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0 Number Theory in Function Fields

These are lecture notes for the graduate course Math 7360: Number Theory in Function Fields, taught at North-
eastern in Fall 2025.

0.1 (Sep 3) Overview + Fermat’s Last Theorem for Polynomials

e The goal of this course is to elucidate some of the many analogies between number theory in number fields
and number theory in function fields.

o Some things from classical number theory: primes, factorizations, congruences and modular arithmetic,
Fermat’s and Euler’s theorems, the prime number theorem, quadratic reciprocity (and higher reciprocity),
Dirichlet’s theorem on primes in arithmetic progressions, zeta functions.



Some things from the more modern take on algebraic and analytic number theory: algebraic number
fields and their rings of integers, Galois theory and its interplay with number fields, discriminants, class
groups, Dirichlet’s unit theorem, cyclotomic fields, ramification, L-functions, the Riemann hypothesis.

Our goal is to do as much of these things as possible in the context of function fields, where many of
the results are more approachable, because the function-field setting has a major kit of additional tools
(namely, algebraic geometry).

Though do note: number theory in function fields is a beautiful subject in its own right, and not just
because it has so many similarities to algebraic number theory.

We will illustrate how things can become simpler by proving Fermat’s Last Theorem, which is quite
notoriously difficult over Z, for polynomials using only elementary techniques.

e To start, let ¢ = p/ be a prime power, and let F, be the finite field with ¢ elements. The story begins with
the polynomial ring A = F,[t].

(¢]

o

o
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We have the degree map on A: explicitly, for coefficients a; € F, and an element f = ag+ait+---+a,t"
with a, # 0, we define deg(f) = n and sgn(f) = a,. (We also set deg(0) = —oo and sgn(0) = 0.)

Exercises (trivial): deg(fg) = deg(f)-+deg(g), sen(fg) = sgn(f)sgn(g), and deg(f+g) < max(deg f, deg g)
with equality whenever deg f # degg.

The polynomials with sign 1 (i.e., monic polynomials) behave analogously to the integers with positive
sign (i.e., the positive integers).

We also note that the degree properties easily give a characterization of the units of A: they are the
nonzero constant polynomials.

e Qur first basic result is the standard division-with-remainder algorithm for polynomials, which we record over
arbitrary fields for no extra cost:

e Exercise (Polynomial Division): If F' is any field, then for any f,g € F[t] with ¢ # 0, there exist unique
q,r € F[t] such that f = qg + r and degr < degg.

o

o

The idea is simply to prove that the usual long-division algorithm works by induction on the degree of g.

As a consequence, F'[t] is a Euclidean domain, meaning that it is also a principal ideal domain (all ideals
are principal) and a unique factorization domain (every element can be factored uniquely into a product
of irreducibles up to reordering and unit factors).

e As it turns out, unique factorization is essentially all we need to prove Fermat’s Last Theorem for polynomials.

o

We would like to show that the equation f™ + ¢™ = h™ has no nontrivial solutions in polynomials f, g, h.
Aside from the case n = 4, it is enough to treat the situation where n is a prime.

But we do need to be a little bit careful to write down exactly what the trivial solutions look like, beyond
the obvious ones where one of f, g, h is zero.

For example, if f, g, h are all constants, we can certainly have lots of solutions to f™+¢"™ = h", depending
on the field and on n (e.g., 1° + 15 = 2° inside F3).

We need to avoid the situation where n is divisible by p = char(F,), since f? + ¢g? = (f + ¢)? for any
polynomials f, g € Fg[t].

Also, since the equation is homogeneous, we can scale solutions to get new solutions.

To avoid all of these situations, we can consider only the case where f, g, h are relatively prime (since if

they are not, then any common divisor of two of them also divides the third, so we could cancel it) and
where the exponent n is not divisible by the characteristic p.

e Theorem (FLT for Polynomials): Suppose that f,g,h € F[t] are pairwise relatively prime and that p > 3 is
prime with p # char(F'). Then the only solutions to f? 4+ g? = h? are when f, g, h are all constants.

(¢]

We will remark that p > 3 is needed, since the usual parametrization of Pythagorean triples also works
for polynomials: if we take f = a® — b%, g = 2ab, h = a® + b* for any polynomials a,b € F[t], then
£2 4 g% = h2.



e We will give two different proofs: the first uses a classical-style infinite descent argument, while the second
uses a more function-field type of argument.

o

Proof 1: Without loss of generality, we may assume that F' is algebraically closed, since any solution to
fP + gP = hP over F is still a solution over the algebraic closure F'.

We show the result by inducting on d = deg f + degg. The base case d = 0 is trivial, since there is
nothing to prove. So now suppose we have a solution with d > 0.

By the assumption that p # char(F), there are p distinct pth roots of unity in F: say, 1,(,, (2, ..., 571,
and we can factor f? + g7 = (f + 9)(f + Go)(f + Gg) - (f + 7 o).

Next, note that all of the terms f + C;;g are relatively prime: if e divides both f + C;;g and f+ ng, then
e also divides the difference (¢} — ¢J)g hence divides g, hence also divides (f +¢}g) — ¢hg = f, but f and
g are relatively prime by assumption.

Then by unique factorization inside F[t], since all of the terms in the product (f + ¢)(f + (p9)(f +
ng) e (f+ (g’lg) are relatively prime and their product is a pth power (namely, hP), each term must
be a pth power up to a unit factor. But since F is algebraically closed, everything in F' has a pth root
in F, so the unit factor is also a pth power.

Thus, in particular, we see that f + g =a?, f + (g =", and f + Cﬁg = P are all pth powers.

Using basic linear algebra to eliminate f and g yields the relation —(,a? + (1 4 ,)bP = cP, so if we set
a' = (=¢)YPa, b = (14 ¢,)'/Pb, and ¢ = ¢, then we have (a’)? + (V)P = (c/)P.

Note that a’,b" cannot both be constant, since then f,g would have been constant. But we also have
deg(a’) + deg(b') = deg(f + g)/p + deg(f + (pg)/p < 2max(deg f,degg)/p < d, so we have constructed
a solution with smaller positive degree, but this contradicts the induction hypothesis. Therefore, there
are no nonconstant solutions.

Exercise: For any field F' of characteristic p, we have exhibited nontrivial polynomial solutions to fP+4g? =
h? in F[t]. Where and why in the proof of FLT above does the argument break down when char(F') = p?

Before giving the second proof, we need a few preliminary results.

e}

First, if f has prime factorization f = [[, pj’, define rad(f) = [, ps, the product of the monic irreducible
polynomials dividing f.

Lemma: We have degged(f, f') > deg f — degradf, where f’ is the derivative of f.

(¢]
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o

Proof: Suppose f = p%q where p is irreducible and doesn’t divide q. Then f’ = ap® 'p'q + p®¢ =
p*~Y(ap'q + pq') is divisible by p®~1. Therefore, ged(f, f') is divisible by p®~!.

Taking the product over all primes dividing f shows that [], p;“_l divides ged(f, f'), so ged(f, f/)-rad(f)
is divisible by [, p¢* ' [, pi = [1,p% = f, so taking degrees yields the inequality.

Exercise: Determine when equality holds, namely when deg ged(f, f/) = deg f — degradf.

Next, we show a result due independently to Mason and Stothers:

Proposition (Mason-Stothers): Suppose that f, g, h € F[t] are nonconstant, relatively prime, that f + g = h,
and that not all of f',¢’,h’ are zero. Then max(deg f,deg g,degh) < degrad(fgh) — 1.

o

o

Proof: If f +g=h then f'+ ¢ =R/, and then f¢' — ff'g=(f+9)d — (/' + ¢ )g = hg — Wg.

Note also that fg’ — f’g is nonzero: if fg’ = f’g then f must divide f’g hence that f must divide f’
since f,g are relatively prime.

Exercise: Suppose f € F[t]. Show that f divides its derivative f’ if and only if f = 0.

By the exercise we see then that f’ = 0. But now by the same argument we would also have ¢’ = 0 and
h' = 0, contradicting the assumption that not all of f’,¢’, h/ are zero.

Now let df = ged(f, f'), dg = ged(g, ¢'), dp, = ged(h, h'). Then dy,dy, dy, all divide fg' — f'g = hg' — g,
and they are all relatively prime since they are divisors of the relatively prime polynomials f, g, h.

This means dydyd), divides fg' — f'g, so taking degrees yields deg(dsdydy) < deg(fg’' — f'g) < deg(f) +
deg(g) — 1.



o By the Lemma, we have deg(dy) > deg(f) — degradf, deg(d,) > deg(g) — degrady, deg(ds) > deg(h) —
degradh, so summing yields deg(f)+deg(h)+deg(h)—degrad(fgh) < deg(d¢dydy) < deg(f)+deg(g)—1,
and therefore deg(h) < degrad(fgh) — 1.

o By rearranging we obtain the same bounds on deg(f) and deg(g), and so we are done.

e At last, we can finish the second proof of Fermat’s Last Theorem for polynomials:

0.2

o Proof 2: Suppose fP 4+ g? = h?. By the assumption on the characteristic, we have (f?)’, (¢?)’, (h?)" are
not all zero.

o Then by Mason-Stothers, we see max(deg fP,deg ¢gP, deg h?) < degrad(fPgPhP) — 1, which is equivalent
to p - max(deg f,deg g,degh) < degrad(fgh) — 1 < deg f + degg + deg h — 1 since the radical ignores
powers.

o Now apply the simple observation that max(a,b,c) > (a + b+ ¢)/3 and set d = deg f + deg g + degh to
see that p-d/3 < d — 1, which is impossible, since d < p - d/3 by the hypothesis that p > 3.

