make this more precise using Galois actions: speci�cally, assuming that k = E, then the Galois
group of k/E acts naturally on the k-points of V .

• De�nition: Let E be a �eld with algebraic closure k, and let G = Gal(E/k). If V is a variety over k, we de�ne
the E-points of V to be the set of points of V over k that are �xed by G.

◦ Explicitly, P is an E-point of V if and only if σ(P ) = P for all σ ∈ Gal(E/k).

◦ The set of E-points of V is precisely V ∩ An(E) if V is a�ne, and is V ∩ Pn(E) if V is projective, since
the given condition is equivalent to saying that all of the coordinates of the point lie in E.

◦ Example: For E = F5 and V = V (y2 − x2 − 1) in A2, the set of E-points of V is (x, y) = (0, 1), (0, 4),
(2, 0), and (3, 0).

◦ Example: For E = F3 and V = V (Y 2Z2 −XZ3 −X4) in P2, the set of E-points of V is [X : Y : Z] =
[0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 2].

◦ We can also de�ne the elements of the coordinate ring and function �eld of V over E, namely, as the
elements of Γ(V ) and k(V ) �xed by E, respectively.

• De�nition: If E is a �eld with algebraic closure k, we say that a variety V is de�ned over E if I(V ) can be
generated by polynomials with coe�cients in E.

◦ We will think of all varieties as implicitly being de�ned over an algebraically closed �eld, even if it they
are actually de�ned over a sub�eld.

◦ Thus, we may meaningfully speak of the points of V on arbitrary algebraic extensions of E.

• We now discuss maps between varieties. The most natural starting point is to consider maps de�ned by
polynomials:

• De�nition: If V is an a�ne variety in An(k) and W is an a�ne variety in Am(k), a map ϕ : V → W
is called a polynomial map from V to W if there exist polynomials T1, . . . , Tm ∈ k[x1, . . . , xn] such that
ϕ(a1, . . . , an) = (T1(a1, . . . , an), T2(a1, . . . , an), . . . , Tm(a1, . . . , an)).

◦ Example: The map ϕ : A1 → A1 with ϕ(a) = a2 + a is a polynomial map, as is the map ϕ : A1 → A3

with ϕ(a) = (a, a2, a3).

◦ Example: The map ϕ : V (x2 + y2 − 1)→ A1 with ϕ(x, y) = x is a polynomial map.
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◦ Example: The map ϕ : A2 → V (x2 + y2 − z2) with ϕ(a, b) = (2ab, a2 − b2, a2 + b2) is a polynomial map.
Note that this map is well-de�ned because (2ab)2 +(a2−b2)2−(a2 +b2)2 is indeed zero for all (a, b) ∈ A2,
so (2ab, a2 − b2, a2 + b2) ∈ V (x2 + y2 − z2).

◦ Example: The map ϕ : V (y − x2)→ V (z − xy) with ϕ(x, y) = (x, y, x3) is a polynomial map. Note that
this map is well-de�ned because for all (x, y) ∈ V (y−x2) we have y = x2, and then (x, y, x3) ∈ V (z−xy).

• Polynomial maps are equivalent to homomorphisms of coordinate rings:

• Proposition (Polynomial Maps and Coordinate Rings): If V and W are a�ne varieties, then any polynomial
map ϕ : V → W induces a homomorphism ϕ̃ : Γ(W ) → Γ(V ) on coordinate rings via �plugging in�: ϕ̃(f) =
f ◦ ϕ. Conversely, any homomorphism ϕ̃ : Γ(W )→ Γ(V ) is induced by a unique polynomial map ϕ : V →W
with ϕ̃(f) = f ◦ ϕ.

◦ Proof: First suppose ϕ : V → W is a polynomial map. For any f ∈ k[x1, . . . , xn], de�ne ψ(f) = f ◦ ϕ.
Clearly, ψ is a ring homomorphism (since it is just polynomial evaluation). Furthermore, this map ψ
descends to a well-de�ned map ϕ̃ : Γ(W ) → Γ(V ): this follows by noting that if f ∈ Γ(W ) is the
I(W )-residue of a polynomial G(x1, . . . , xn), then ϕ̃(f) = f ◦ ϕ is the I(V )-residue of the polynomial
G(T1, . . . , Tm).

◦ For the converse, we can simply reconstruct the map ϕ from its action on each variable xi. Explicitly,
suppose that ϕ̃ : Γ(W ) → Γ(V ) is a homomorphism. Then ϕ̃ maps xi + I(W ) to some polynomial
Ti + I(V ) for each 1 ≤ i ≤ m. Then the map ϕ(a1, . . . , an) = (T1(a1, . . . , an), . . . , Tm(a1, . . . , an)) is
a polynomial map from An to Am, and it induces a map ϕ̂ : Γ(Am) → Γ(An). From the information
given we know that ϕ̂(I(W )) ⊆ I(V ), so ϕ(V ) ⊆W . Thus, ϕ|V is a polynomial map from V to W , and
ϕ̃(f) = f ◦ ϕ as required.