(Sep 8) Quotients of F, ]

We now return to study the structure of quotient rings of A = F,[t], which (re-posed) is simply studying
modular arithmetic in this ring.

o In particular, we will recover almost identical versions of Fermat’s little theorem, Euler’s theorem, and
Wilson’s theorem.

o We will also take some time to look at the structure of the unit group of A/gA, which turns out to be a
bit more complicated to write down than the unit group of Z/mZ.

As noted last lecture, A is a Euclidean domain, so it is a PID and also a UFD. Since every ideal is principal, if
we want to understand the structure of the quotient rings of A, we only have the quotients of the form A/gA
to consider.

o We can also assume ¢ is monic by replacing it with its unique monic associate, which does not change
the quotient ring A/gA.

Using the division algorithm, we can write down the residue classes in A/gA, and in particular compute its
cardinality, quite easily:

e Proposition: Let g € F,[t] = A be nonzero. Then the residue classes in A/gA are uniquely represented by the

polynomials of degree less than deg(g). In particular, #(A/gA) = g4°9.

o Proof: If f € F,[t] is any polynomial, then by the division algorithm we can write f = gg + r, and so
inside A/gA we see f = 7. So the possible remainders give a complete set of residue class representatives
— but by the uniqueness of the quotient and remainder, no two remainders are equivalent mod g, so in
fact they give all of the residue classes exactly once.

o For the counting, if deg(g) = n, then the remainders are of the form cy+cit+---+c¢,_1t" ! with ¢; € F,.
Since there are n coefficients each of which has ¢ possible values, there are ¢" = ¢°89 possible ways to
select a remainder.

The size of the quotient ring gives a convenient way of measuring the “size” of a polynomial that behaves
pleasantly under multiplication:

Definition: For g € F,[t], we define |g|, the norm of g, to be ¢4°®9. By the calculation above, |g| = #(A/gA)

when g # 0.
o Exercise: Show |fg| = |f]-|g] and |f + g| < max(|f|,|g]) with equality whenever |f| # |g|.

Our next goal is to understand the units of A/gA, since this is the context in which to pose Fermat’s and
Euler’s theorems.



o Regardless of the polynomial g, the units of A/gA will contain an isomorphic copy of the constant
polynomials (i.e., the units of A), which is the multiplicative group Fy.

o As is well-known, the multiplicative group of a finite field is cyclic. We record a few proofs of this fact,
for completeness:

e Proposition (Multiplicative Group of Fy): If G is a finite multiplicative subgroup of a field F, then G is cyclic.

o All known proofs of this fact are essentially nonconstructive, to varying degrees: there does not seem to
be a nice algorithm for writing down a multiplicative generator of a finite field that is appreciably better
than a brute-force search.

o Proof 1: Let G be a finite multiplicative subgroup of F. By the fundamental theorem of finite(ly
generated) abelian groups, G is isomorphic to a direct product of cyclic groups.

o Let m be the lem of the orders of these cyclic groups: then ™ =1 for all € G. Since F[t] has unique
factorization, the polynomial t™ —1 € F'[t] has at most m roots in F, so #G < m. On the other hand, by
Lagrange’s theorem, the order of every element in G divides #G, so m divides #G. We must therefore
have m = #G.

But since #G is equal to the product of the orders of the cyclic groups, we see that the product of these
orders equals their lem, so the orders are all relatively prime. This means G is cyclic, as claimed.

o

o]

Proof 2: Let M be the maximal order among all elements in G: we claim that the order of every element
in G divides M. To see this, suppose g has order M, and let h be any other element of order k. If k
does not divide M, then there is some prime ¢ which occurs to a higher power ¢/ in the factorization of
k than the corresponding power ¢¢ dividing M.

o By properties of orders, the element gqf has order M/q/, and the element h¥/9° has order ¢¢. Since these
two orders are relatively prime and gh = hg (since these are elements in a field), we see that the element
gqf - h¥/4° has order M - ¢f=¢. This is a contradiction because this element’s order is larger than M.
Thus, k divides M as claimed.

For the second claim, any element of order M generates a subgroup of G having M elements, so M < #G.

[¢]

o

Furthermore, by the above, we know that all elements in G have order dividing M, so the polynomial
tM — 1 has #G roots in F[t]. By unique factorization, this requires M > #G, and so we have M = #G.
Now select any element of order M: it generates G.
o Proof 3: Observe by Lagrange’s theorem that t#“ — 1 factors as the product 144 Palt), where ®q(t) =
Horder(g):d(t — g) is the dth cyclotomic polynomial.

[}

By an inductive argument, or by observing invariance under the Galois action, all of the polynomials
®,(t) have coefficients in F'[t].

By induction on d using the fact that t* — 1 has at most (hence exactly) d roots in F and in G, one has
that deg(®q) = ¢(d). In particular, deg(®Pxc) = @(#G) > 0, so there is an element of order #G in G.

@]

e Now we tackle the question of the units of A/gA.

o We can simplify the problem first: if we factor g = pi* - - - pi}* where the p; are distinct monic irreducible
polynomials, then all of the ideals (p;*) are pairwise comaximal, so by the Chinese remainder theorem,
we see A/gA = (A/p* A) x (A/p3*A) x - x (A/pz' A).

o Taking units on both sides then gives (A/gA)* = (A/pi*A)* x (A/p32A)* x - x (A/pg*A)*. So it is
enough to study the structure of the ring A/p*A where p is irreducible.

e Proposition (Structure of A/p®A): For A = F,[t| where char(F,) = p, and p € A is a monic irreducible
polynomial, we have the following:

1. The cardinality of (A/p®A)* is #(A/p*A)* = |p|*~" (Ip| = 1) = |p*| (1 = 1/ |p]).
o Exercise: Show that a commutative ring R with 1 has a unique maximal ideal M if and only if the
set of nonunits in R forms an ideal, which is then a unique maximal ideal M. A ring with this
property is called a local ring.

o Proof: The ring A/p®A has a unique maximal ideal, namely pA/p®A, and is therefore a local ring,
because the quotient (A/p®A)/(pA/p*A) = A/pA is a field by the third isomorphism theorem.



o By the exercise above, evvery element not in the maximal ideal is a unit, and the cardinality of the
maximal ideal is 1/ |p| times the cardinality of the entire ring (since the elements in the ideal are
just the multiples of p). The formula follows.

2. (A/p*A)* = [cyclic group of order |p| — 1] X [an abelian p-group].

o Proof: The reduction-mod-p map is a surjective group homomorphism from (A/p®A)* — (A/pA)*,
and the latter is the multiplicative group of the field A/pA hence is cyclic of order |p| — 1.

o Pulling back a generator yields that (A/p®A)* contains a cyclic subgroup of order |p| — 1. By the

cardinality calculation in (1), the remaining piece has order |p|’k1 and is therefore a p-group (and
it is clearly abelian).

o Remark: The direct product decomposition writes each element modulo p* as [its residue modulo p]
times [an element congruent to 1 modulo p.
3. The p-part of (A/p*A)* has exponent at most p* where p* > a.

o Proof: By the above, the elements in the p-part are of the form 1 + bp for some b € F,[t].

o Since we are in characteristic p, we then have (14 bp)?" = 1+ (bp)?", and since p?" is divisible by p®
by assumption, we see (1 + bp)?" = 1 (mod p®), which is to say, the element 1 + bp modulo p® has
order dividing p® (as required).

4. As a — oo, the number of cyclic factors in the p-part of (A/p*A)* goes to infinity.
o The point here is that we get a different kind of behavior than over Z: over Z, we see that (Z/p*Z) =
Z)(p* — p*~HZ for odd primes p
(Z)27) x (Z./2°73Z) for p=2
cyclic or basically cyclic.

, and so even for large prime powers, the quotient is either

o For polynomials, we end up getting a large number of cyclic factors when we take a large power,
regardless of the prime.

o Proof: Since the exponent of the p-part is at most p°, if we have a total of j cyclic factors then the
order of the group is at most 7. So we need p*7 > [p|*" = gdea®)(a=1) — jf-des(p)-(a=1) and so
j = f-deg(p)-(a—1)/s.

o Since s ~ log, a, we see that for a fixed field IF, (i.e., fixed f) and fixed prime p (i.e., fixed degp),
we have j ~ C(a —1)/log,a — 00 as a — oo.

Now that we have established some basic things about the unit group of A/p®A, we can establish the analogues
of Fermat’s little theorem, Euler’s theorem, and Wilson’s theorem.

o First, we need the analogue of the Euler phi-function. We define ®(f) = #(A/fA)* to be the number
of polynomials of degree less than deg f that are relatively prime to f.

o By our calculations with the unit group earlier, we have the usual formula ®(f) = [f| [, sprime(1 =1/ |PI),
which is the analogue of ¢(n) = n[],, pime(1 —1/p) for the phi-function over Z.

Proposition (“Buler”): If f € F,[t] is nonzero and g is relatively prime to f, then g*(¥) =1 (mod f).

o Proof 1: Apply Lagrange’s theorem to g in (A/fA)*.
o Proof 2: Multiplication by g is a bijection on the cosets in (A/fA)*. Thus, [T,ca/5a) &= [lue(a pa)-(ug) =

?‘I’(/f) l_gue(A/fA)* u inside (A/fA)*, and cancelling the unit factor [T, 4,;4)- « yields g®/) = 1 inside
A/ fA).

Proposition (“Fermat”): If p € F,[t] is irreducible, then a/?l = a (mod p) for any a € F,[t].
o Proof: If p|a the result is trivial. Otherwise, a is a unit modulo p and the result follows from Euler above.

We can use the analogue of Fermat’s theorem to prove an analogue of Wilson’s theorem:
Proposition (Factoring, 1): If p € F,[t] is irreducible of degree d, then z/Pl — 2 = [Taeg f<alz — f) mod p.

o Proof: As we have noted, in A/p the polynomials of degree < d represent all of the residue classes modulo
p.



o

By Fermat, each of these polynomials is a root of z!”! — z. But by unique factorization, this polynomial
has at most |p| distinct roots, and we have just exhibited |p| roots, so these are all of the roots, and the
factorization follows.

e Corollary (“Wilson”): If p € Fy[t] is irreducible of degree d, then [y, s g y20 f = —1 (mod p).

Proof 1: Dividing the result above by = yields 2”1 — 1 =[]y, ;4 p20(x — f) mod p.

Now set x = 0: if the characteristic is odd, then the number of minus signs on the RHS is even and the
result follows, while if the characteristic is even, then 1 = —1 so the result still follows.

Proof 2: If f does not have order 2 in A/pA, then f # ?71 and so we can pair up and discard (f, 771)
without affecting the product.

When we have done this for all possible pairs, the only elements left are the elements of order dividing
2 (i.e., the solutions to 22 = 1), which are x = £1. In characteristic not 2, the product is —1, while in
characteristic 2, the product is 1 = —1.

Exercise: Generalize proof 2 of Wilson’s theorem to show that if G is a finite abelian group, then the
product of all elements in g is the unique element in G of order 2 (if there is one), or is otherwise the
identity.

e We also record a useful result about roots of unity:

e Proposition (Roots of Unity): If p € F,[t] = A is irreducible and d divides |p| — 1, then there are d dth roots

of unity in A/pA; equivalently, z

(¢]

o

e}

4 =1 (mod p) has exactly d solutions.

Exercise: For positive integers a, b, show ged(z® — 1, 2% — 1) = 2&°d(@b) _ 1 in F[z].

Proof: As shown above, 2P/~ — 1 splits completely mod p . By the exercise, 2% — 1 divides z/PI=1 — 1
when d divides |p| — 1, and so 2% — 1 also splits completely, which is to say, it has d roots mod p.

Exercise: Prove the converse: if there are d dth roots of unity in A/pA, then d divides |p| — 1.

0.3 (Sep 10) Prime-Counting and The Zeta Function

e Now that we have established most of the classical results for modular arithmetic, we move to our next item:
counting primes.

(¢]

We will do things in a more ad hoc manner first, and then give a more general approach using zeta
functions that will allow us to go further.

e Qur first step is to write down a generalization of the fact we used to establish Wilson’s theorem above:

e Theorem (Factoring, II): For a positive integer m, the polynomial ¢ — ¢ factors in F,[z] as the product of
all monic irreducible polynomials of degree dividing m.

(¢]

Proof 1 (“Elementary”): We will show that t¢" — t has no repeated factors, that each of the claimed
polynomials does divide it, and that no other polynomials divide it.

Exercise: A polynomial in F[t] is separable (i.e., has no repeated factors) if and only if it is relatively
prime to its derivative.

Since (14" —t)" = ¢"t%" ~!1 —1 = —1 in characteristic p, the polynomial is relatively prime to its derivative,
so it has no repeated factors by the exercise.

Exercise: For positive integers g, a, b, show that ged(¢® — 1,¢% — 1) = ¢8°4(®®) — 1 in Z. (This is almost
identical to the polynomial version mentioned earlier.)

Next, suppose p is irreducible of degree dividing m. If p = ¢ the result is trivial, and otherwise, in A/pA
we have t" ~! = 1 mod p because ¢ — 1 is a multiple of [p| — 1 = ¢%°8P — 1 by the exercise above along

with Euler’s theorem. This means t?" —! — 1 is divisible by p as required.
ged(m,deg p)

Finally, suppose p is irreducible of degree not dividing m. Then in A/pA we have "l = #1
mod p by the exercise above along with Euler’s theorem and the fact that ggcd(m.degp) < gdegp  Thjg
means ¢¢° —' — 1 is not divisible by p as required.



o We have shown that t" —t has no repeated factors, that each of the claimed polynomials does divide it,
and that no other polynomials divide it. Since the polynomial is monic, its factorization must therefore
be as claimed.

o Proof 2 (“Galois”): By basic Galois theory, Gal(F,m /F,) is a cyclic group of order m generated by the
Frobenius map = — z7!.

o By the Galois correspondence, the intermediate fields of Fym /F, are F a for d|m. Therefore, p is irre-
ducible of degree dividing d <= F,[t]/(p) is (isomorphic to) an intermediate field of Fgm /Fy <= p
divides 9" — z.

o Since 27" — x is separable, its factorization must therefore be as claimed.

e Corollary: If aq is the number of irreducible monic polynomials in A = F,[t] of degree d, then dln dag = q".
o Proof: Count degrees in the theorem above.

e We can use this recurrence to write down an exact formula for a4 using Mobius inversion.

0 if nis not squarefree

e Definition: The Mobius p-function is defined as p(n) = { . Note

u(l) =1

(=1)" if nis the product of rdistinct primes

1 forn=1

o Exercise: Show that }_,, nu(d) = {0 ¢ -
or n

e Proposition (Mobius Inversion): If f,n are integer functions such that g(n) = >_,,, f(d), then f(n) =

2apn #(d)g(n/d).
o Proof: Induct on n. The base case n = 1 is trivial.

o For the inductive step, we have >, u(d)g(n/d) = >, 1(d) - X in/a f(d) = 340, u(d) f(d) =
2 arin F(d) 2 ay(nyary #(d) = f(n) because the last inner sum is zero except for when n/d" = 1.

e By using Mobius inversion on the sequence {day}, we can write down formulas for the number of monic
irreducible polynomials of degree d.

e Proposition (Prime Counting): If a,, is the number of monic irreducible polynomials in F[t] of degree n, then
1
ap = E Zd\n M(d)qn/d

2 3 5

(@® —q), a3 = 3(¢® — q), as = 3(¢* — ¢*), a5 = (¢° — q),

(SIS

o The first few values are a; = ¢, as =
ac =3 - - +q), ...
o Proof: Immediate from applying Mobius inversion to the sequence {na,}.

e We can also do some basic asymptotic analysis using the formula above.

1
n/2 5o we see that a, = gq" +

1 1
o The main term is —¢", and then the next biggest possible term is —gq
n n
O(q"?/n).
o If we write X = ¢™ (which is the total number of monic polynomials of degree n), we see that the number

X VX )

(@]
log, X + (loqu
o This is quite in the spirit of the prime number theorem over Z, which says that the number of primes < X
is II(X) =

of “primes” in A of “size” ~ X is a,, =

2 dt
Tog X + O( (log X2 ). If we replace X/log X with the logarithmic integral li(z) = [, Togi’

then as shown by von Koch, the Riemann hypothesis is equivalent to the error estimate II1(X) = li(z) +

O(VX log ).

I This follows by noting that Fgm is the splitting field of 24" — x over F, and since this polynomial is separable as noted in proof
1, the order of the Galois group is m. The Frobenius map is an injective field map from Fgm to itself, hence an automorphism by

finiteness, and its order is clearly at least m (since 29" —  has at most q? solutions) and at most m (by Lagrange).



o Qualitatively, then, we have already obtained a prime-counting result that is closely analogous to the
best possible one predicted by the Riemann hypothesis.

e Up until this point, our approach has been purely algebraic. However, by introducing analytic methods, we
can give even easier solutions to these (and other) counting problems. The necessary object of study is the
zeta function, which we now define:

1
e Definition: For A = F,[t], the zeta function of A is Ca(8) = >_ rc 4 monic 7T for s € C.

1

o Compare to the definition of the Riemann zeta function ((s) =, ., — for s € C.
n

o Unlike the Riemann zeta function, however, we can actually just evaluate the zeta function for A: since
2 d

q

q25 + ce + q

there are ¢ monic polynomials of degree d, we see that Y deg(f)<d monic qu =

1— q(d+1)(1—s)

1 _ ql —s
convergence).

L1402y
|fI° ¢

, and so taking d — oo we see that (4(s) = whenever Re(s) > 1 (to ensure

1 _ ql—s

o We have an obvious meromorphic continuation for 4(s) to the complex plane (i.e., via the formula
above), and it is clear that  is analytic everywhere except for a simple pole at s = 1.

o Exercise: Show that the residue of 4(s) at s = 1 (which is to say, the value of lims_,1(s — 1)Ca(s)) is
1/logq.

o We also have a functional equation for (a(s): if we set £4(s) = ¢ °(1 — ¢=*)7Ca(s), then £a(s) =
fA(l - S)

o Exercise: Do the algebra to establish the functional equation.

e We can also represent (4(s) as an Euler product, just as with the Riemann zeta function.