• De�nition: If V and W are a�ne varieties, a polynomial map ϕ : V → W is an isomorphism if it possesses
an inverse polynomial map ψ : W → V (i.e., with ϕ ◦ ψ = idW and ψ ◦ ϕ = idV ).

◦ By the above, we see that V and W are isomorphic if and only if their coordinate rings are isomorphic
as k-algebras (i.e., if their coordinate rings are isomorphic as rings where the isomorphism also �xes k).

◦ Example: The map ϕ : V (x − y) → V (x − 2y) with ϕ(x, y) = (2x, y) is an isomorphism with inverse
ψ(x, y) = (x/2, y).

• We would like to write down a similar de�nition for projective varieties, which we can do at the cost of a bit
of added complexity.

◦ The most immediate issue is that we need to insist that all of the polynomials Ti be homogeneous of the
same degree, in order to ensure that �plugging in� to a polynomial map is well de�ned.

◦ However, this is not the only obstruction; di�culties also arise in the event that all of the polynomials
Ti vanish simultaneously, since then the resulting value does not yield a well-de�ned point in P1.

• De�nition: If V and W are projective varieties, a rational map from V to W is a map of the form ϕ = [ϕ0 :
ϕ1 : · · · : ϕm] where the ϕi ∈ k[x0, . . . , xn] are homogeneous polynomials of the same degree, and such that
for all f ∈ I(W ), we have f ◦ ϕ = f(ϕ0(x0, . . . , xn), . . . , ϕm(x0, . . . , xn)) ∈ I(V ).

◦ If ϕ is a rational map, then for P ∈ V we can evaluate ϕ(P ) = [ϕ0(P ) : ϕ1(P ) : · · · : ϕm(P )] ∈W as long
as not all of the values ϕi(P ) are zero. We can see that this value ϕ(P ) is well de�ned because the ϕi
are homogeneous of the same degree, and ϕ(P ) ∈W precisely because f ◦ ϕ ∈ I(V ) for any f ∈ I(W ).

◦ To illustrate, consider the map ϕ : V (X2 + Y 2 − Z2) → P1 given by ϕ[X : Y : Z] = [X + Z : Y ]. On
its face, this would appear to be a perfectly well-de�ned function, since for any equivalent representative
[λX : λY : λZ] we have ϕ[λX : λY : λZ] = [λX + λZ : λY ] = [X + Z : Y ] = ϕ[X : Y : Z].

◦ However, for the point P = [1 : 0 : −1] in V (X2 + Y 2 − Z2), the de�nition states ϕ(P ) = [0 : 0], which
is not a point of P1.

◦ Notice, though, that if we work inside Γ(V ), we see that [X +Z : Y ] = [(X +Z)(X −Z) : Y (X −Z)] =
[−Y 2 : Y (X − Z)] = [−Y : X − Z] and this latter expression is de�ned at [1 : 0 : −1] since it evaluates
to [0 : 2].
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◦ We would like to extend our interpretation of the value of ϕ(P ) in a way that allows us to make these
kinds of manipulations.

• De�nition: If ϕ : V → W is a rational map, we say that ϕ = [ϕ0 : · · · : ϕm] is de�ned at P if there exist
homogeneous polynomials ψ0, . . . , ψn of the same degree such that ϕiψj ≡ ϕjψi (mod I(V )) for all pairs (i, j),
and where ψi(P ) 6= 0 for some i, and we write ϕ(P ) = [ψ0(P ) : · · · : ψm(P )].

◦ The idea here is that, inside Γ(V ), we view the homogeneous coordinates [ϕ0 : · · · : ϕm] and [ψ0 : · · · : ψm]
as being projectively equivalent.

◦ We call these �rational maps� because if we work a�nely, they arise from rational functions.

• De�nition: If V and W are varieties, a morphism from V to W is a rational map that is de�ned at all points
of V . An isomorphism is a morphism possessing an inverse morphism.

◦ If ϕ : V →W is a morphism, then ϕ induces an injective homomorphism on function �elds ϕ̃ : k(W )→
k(V ) via composition: ϕ̃(f) = f ◦ ϕ.
◦ As in the a�ne case for polynomial maps, the converse is true as well: any injective k-algebra homo-
morphism on function �elds ϕ̃ : k(W ) → k(V ) (i.e., a ring homomorphism �xing k) yields a morphism
ϕ : V →W .