1
o Explicitly, by the uniqueness of prime factorization, we can formally write 4(s) = > FEA monic W =

1 1 .
Hpmonic iered (1 W + 7|p|2s 4o = Hpmonic wrea(1—1/ Ip|*)~t, and both sides are absolutely convergent

for Re(s) > 1.

o To prove this equality rigorously, we need to do some estimations on tails of the respective series, but
since everything converges absolutely, this is not so difficult; we leave the precise details as an exercise.

e We can use the Euler product for the zeta function to obtain the same prime counts that we got earlier.

e Proposition (Prime Counting, Again): If a4 is the number of irreducible monic polynomials in A = F[¢] of

1
degree d, then de dag = ¢, and so by Mobius inversion as before, we see a,, = — de w(d)g™'?.
n

o Proof: Group the terms in the Euler product together by degree: if degp = d then |p|* = ¢%*.
o Thus, since there are a4 monic irreducibles of degree d by definition, we see that (4(s) =[] 1-—

/1Pl =TI (1 — g,

pmonic irred(

1 1
o Noting from earlier that (a(s) = 1= if we substitute u = ¢~%, we obtain the equality i =
—q —qu
T2, (1 —uf)—ee.
. " o q s dagu®! .
o Taking the log-derivative of both sides yields T =37 BT These expressions are equal as
—qu —u

power series in u, and thus corresponding coefficients must also be equal.

o The LHSis - _qqu = ¢ 37 o (qu)* while the RHS is Y07, dagud=" Y20° uft = 3250, S°° 0 dagud+D-1,
So the coefficient of ™! on the LHS is ¢ - ¢"~ ' = ¢", while the coefficient of u*~! on the RHS is
Zd(l-i—l):n dagq = Zd\n dag.

o Thus, ¢" = de dag as claimed.




e Of course, we have already proven this result by counting irreducible polynomials algebraically. However, this
approach using the zeta function also extends to solve other counting problems quite conveniently.

e Proposition (Squarefree Counting): The number of monic squarefree polynomials of degree n over F,[t] is
equal to b, := ¢" — ¢"~'. Equivalently, a randomly-chosen degree-n polynomial is squarefree with probability

1= 1/q=1/Ca(2).

o

Compare this result to the corresponding fact about integers (which is a little harder to pose because
we have to phrase it over a range): if a,, is the probability that a randomly-chosen integer in [1,n] is
squarefree, then lim,, o, a,, = 6/7% = 1/¢(2).

Proof: Consider the product 7 = [, ,onic irrea(1 + [2I°)-

)
By multiplying out the terms, we see that for Re(s) > 1, we have 7 = Zf monic |§c]|:) w

, since the denominators in the Euler product only include prime factors of

here 6(f) =

1 if fis squarefree
0 if fis not squarefree
exponents 0 and 1.

—2s
_ 1-—
Now, since 1 + [p|”® = ¢ taking the product over monic irreducibles and using the fact

1—[p| ™"’
that the resulting numerator and denominator products converge absolutely allows us to write 7 =

—2s —2;
1- |p| % _ Hp monic irred 1- |p| ® _ CA(QS)
1= |p|7s HP monic irred 1- ‘p|*5 CA(S)

1—qu? _Ca(2s) 5(f) oo §
lfqu N CA(S) —W—Zf monic ‘f|s _En:O bnu

. 1—qu?
But as a power series in u, we have ————
~qu

Hp monic irred

Setting u = ¢~ yields

= (1—qu?)(1+qu+q?u®+---), and so comparing coefficients

n—1

yields b, = q¢" — q as claimed.

e In a similar way, we can use the zeta function to write down formulas for the number of monic kth-powerfree
polynomials of a given degree over F,[t].

(¢]

Specifically, these values are packaged as the coefficients in the Euler product [T, onic irrea (1 + 2]~ +
_ CA(/{S)
Cals)

72+ o)

down an explicit formula.

, and then by doing a calculation like the one above, one can write

Exercise: Finish this calculation and give the actual formula for the number of cubefree polynomials of
degree n.

It is also worthwhile interpreting this Euler product calculation heuristically in terms of probabilities.

Explicitly, we would expect (under suitable probability assumptions) that the probability of a given
polynomial not being divisible by f is (1 —1/|f]).

So, assuming independence (which can be made rigorous by appealing to the Chinese remainder theorem),
the probability that a given polynomial is not divisible by any prime power p* for all monic irreducible
P18 I, monic trrea(l — 1/ Ip") = 1/¢a(k): this is why the 1/zeta factor shows up in the answer.

0.4 (Sep 15) Dirichlet Series and Multiplicative Functions

e Another classical object of study in elementary number theory over Z are arithmetic functions related to
divisors, such as the Euler p-function, the divisor-counting function, and the sum-of-divisors function.

[¢]

o

All of these are examples of multiplicative functions, which have the property that f(ab) = f(a)f(b)
whenever a, b are relatively prime. (Note the infelicitous terminology: if f(ab) = f(a)f(b) for all a,b, f
is instead called completely multiplicative.)

In particular, if n has prime factorization n = [[, p{"* and f is multiplicative, then f(n) =[], f(p]*).

10



o We will briefly review some results about multiplicative functions in the classical setting, and then redo
them in the function-field setting.

e It is a standard combinatorial principle that if we want to understand a function with domain N, we should
look at its generating function.

o A natural first guess would be to use the standard power series > °  f(n)z™.
o However, this type of generating function is useful primarily for functions that behave additively. For
number-theoretic functions, we instead want to use a Dirichlet series.

e Definition: If h : N — C is a complex-valued function defined on positive integers, then its associated
h(n
Dirichlet series is Dj(s) = > o2 (n)

n=1 ns .

o Example: If h(n) = 1 for all n, then Dy (s) = {(s), the Riemann zeta function.

o In order for this series to converge, we need h not to grow too fast. One may check that if h(n) = O(n®)
then Dy(s) is absolutely convergent for Re(s) > 1 + a. (We will mostly ignore issues of convergence,
since our functions will grow polynomially at worst, and so we may manipulate the series as if they were
formal power series.)

o If h is multiplicative, then it is a straightforward calculation to see that Dj(s) has an Euler product

. _ h(p) | h(p?) : .
expansion: Dy (s) =] (1+ —=%+ —=~ +--), on the appropriate domain of convergence.
b p

p prime

e The key property of Dirichlet series is that they reproduce desired behaviors under multiplication:

e Proposition (Dirichlet Multiplication): If f, g : N — C are functions, then Dy (s)-Dgy(s) = Dj,q(s) where fxg
is the Dirichlet convolution defined via (f x g)(n) = >y, f(d)g(n/d).

o Prook Dy()Dy(s) = £oz, 5, DOV — 5 L5, sty - w200

= Diug(s)-

e The Dirichlet convolution, owing to the fact that it is merely multiplication of the underlying Dirichlet series,
has various nice properties.

o Exercise: Show that Dirichlet convolution is commutative and associative, and has an identity element

1 forn=1
iven by I = .
given by I(n) {O forn>1

o Exercise: Show that f has an inverse under Dirichlet convolution if and only if f(1) # 0.
o Exercise: If f(1) # 0 and f is multiplicative, then its Dirichlet inverse f~! is also multiplicative.
o Exercise: Show that if two of f, g, and f % g are multiplicative, then the third is also.

e By exploiting Dirichlet convolution, we can find the Dirichlet series for many basic multiplicative functions in
terms of the Riemann zeta function.

1 forn=1
0 forn>1

0 if nis not squarefree
o Recall I(n) = o o . .
(=1)" if nis the product of rdistinct primes
o Also define N(n) =n and 1(n) =1 (for all n).

o Exercise: Show that D;(s) =1, Di(s) = ((s), and Dn(s) = {(s —1).

and the Mobius function p(n) = {

1 forn=1

0 forn>1
as noted in an exercise previously. Therefore, by multiplicativity of the Dirichlet series, we see that

D,.(s)D1(s) = Dy(s), so that D, (s) = )

o Exercise: Use px1 = I to establish Mobius inversion: if g(n) = >_,,, f(n) then f(n) =3_,, u(d)g(n/d).
o Exercise: For the Euler ¢-function, show that -, ¢(d) = n.

o First, we note that px1 = I, since (u*1)(n) = >y, p(d)1(n/d) = >, u(d) =

11



o The previous exercise says that ¢ * 1 = N, and so by composing with p and using associativity, we see

that ¢ = px N. Then we have D,(s) = D, (s)Dn(s) = C(Z(;)l)

o In principle, we could have established this fornula for D, (s) by manipulating the zeta function directly,

but this method is both more difficult and requires knowing the actual (non-obvious) formula for the
answer ahead of time.

o We can also find the Dirichlet series for the divisor-counting function d(n) = #{d € N : d|n} quite easily
by noting that d(n) =3, 1(d)1(d/n): this means d = 1% 1, so Dy(s) = Di(s)* = ((s)*.
o Exercise: If o is the sum-of-divisors function o(n) = >, d, show that D, (s) = ((s)((s — 1).

o Exercise: If oy, is the sum-of-kth-powers-of-divisors function o (n) = > din d¥, find and prove a formula
for D,, (s) in terms of the Riemann zeta function.

e One of the main applications of computing the Dirichlet series for these various arithmetic functions is that
we can extract information about average growth rates from them.

o In the classical case, obtaining average-growth results is moderately delicate, so we will instead just focus
on the function-field case.

e Here are the function-field analogues of these classical multiplicative functions, which are now complex-valued
functions on monic polynomials rather than positive integers:

o The identity: I(f) = {(1) ior ; ; 1
or

o The norm: N(f)=|f].

The Mobi functi () 0 if fis not squarefree
o The Mobius p-function: = .
. a (=1)" if fis the product of rdistinct primes

o The Euler ®-function: ®(f) = #(A/fA)" = [f|1L,; prime(1 — 1/ [P])-
o The divisor-counting function: d(f) = #{monic d|f}.
o The sum-of-divisors function: o(f) =3 4 monic [d|, or more generally the sum-of-kth-powers-of-divisors

function o (f) = > 4/} monic |d|*. (Note here that we take the norm of the divisors, since we want a
C-valued function.)

o It is easy to check that all of these functions are multiplicative, and to write down formulas for all of
them in terms of the prime factorization of f = p{* .- p}*.

B |p1|a1+1 1 ‘pk|ak+1 1

o Exercise: Verify that d(f) = (a1 +1)---(ax + 1) and o(f) = =1 =1
1l — k| —

e We have essentially the same definition for the Dirichlet series in the function-field case:

e Definition: If h : {monics} — C is a complex-valued function defined on monic polynomials in F,[¢t], then its

h(f)

If1I°

o As before, we will mostly ignore issues of convergence, but just as in the classical case, one may check
that if A(f) = O(|f]|”) then Dy,(s) converges absolutely for Re(s) > 1+ a.

o We also have the same Dirichlet convolution operator: if g,h : {monics} — C are functions, then
Dy(s) - Dn(s) = Dgun(s) where (g% h)(f) = 34 ¢ monic 9()1(f/d).

associated Dirichlet series is Dx(s) =3¢ 1onic

1 for f=1
0 for f#1

o All of the same formulas for our arithmetic functions in terms of the zeta function follow through just
as before. Here, however, we can actually write out the expressions explicitly, since we have a formula

Ca(s) = 1_;(11_5

o Dirichlet convolution is commutative, associative, and has the identity element I(f) = {

12



e Proposition (Some Dirichlet Series): For u = ¢~°, we have the following formulas: Dj(s) = 1, Dn(s) =
1 1 1 Ca(s—1) 1—qu
—_ = — = = — = = 1 —_ = =
CA(S 1) 1— U’ Dll(S) <A(S) 1— qu7 DH(S) CA(S) qu, D@(S) CA(S) 1— q2u’
Dy(s) = Ca(s)* = A= qu?’ and D (s) = Ca(s)Ca(s — 1) =

o Proof: Exercise.

e Using these formulas we can recover average-value results quite easily.

e Definition: If & : {monics} — C is a function, the average value of h on degree-n polynomials is Avg,, (h) =
1

— D deg(f)=n monic R(f)- If the limit lim,,_,oc Avg,, (h) exists, we call it the “average value” of h.
q

1
o We can also easily average h on polynomials of degree < n: the desired sum is instead T > deg(f)<n h(f).
q <

T+q+-

1
o Exercise: Show that if lim, ., Avg,, (k) = «, then lim, e Zdeg(f)<n h(f) = « as well,
q <

I+q+---
so it is irrelevant whether we average over degree exactly n or < n.

o The nice result here is that we can read off the value of Avg,, (h) from the coefficients of the Dirichlet series

. h "
o0 M o ¢"Ave,(h) =3 q"Avg, (h)u" for

for h: explicitly, we have Dp(s) = >, — =>, —
q q

u=q °.
o So we can calculate these averages by simply expanding out the Dirichlet series calculated above as power
series in u = ¢~° and then dividing by ¢".

o For example, D,(s) = 1 — qu, so the average value of ; is 1 on degree-0 polynomials, —1 on degree-1
polynomials, and 0 on higher-degree polynomials.

1
o Similarly, Dgy(s) = g~ (1+qu+q*u?+---)2 =1+ 2qu® + 3¢%u> + - - -, so the average value of
—qu
d on degree-n polynomials is n + 1.
1—
o Likewise, Dg(s) = 7 q2u =(1-qu)(1+¢@ut+qtu®+¢uw+--)=14+(*—Qu+ (¢* =)+,
— ¢%u

so the average value of ® on degree-n polynomials is (¢*" — ¢**~1)/q" = ¢ — ¢" L.

o Exercise: Show that the average value of o on degree-n polynomials is (¢"*! —1)/(q — 1).

0.5 (Sep 17) Primes in Arithmetic Progressions, Part 1

e Our next task is to prove the function-field analogue of Dirichlet’s theorem on primes in arithmetic progres-
sions.

o Over Q, Dirichlet’s theorem says that for any positive integer m and any a relatively prime to m, there
exist infinitely many primes in the arithmetic progression {a,a+m,a+2m,a+3m,...}: in other words,
congruent to a modulo m.

o Exercise (easy): Show that if a is not relatively prime to m, then there are only finitely many primes
congruent to a modulo m.

e There are p(m) residue classes modulo m that contain infinitely many primes, so one can ask more precisely
about how the primes are distributed among these residue classes.

o In fact, the primes are asymptotically uniformly distributed among these residue classes: the proportion
of primes congruent to a modulo m approaches 1/p(m) upon taking an appropriate limit.

SN{1,2, ...
o Explicitly, define the natural density of a set S of primes to be lim - {L.2,...,n}
n—oo {primes} N{1,2,...,n}

, provided
the limit exists.

o Then, as first proven by de la Vallée Poussin, the natural density of the primes congruent to a modulo
m is 1/¢(m) when a is relatively prime to m.

13



However, the natural density is somewhat difficult to handle with analytic methods. From the standpoint of
zeta functions, a more natural choice is the Dirichlet density:

S

.. . . .. . . . i P
Definition: If S is a set of primes, the Dirichlet density of S is the value dg = lim M,
s—1+ Zprimes pp

assuming

the limit exists.

o Note that the sum in the numerator is always finite for Re(s) > 1 by comparison to the sum for the zeta
function.

o Exercise: If S is finite, show that its Dirichlet density is 0.

o One may prove that if a set has natural density §, then its Dirichlet density is also 6. The converse is
not true, however: a simple counterexample due to Serre is the set S of primes whose leading digit is 1
in base 10.

o Exercise (hard): Show that the set of primes whose leading digit is 1 in base 10 has undefined natural
density, but has Dirichlet density log;, 2. (The answer works out the same if you use integers with leading
digit 1.)

The corresponding definition for function fields is as follows:

—s
Definition: If 7" is a set of monic irreducibles in F,[t], its Dirichlet density is d7 = lim M

Jim, Zp P , assuming

the limit exists.
o We note that both the numerator and denominator sums converge for Re(s) > 1.

Our main result is the following:

Theorem (Analogue of Dirichlet’s Theorem): Let m € Fy[t] have positive degree and let a be relatively prime
to m. Then the Dirichlet density of the set of primes congruent to a (mod m) exists and is 1/®(m). In
particular, there are infinitely many such primes.

o The fundamentally hard part of proving this theorem is to establish the nonvanishing of the L-functions
for nontrivial characters at s = 1.

o In order to explain what this means (and then do it), we will begin with a brisk discussion of Dirichlet
characters and their properties.

Definition: Let G be a finite abelian group. A group character x of G is a homomorphism x : G — C*.

o Note that y(1) = 1 for every character, and also if g € G has order d, then 1 = x(1) = x(9%) = x(g9)¢, so
x(g) is a dth root of unity. Thus in general, x is a map from G to the group of complex |G|th roots of
unity.

o Example: For any G, the trivial character xi,v has xriv(g) = 1 for all g € G.

o Example: If G = (Z/pZ)*, the quadratic residue symbol x(a) = (Z) is a group character.

o Example: If G = (4/pA)* for A =TF[t] and d divides ¢ — 1, the dth-power residue symbol x(a) = (Z)
d
gives a group character, provided we identify the dth roots of unity in Fy, with the dth roots of unity in

C (simply choose any fixed isomorphism).

e We will be interested in the case where G is the group of units (Z/mZ)* or (A/fA)*, in which case we call
x a Dirichlet character.

o In some situations it is slightly more convenient to work with extended Dirichlet characters, which we
extend to have domain Z/mZ or A/fA by setting x(a) = 0 whenever « is not relatively prime to the
modulus.