◦ Example: The map ϕ : V (Y 2Z−X3−XZ2)→ P1 given by ϕ[X : Y : Z] = [Y : Z] is a morphism. (Note
that there are no points of V (Y 2Z −X3−XZ2) where ϕ is unde�ned, since if Y = Z = 0 then X would
also be zero.)

◦ Example: The map ϕ : V (X2 +Y 2−Z2)→ P1 given by ϕ[X : Y : Z] = [X+Z : Y ] is a morphism, since
it is de�ned at all points of V (X2 + Y 2 − Z2) as shown earlier.

◦ Example: The map ψ : P1 → V (X2 + Y 2 − Z2) given by ψ[S : T ] = [S2 − T 2 : 2ST : S2 + T 2] is a
morphism. In fact, it is the inverse of the previous morphism, since we have (ϕ ◦ψ)[S : T ] = ϕ[S2− T 2 :
2ST : S2 + T 2] = [2S2 : 2ST ] = [S : T ] and (ψ ◦ ϕ)[X : Y : Z] = ψ[X + Z : Y ] = [(X + Z)2 − Y 2 :
2Y (X + Z) : (X + Z)2 + Y 2] = [2X(X + Z) : 2Y (X + Z) : 2Z(X + Z)] = [X : Y : Z].

◦ Example: The map ψ : V (Y 2Z−X3−XZ2)→ V (Y 2Z−X3−XZ2) given by ψ[X : Y : Z] = [X : −Y : Z]
is a morphism. In fact, it is an isomorphism, since it is its own inverse.

◦ Example: If k has characteristic q and V is de�ned over Fq, the map ϕ : V → V given by ϕ[X0 : X1 :
· · · : Xn] = [Xq

0 : Xq
1 : · · · : Xq

n] is a morphism called the Frobenius morphism.

◦ Example: The map ϕ : P1 → P2 given by ϕ[X : Y ] = [X2 : XY : Y 2] is a morphism giving an embedding
of P1 into P2 (it is an example of the general family of d-uple embeddings). The image of ϕ is the variety
V (XZ − Y 2).

◦ Example: The map ψ : V (Y 2Z−X3−Z3)→ V (Y 2Z−X3−Z3) given by ψ[X : Y : Z] = [2XY (Y 2−9Z2) :
Y 4+18Y 2Z2−27Z4 : 8Y 3Z] is a morphism. (Actually checking that it is well-de�ned is rather unpleasant,
but it does work out!) This particular morphism arises as �multiplication by 2� on the elliptic curve
V (Y 2Z −X3 − Z3).

• Restricting now to the case of projective curves, we have the following facts:

1. If C1 is a smooth projective curve, then any rational map ϕ : C1 → C2 is automatically a morphism.

◦ The idea here is that if P is any point on C1, then since C1 is smooth at P (meaning that the local
ring OP (V ) is a DVR), we may choose a local uniformizer t at P .

◦ Then we can rescale the components of ϕ = [ϕ0 : ϕ1 : · · · : ϕm] by an appropriate power of t in order
to make the minimum valuation among the ϕi equal to zero, at which point we see that ϕ is de�ned
at P .

2. If ϕ : C1 → C2 is a nonconstant morphism of projective curves, then ϕ is surjective, and k(C1) is a
�nite-degree extension of ϕ̃(k(C2)).

◦ The �rst statement follows from the result that the image of a morphism of a projective variety is
itself a projective variety (this is usually phrased as saying that projective varieties are complete).
Thus, the image ϕ(C1) is a subvariety of C2: if its dimension is 1 then since C2 is irreducible this
means ϕ(C1) = C2, and otherwise if its dimension is 0 then ϕ(C1) would be a single point and ϕ
would be constant, which we assumed it was not.
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◦ The fact that k(C1) is an extension of k(C2) follows from the fact that ϕ is surjective, and the fact
that the extension has �nite degree follows because both k(C1) and k(C2) have transcendence degree
1 over k.

3. If ι : k(C2)→ k(C1) is an injection �xing k, then there is a unique nonconstant morphism ϕ : C1 → C2

such that ϕ̃ = ι.

• By putting (3) together with (2), and then letting Galois groups act on both sides (so as to remove the
requirement that k be algebraically closed) we obtain our claimed equivalence of categories from much earlier:

1. (Objects) Algebraic function �elds K/k of transcendence degree 1 where K ∩ k = k
(Morphisms) Field injections �xing 1 (up to isomorphism)

2. (Objects) Smooth projective curves de�ned over k
(Morphisms) Non-constant rational maps de�ned over k (up to isomorphism)

• We will now study morphisms of curves in the context of function �elds: from the equivalence above, this is
the same as studying �eld extensions of algebraic function �elds K/k2 over E/k1.