14



o Exercise: Extended Dirichlet characters modulo m are the same as functions x : Z — C (or A — C) such
that (i) x(a+bdm) = x(a) for all a, b, (ii) x(ab) = x(a)x(b) for all a,b, and (iii) x(a) # 0 iff a is relatively
prime to m.

e We can multiply two group characters on G pointwise, and this operation makes them into a group:

e Proposition (Dual Group of G): The set of group characters on G forms a group under pointwise multiplication.
The identity is the trivial character and the inverse of x is its complex conjugate X. This group is called the
dual group of G and is denoted G.

o Proof: These properties can be checked directly (exercise), or one may simply note that G= Hom(G,C*).

e The dual group G is also an abelian group, so it is natural to wonder how its structure relates to G. In fact,
it is isomorphic to G:

e Proposition (Dual Group, II): If G is a finite abelian group, its dual group G is isomorphic to G.

o Proof: First consider the special case where G is a cyclic group of order n generated by g. Then
x(9%) = x(g)? for all d, so any group character y is uniquely determined by the value of x(g), which
must be some nth root of unity.

o

Conversely, any such selection e2™/™ for x(g) yields a valid group character x,, namely with x,(g?) =
e?miad/n - Since XqXb = Xa+b and 7 is the trivial character, we see that the dual group G is cyclic of
order n (the map a — x, is an isomorphism of G with Z/nZ).

[}

Now suppose G = H x K is a direct product. If y : H x K — C* is a homomorphism, let yg : H — C*
and xx : K — C* be the projections xg(h) = x(h,1) and xx(k) = x(1,k). Then xg is a group
character of H, xx is a group character of K, and x = xgXxx-

Conversely, any pair (xx, xx) € (H, K) yields a character x = xugxx € G, so we see G = H x K.

[¢]

[¢]

Since every finite abelian group is a direct product of cyclic groups, and the result holds for cyclic groups
and direct products, we are done.

e Exercise: If H is a subgroup of the finite abelian group G, define H+ = {x € G : X(H) = 1}. Show that

Ht =~ (7/?{ and that G/H"* = H. Use these results along with G = G to conclude that the subgroup lattice
of GG is the same when turned upside down.

e The isomorphism between G and G above is non-canonical (i.e., it is not “coordinate-free” in the sense that
we must pick specific generators for G and G to obtain the isomorphism).

o However, there is a canonical isomorphism between G (the double dual) and G given by the “evaluation
map” ¢, which maps an element g € G to the “evaluation-at-g” map e, on characters x € G, defined by

eg(x) = x(9)-

o Exercise: Verify that the evaluation map ¢ : G — G with ¢(g) = {x — x(g)} is an isomorphism from G
to G.

o This result is a special case of Pontryagin duality, and has an analogous statement for duals of finite-
dimensional vector spaces.

o In fact, it is really the algebraic analogue of Fourier inversion (the reason being that Fourier analysis on
finite abelian groups involves sums over group characters in lieu of integrals). For a brief taste of the
analogy, the main idea is to note that the map ¢™® : R — C* is a group homomorphism, and thus is an
“R”-character.

e We can also put the structure of an inner product on group characters. To establish this we first show some
simple orthogonality relations:

e Proposition (Orthogonality Relations): If G is a finite abelian group and x is a group character, the following
hold:

|G| if xis trivial
1. The sum ZgEG xlg) = {0 otherwise
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o Proof: If x is trivial the sum is clearly |G|. If x is not trivial, say with x(h) # 1, then deg x(g) =
> _gec X(gh) = x(h) 3_,cc x(g) by reindexing (since G = Gh), and so > 5 x(g) = 0.

G| ifg=1
2. The sum ZXEG x(g) = {O otherwise

o Proof: Apply Pontryagin duality to (1).

‘G| if x1 = xe

3. (Orthogonality 1) For any characters x1 and x2, > - x1(9)x2(9) = R
9 0  otherwise

o Proof: Apply (1) to x = x1Xz2-

4. (Orthogonality 2) For any elements g; and g2, > & x(91)x(92) e
X 0  otherwise

{|G| if g1 = g2
o Proof: Apply (2) to g = g1g, *, or apply Pontryagin duality to (3).
1 _
5. The pairing (f1, f2)o = @ deG f1(g9) f2(g) is a complex inner product on functions f : G — C, and

the elements of the dual group G are an orthonormal basis with respect to this inner product.
o Proof: The inner product axioms are straightforward, and the fact that G yields an orthonormal
basis follows from (3).
P 1 N I
6. The pairing <f1, f2>@ = 1€l eré f1(x) f2(x) is a complex inner product on functions f : G — C, and
the elements of G are an orthonormal basis with respect to this inner product.

o Proof: The inner product axioms are straightforward, and the fact that G = G yields an orthonormal
basis follows from (4), or apply Pontryagin duality to (5).

7. (Fourier Inversion) For any function f : G — C, with the Fourier transform f : G — C defined by
. 1 _ A
fO) = {fx)e = Gl > gec f(9)x(g), we have f(g) =3 o f(X)x(g) for all g € G.

o Proof: This follows immediately from (5), since the elements of G are an orthonormal basis.
e Exercise: Prove Plancherel’s theorem (f1, f2) |G\ <f1, f2> and deduce Parseval’s theorem deG |f (g )\ =
1 L2
@ eré ‘f(X)‘ .
e With the fundamentals taken care of, we can now focus on Dirichlet characters.

o Studying primes congruent to a modulo m naturally leads to a question about Dirichlet characters via
Fourier inversion, since we may decompose the characteristic function of [primes congruent to a modulo
m] as a sum over Dirichlet characters for the group G = (A/mA)*.

. 1 N
o Explicitly, if d,(p) is 1 when p = a (mod m) and 0 otherwise, then d,(x) = T0m) >gec 9a(9)x(g) =
m
1 —
Wx(a), since the only nonzero value of §,(g) occurs when g = a (mod m).
m

. 1 —
o Then by Fourier inversion we have d,(p) = >_ caa(X)X(P) = X2, cé Wx(a)x(p). So the numerator
m

—s 1 — —s
for the Dirichlet density is X5, (moa my P17 = 52, 8a(0) ™" = 75 Tsecr [ X0 Z, x(0) ol

o This is a bit complicated, but the point is that we have a sum over the Dirichlet characters of constants

x(p)

(namely x(a)) times Zp ol which is quite close to the Dirichlet series for the character x (the only

difference is that we are only summing over primes, rather than all monic polynomials).

o As we will see, we will be able to extract this sum over primes from the full Dirichlet series, which we
now examine more closely.
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o The main reason we go to this effort to use Fourier inversion is that the Dirichlet series for Dirichlet
characters behave very nicely (far more nicely than the original series over primes congruent to a modulo
m) because Dirichlet characters are multiplicative.

e Definition: If y is a Dirichlet character modulo m, we define its associated Dirichlet L-series L(s,x) =

x(f)
Vi

f monic

o Note that this is just the Dirichlet series for x(f), as we defined it previously. It is traditional to denote
these series with the letter L (which was the letter Dirichlet used for such functions).

o As usual, the series converges absolutely for Re(s) > 1, since |x(f)| <1 for all f.
o Furthermore, because Dirichlet characters are completely multiplicative, the L-series has a very simple

-1
Euler product: explicitly, L(s, x) =[], irred [1 - T(pS)} , for Re(s) > 1.
p

o The Euler product is the key to calculating the Dirichlet density we wanted earlier: taking the logarithm

of the Euler product gives log L(s,Xx) = — 3 jreq 108(1 — X(2)/[PI°) = 32, irrea >|<15‘|Us) using the Taylor

approximation —log(1l — ) ~ = which is accurate for small |x|.

o So our main task is to determine what happens to log L(s, x) as s — 1, since this is the required input
for calculating the Dirichlet density of the primes congruent to a modulo m.

0.6 (Sep 22) Primes in Arithmetic Progressions, Part 2

e Our main task is to determine what happens to log L(s,x) as s — 1, since this is the required input for
calculating the Dirichlet density of the primes congruent to a modulo m.

e Example: For the trivial character Xuiv, we have L(s, Xtriv) = [ irrea(1 — [p| ™) - Ca(s), since the terms
with p|m are missing from the Euler product for L(s, x).

o In particular, we see that L(s, x¢riv) has an analytic continuation (since (4(s) does) and a single simple
pole at s = 1.

e For other characters, the L-series is essentially finite.

e Proposition (L-Series for Nontrivial Characters): Let m be a monic polynomial of positive degree and x be
a nontrivial Dirichlet character modulo m. Then L(s, x) is a polynomial in ¢~* of degree at most degm — 1,
and in particular has an analytic continuation.

o Proof: Let A(n,x) = >4, =, X(f) and note, as we have previously done in working out average-value
results, that L(s,x) = >, A(n, x)¢~ ™. The claimed result is then equivalent to saying A(n,x) = 0
for n > degm.

o For this, suppose deg f = n > m and write f = hm +r with degr < degm, where degh = deg f —degm
and sgn(h) = 1/sgn(m). Conversely, given such an h and r, we get a unique f = hm + r. Note that
x(f) = x(r), and also that there are g"~48™ possible h.

o Then A(n,X) = 3 geg f=n X(F) = Ddeg p=n X(r) = qn—desm > deg r<degm X(r) = 0 where the last sum is
zero by the orthogonality relation (1).

o The observation about the analytic continuation is immediate (simply take the analytic continuation as
the given polynomial in ¢~%).

e Exercise: Choose a modulus m € F,[t] and a nontrivial Dirichlet character x, and verify explicitly that L(s, x)

is a polynomial in ¢—*.

e As a consequence, we see that L(s, x) has no pole at s = 1 when x # Xtriv- Our next major goal is to prove
that L(1,x) # 0 for x # Xtriv-
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e Lemma: Let y be any Dirichlet character modulo m. Then for each monic 1rreduc1ble p not dividing m, there
exist f,, gp > 0 with f,g, = ®(m) such that J[ .4 L(s,x) = [, (1 = |p| ™ Tos )9

(¢]

(¢]

(¢]

o

Proof: For a fixed monic irreducible p { m, as we have previously noted the evaluation-at-p map x — x(p)
is a homomorphism from G to C*.

Let the image be a cyclic group of order f,, and the kernel have size g,: then f,g, = #G = #G = ®(m)
by the first isomorphism theorem.

For this p, by grouping the fibers of the evaluation-at-p map together, for ¢ = e2™/fr we have HXeG(
x(p)/ Ip|") ! Hf”_l(l — 7/ |p|*)~9%, and this last product equals (1 — |p|~ fos )97 since it is the
evaluation of the polynomial (1 —¢)(1 —(t)--- (1 —¢fr= ) =1—tfr at t = |p|~°

Thus, taking the product over all monic irreducibles p { m yields the claimed [, . L(s, X) = I1, e [ (1=

x(®)/ 1p1") 7" = T (1 — lp|~/7*)=9 after reversing the order of the products.

e We next show that L(1,x) # 0 for nonreal Dirichlet characters y:

e Lemma (Nonvanishing, I): Let x be any Dirichlet character modulo m such that x # X. Then L(1, x) # 0.

(¢]

Proof: If we expand the product J[, .4 L(s,x) = [1,,,(1 — |p|7f”s)*gp from the Lemma above, it yields
a Dirichlet series with nonnegative coefficients and constant term 1.

Thus, if s is real and greater than 1 (so that the product converges), the value of the product is real and
greater than 1.

If x # X, then [[ .4 L(s,Xx) = L(s, Xtriv) L(8, X) L(s,X) - [other terms].

Now suppose L(1,x) = 0: then we would have L(1,%Y) = 0 also. But this would mean the product
[1,c¢ L(s, x) vanishes at s = 1, because the only term that has a pole at s = 1 is L(s, Xuriv) and that
pole has order 1, but we have two zeroes at s = 1 arising from L(s, x) and L(s, ).

But this is impossible because the value of the product is real and greater than 1 for s > 1. Thus,

L(1, x) # 0.

e The case where x =X and X # Xtriv (i-€., when x has order 2 in G) is quite a bit trickier, since we cannot get
away with such a simple order-of-vanishing argument.

e Lemma (Nonvanishing, II): Let x be any Dirichlet character of order 2 modulo m (i.e., such that xy = but
X 7é Xtriv)- Then L(LX) 7é 0.

o

Proof: Suppose that x =X but x # Xtriv, S0 that x(p) € {1} for p{m, and define the function G(s) =
L(s, Xtriv) L(s,X) _ oI (1 —1Ip[™*) P = x(@) IpI )" L+ p| ™"
L(287 Xtriv) pfm
00 —ks

prm,x(p):l[l + Zk:l |p| ]
By expanding this last expression for G, we can see that its Dirichlet series has all coefficients nonnegative.
L(Sa Xtriv) CA(S) 1- ‘p|_s 1-—- q1—2s —8\—1 . .

- . = 1 ~*. Substitut
L(25;Xtriv) CA(25) Hp\ | ‘725 1— q175 Hp|m( + |p| ) ubstituting

1-2s o L(Saxtriv)L(*SvX)

1—
this into the expression for G yields that %L(s,x) = (25, xome)

1-s
q
G(s) [T (1 + |p| *)~! is a Dirichlet series with all coefficients nonnegative.

Suppose G15) Iy 1+ 7)™ = 5 o 12

Rewriting in terms of u = ¢~*%, and noting that L*(u,x) = L(s, x) is a polynomial in u as we proved
L*(u, x) = Ezo:O[Zdeg(f):d h(f)]ud.

Now suppose that L(1,x) = L*(¢~ !, x) is equal to zero. Then 1 — qu would divide L*(u, x), which would

1— 2
“ L*(u, x) is a polynomial in u. But then the right-hand side would also be a polynomial
—qu

We also have

Hp|m(1 + |p|_s)71 =

1—
earlier, we obtain the equality 1

mean that

in w. All of its coefficients are nonnegative (as noted above), which means it cannot have a positive root
for w.

18
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2
“ L*(u,x) is zero when u = 1/,/g. This is a contradiction, and so

—qu

L*(g~ ', x) = L(1, x) must be nonzero.

1
o But, finally, notice that

e Now that we know L(1, x) vanishes for nontrivial characters x, we can prove Dirichlet’s theorem:

e Theorem (Analogue of Dirichlet’s Theorem): Let m € F,[t] have positive degree and let a be relatively prime
to m. Then the Dirichlet density of the set of primes congruent to a (mod m) exists and is 1/®(m). In
particular, there are infinitely many such primes.

o We have already obtained all of the necessary ingredients, so the proof is mostly a matter of putting
them all together.

o Proof: Recall the power series —log(1 — z) = >_p2, 2¥/k, valid for |z| < 1.

k
o Then for any Dirichlet character x, we have log L(s, x) = >_, —log(1— TIS?) =, 2 e % lp| | =
k , 1, s
> T;pg) S DD P % lp| ", The absolute value of the second term is bounded by Do s z | * <
S reg Yoge q%qTRIs <37 (n+ 1)g™ ™, which is bounded as s — 1+.

o Therefore, as s — 1+, we have log L(s,x) = >_, T(|p§) + O(1). In particular, we see that ) Ip|” % =
p

log(s —1) + O(1) as s — 1+, since L(s, Xtriv) has a simple pole at s = 1.

o Now, by Fourier inversion (as we previously worked out) we have 37 _, (nod m) [PI”° = 22, da(p) Ip| "

S o {X(a)Z X(P)} _

P pl®

o
®(m)

st o5, 12)

sza (mod m) ‘p|—3 _

o So, the quotient for the Dirichlet density is

» >, el - >, lpl"

—— < X2

1 me Ip|~* Zx;ﬁXmV x(a) Zp P | 1 B Zp‘m Ip|~*° Zx#xtm log L(s, x) + O(1)
®(m) | S Ip|~° >, lpl~° — ®(m) log(s — 1) 4+ O(1) log(s — 1)+ O(1)

o Now, taking the limit as s — 14 makes the second term go to zero (since the numerator is finite) and
the third term go to zero (since L(1,x) # 0 for x # Xtriv), and so the value of the limit is just 1/®(m),
as claimed.

e We can, in fact, improve this argument to show that the natural density of the primes congruent to a modulo
m is equal to 1/®(m), not just the Dirichlet density.

o To do this requires showing that L(s,y) is zero-free on a larger region: specifically, we need it to be
zero-free for Re(s) = 1, rather than just s = 1.

o The L-function is in fact zero-free on a much larger region: as we will eventually prove, the only zeroes
of L(s,x) are on the line Re(s) = 1/2; this is the Riemann hypothesis for function fields.

o Taking this zero-free result for granted, we again need to manipulate the series expressions for the L(s, x).
This time, we will use in a more substantial way the fact that the L(s, x) for x # Xtiv are polynomials
in v = ¢7° and compare the Euler products with their factorizations.

e Theorem (Strengthened Dirichlet Analogue): Let m € F[t] have positive degree and let a be relatively prime
N N/2
q q
ro(tr),

1
to m. Then the number of primes congruent to a (mod m) having degree N is equal to B(m) N
m

where the implied constant is independent of ¢ and V.

o If we only know that the L-function is zero free for Re(s) > 6 for some 6 € (1/2,1), we instead get an
ON

error term of O(%), which is still good enough to establish that the natural density of primes congruent
to a (mod m) equals 1/®(m).
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00 k, dN
Nop daPutt,

o Proof: For convenience, we first note the identity (*) ua% log(1 — au®)™t =3

o As we showed previously, if x # xtriv then L*(u, x) = L(¢™*%,x) is a polynomial in u = ¢~* of degree at
most m — 1. Since its constant term is 1, we obtain a factorization of the form L*(u,x) = H::ll(l -
a;(x)u) for some constants a; () € C.

o From the Euler product, we also have L*(u,x) = [[,,,(1 — x(p)udes?)=t = T3, [ deg p=a(l —
x(p)ut) ="

o Now apply the operator u2-log to the equality H:T;l(l —a;(x)u) =TI, [ deg pa(l = x(p)ud)~t
and compare coefficients of u on both sides.

o For the LHS, using the identity (*) with d = 1 yields u:Z log L*(u,x) = — 21 S ai()Vul =
- SN [Er w0 N] e
o Letting cn(x) = — >om " ai(x)" yields the expansion w2 log [T (1 — ai(x)u) = Yoy en()u>.

For X = Xtriv, we have cy(x) = ¢ + O(1), while for x # Xtriv, by the Riemann hypothesis we have
loi(x)| € {q°, ¢*/?} for each i, and so cx(x) = O(¢™V/?).

o For the RHS, we have

uZlogL*(u,x) = Y. > ulog(l—x(p)u’)™
d=1 ptm,deg p=d

= > D D dx(tu
d=1 ptm,deg p=d k=1

oo

= 3 E X awvefe

N=1 | d|N degp=N/d

by applying the identity (*) and then grouping together all of the terms of the same degree. This means
en(x) = Zd\N Zdegp:d dX(P)d~
o Now, by separating out the terms with d = 1 from the others, we see cx (X) = 24 Yodeg p=nya A X ()¢ =

N degpen X(P) + X ajn,az2 Zdegp:N/ddx(p)d. The absolute value of the second term is at most
B N/d
q
24N d>2 Ddegp=N/d 4 < Dajnax2 Njd ~ O(¢"/?).

o Therefore, we see cn(X) = N > geqpn X(P) + O(qgN/?).