◦ The main advantage here is that in addition to exploiting number-theoretic ideas about �eld extensions
and rami�cation, we can also exploit geometric ideas about morphisms between curves.

◦ We may view function �eld extensions as consisting of two parts: constant �eld extensions (where we
simply extend scalars in the constant �eld, by going from E/Fq to EFqn/Fqn for some n) and �eld
extensions �xing the constant �eld (going from E/Fq to K/Fq where K is a �nite-degree extension of
E).

◦ On the curves side, constant �eld extensions are vaguely trivial: they correspond simply to viewing the
curve as being de�ned over Fqn rather than over Fq. (Very usefully, we can also think of constant �eld
extensions in terms of the Frobenius morphism, as we will discuss in a moment.)

◦ Field extensions �xing the constant �eld correspond to morphisms from one curve to another; for this
reason these extensions are called geometric extensions (since they arise �geometrically� rather than from
merely changing the �eld of de�nition).

• With all of this in mind, if K is a function �eld over Fq, we can give another very useful interpretation of the
zeta function ζK(s) in terms of counting points.

◦ Explicitly, if X is the smooth projective curve corresponding to K/Fq, then for P ∈ X(Fq) we de�ne the
degree of P to be the degree of the residue �eld OP /mP over Fq.
◦ The connection with the degree of a divisor of K is as follows: a divisor D =

∑
P nPP is de�ned over

Fqn precisely when it is �xed by the nth power of the Frobenius map.

◦ For an automorphism σ we have σ(D) =
∑
P nPσ(P ) =

∑
P nσ−1(P )P , and so we see σ(D) = D precisely

when nσ−1(P ) = nP for all points P . By repeatedly applying σ, we see that this is equivalent to saying
that all of the Galois conjugates of P have the same coe�cient nP .

◦ Thus, for example, a point of X de�ned over Fq2 has a single nontrivial Galois conjugate σ(P ), and the
corresponding prime divisor over Fq is P + σ(P ), has degree 2.

◦ In the same way, a point of X de�ned over Fqn has a total of n Galois conjugates (including itself), and
so the corresponding prime divisor over Fq is P + σ(P ) + · · ·+ σn−1(P ), which has degree n.

• De�nition: IfX is a smooth projective curve over Fq, the zeta function ofX is de�ned as ζX(s) =
∑
P∈X

1

N(P )s
=∏

P∈X(1−N(P )−s)−1 where N(P ) = qdeg(P ) as usual.

◦ It is not hard to see, per the discussion above, that ζX(s) = ζK(s) where K is the function �eld of X.

• We can give another formula for ζX(s) in terms of the cardinalities Nn = #X(Fqn), the number of Fqn -points
of X.
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◦ Explicitly, since X(Fq) =
⋃
n≥1X(Fqn), and X(Fqa) ⊆ X(Fqb) whenever a|b, we can see that with

u = q−s as usual, we have

log ζX(s) =
∑
P∈X

− log(1− udegP ) =

∞∑
n=1

∑
P∈X

un degP

n
=

∞∑
n=1

#X(Fqn)

n
un

where the last equality follows because a point P shows up a total of a times in the sum for n = k
whenever P is de�ned over Fqk/a .

◦ Example: For C = P1, we have #C(Fqn) = qn + 1. Then log ζC(s) =
∑∞
n=1

qn + 1

n
un = − log(1− u)−

log(1 − qu) =
1

(1− q−s)(1− q1−s)
, which agrees with our usual zeta function for the rational function

�eld Fq(t)/Fq.
◦ Notice also that if ϕ is the q-power Frobenius map, then the �xed points of ϕn are the points of X(Fqn).

◦ By using the Weil conjectures we can make this quite explicit: from ζX(u) =

∏2g
i=1(1− πiu)

(1− u)(1− qu)
we have

log ζX(u) =
∑2g
i=1 log(1 − πiu) − log(1 − u) − log(1 − qu) =

∑∞
n=1[

∑2g
i=1 π

n
i − 1 − qn]un, and so we get

the formula #C(Fqn) = qn + 1−
∑2g
i=1 π

n
i .

◦ By the Riemann hypothesis, we obtain the inequality |#C(Fqn)− qn − 1| ≤ 2gqn/2, which tells us that
for large n, the number of points on C(Fqn) is qn + O(qn/2). (This is really just a rephrasing of our
results for the general prime number theorem for function �elds.)

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2018-2025. You may not reproduce or distribute this
material without my express permission.
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