1
o Now we use our Fourier decomposition from earlier: we have B(m) Svea x(a)en(x) = N-#{primes p =
m

a (mod m)} 4+ O(¢"V/?) using the expression we just computed.
o Also, we have eré x(a)en (x) = ¢ 4+ O(¢N/?) by directly summing over characters: x = Yy con-
tributes the ¢ term and the other characters each contribute O(g™V/?).

1 N
o Setting these two equal to one another yields #{primes p = a (mod m)} = m) qﬁ + O(

claimed.

e Exercise: For a,m € F,[t] with a relatively prime to m, show that the proportion of primes of degree N

1
congruent to a (mod m) is Tm) + O(q~N/?), where the implied constant is independent of ¢ and N.
m

0.7 (Sep 24) dth Powers and dth-Power Residue Symbols

e Our next task is to discuss the analogue of another famous result from elementary number theory: Gauss’s
celebrated law of quadratic reciprocity, along with its higher-order generalizations. A brief recap of the story
over Z:
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o If a € (Z/pZ)*, we say a is a quadratic residue if @ = b> (mod p) for some b, and otherwise we say a is a
quadratic nonresidue.

o Since the quadratic residues are simply the image of the squaring map on (Z/pZ)*, by the first isomor-
phism theorem there are (p — 1)/2 of them. (One may also simply enumerate them as 12,22 ... [(p —

1)/2%.)

o The Legendre symbol <a> is defined to be +1 on quadratic residues and —1 on quadratic nonresidues.
p

. . . e fa
By writing a as a power of the generator of (Z/pZ)*, one then obtains Euler’s criterion: a?~1/2 = ()

p
(mod p), from which one sees that the Legendre symbol is multiplicative. Equivalently, it is a group

homomorphism from (Z/pZ)* to {£1}.

o Exercise: Another group homomorphism from (Z/pZ)* to {£1} is obtained by calculating the signature
of the permutation associated to multiplication by a, as an element of the symmetric group S,_;. Prove
Zolotarev’s lemma: this homomorphism is the same as the Legendre symbol.

e The law of quadratic reciprocity gives an unexpected relation between the Legendre symbols (p> and (q>
q p
for distinct odd primes p and q.

o Explicitly, as first proven by Gauss, we have (2) (i) = (=1)P=Dla=D/4_ Equivalently, (g) = (;1?)
if p or ¢ is 1 mod 4, and otherwise (p) = - <q> if both p, q are 3 mod 4.
q p

o A priori, it would seem that there is no reason for the values of p> and (q> to be related to one
q p
another, since they are discussing seemingly independent questions (whether p is a square mod ¢ and

whether ¢ is a square mod p).

o But in fact, these questions are related: for p* = (—1)?~1/2 the value of (p) determines whether the
q

ideal (p) splits in the ring of integers O = of the quadratic extension Q(,/¢*) while the value of 4
p
determines whether the ideal (g) splits in the ring of integers of the quadratic extension Q(1/p*).

o These two questions are related because there are several ways to understand the splitting of (¢) in O VP

o First, from basic algebraic number theory, to determine whether (g) splits in O /=, one can study the

*

splitting of the minimal polynomial 22 —z+ modulo ¢, which splits precisely when its discriminant

p* is a square: in other words, when (p) =1.
q

o Alternatively, one may look at the action of the local gth-power Frobenius map inside the Galois group of
the cyclotomic field Q(¢,), whose unique quadratic subfield is Q(\/pT) Since the Galois group is cyclic,
the Frobenius element Frob, fixes Q(y/p*) if and only if ¢ € (Z/pZ)* lies in Gal(Q({,)/K). But this
group is the unique index-2 subgroup of (Z/pZ)*, which is simply the quadratic residues, so this means

(¢) splits precisely when (q) =1.
p

*

o Comparing these two statements yields that (p) = 1 if and only if (q) = 1, and this can be shown
q p

to be equivalent to the usual version of quadratic reciprocity.

*
o Exercise: For distinct odd primes p, ¢, show that <p) = (q> is equivalent to <p> <q> = (—1)(3”*1)(‘1*1)/4,
q p q p
where p* = (—1)P~1/2,

o There are very many other proofs of quadratic reciprocity, many of which involve lengthy formal manip-
ulations of various sums and (generally) yield little to no intuition about why the result is actually true.
There is a fairly nice proof using Gauss sums that, suitably interpreted, is really the same as the one
given above.
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e We would like to generalize the reciprocity law to handle general dth powers in F,[t]. We begin by describing
the dth powers:

e Definition: If f € F,[¢] is nonconstant and a is relatively prime to f, we say that a is a dth-power residue
modulo f when ¢ = a (mod f) has a solution for z. (In other words, when a is the dth power of something
mod f.)

o

o

Example: Over Fy[t], we see t+ 1 is a quadratic residue modulo t2 +¢+ 1 since t +1 = (t> +t+1)? (mod
3+t +1).

Example: Over F5[t], we see 3t2 + 3t +4 is a cubic residue modulo 3+t + 1 since 3t? + 3t +4 = (t2 +2t)3
(mod 3+t +1).

By the Chinese remainder theorem, ¢ = a (mod f) has a solution if and only if 2¢ = a (mod p?) has a

solution for each prime power p? in the factorization of f.

Thus, we need only consider the case where the modulus is a prime power, and we can handle this case
fairly easily using our earlier analysis of the structure of (A/p?A)*.

e We can start by looking at the prime-modulus case, since it is the simplest.

o

e}

(¢]

(¢]

As we have mentioned previously, (A/pA)* is the multiplicative group of the finite field A/pA, so this
group has order ¢d°&P — 1 = pfdesr _ 1,

If d does not divide |p| — 1, then the dth power map on (A/pA)* is injective by Lagrange’s theorem, so
it is a bijection, and so everything in (A/pA)* is a dth power.

This means we can ignore divisors of d that aren’t factors of |p| — 1, and so essentially we are reduced to
the situation where d divides |p| — 1.

By analogy with Euler’s criterion in Z, we would expect that the value of a{IPI=1)/4 will identify whether
or not a is a dth power. This is indeed the case:

e Proposition (dth Roots Mod p): If p € F,[¢] is irreducible, a is not divisible by p, and d is a divisor of |p| — 1,
then 2¢ = a (mod p) is solvable if and only if a(IPI=1/4 =1 (mod p).

(¢]

(¢]

Proof 1: First, if 2¢ = a (mod p) then a(PI=1/¢ = 2IPI=1 = 1 (mod p) by Euler.

For the converse, recall that we showed previously that ¢ = 1 (mod p) has d solutions mod p whenever
d divides |p| — 1.

Therefore, the kernel of the dth-power map on (A/pA)* has size d, so by the first isomorphism theorem,
the image, which is precisely the set of dth powers, has size (|p| — 1)/d.

But by the same observation, there are exactly (|p| — 1)/d solutions to the equation z(IPI=1/¢ =1 (mod
p), so by the above, these must be exactly the dth powers.

Proof 2: As shown previously, (A/pA)* is cyclic of order |p| — 1. Let u be a generator.

Since every element in (A/pA)* is a power of u, it is easy to see that for any d dividing |p| — 1, the dth
powers in (A/pA)* are precisely {ud, u?¢, w34, ... u®IPI=Dd = 1}, All of these elements clearly satisfy
z(PI=1/d =1 (mod p).

Conversely, if a = u* has a{PI=1/4 = 1 (mod p), then «*(PI=1)/4 = 1 (mod p) so since u has order |p| —1,
d must divide k.

e Now that we have analyzed the prime case, the prime-power case follows by “lifting” the solutions from the
prime case.

o

This is a consequence of a much more general result known as Hensel’s lemma, which we might as well
do in general.

e Proposition (Hensel’s Lemma): If p € Fy[t] is irreducible, a € F,[t], and r(x) is any polynomial such that
r(a) = 0 (mod p?) and '(a) # 0 (mod p), then there is a unique k¥ modulo p such that r(a + kp?) = 0 (mod

1), Explicitly, if u = f(a)~! (mod p), then k = — (@)

pd
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o By repeatedly applying Hensel’s lemma, we can lift a solution of r(a) = 0 (mod p) to a solution modulo
p?, and then lift that to a solution modulo p?, and so on and so forth, until we have a solution to the
equation modulo any power of p.

o This iteration process yields a sequence of solutions = a; (mod p?) for each j, where ajy1 = a; —
1
ﬁr(aj), which one may recognize as the iteration procedure from Newton’s root-finding method. In
a

fact, if we instead think of solving the polynomial r(z) = 0 p-adically (which amounts to taking the
inverse limit ].iHm(A/pdA)), this lifting procedure is precisely Newton’s method with starting point x = a.

o Proof: First, by the binomial theorem we have (a + p?k)" = a” + na" 1pk + [terms divisible by p??] =
a" +na" 'pk (mod p?tt).

o Then if r(t) = Y c,t" we see that r(a + pPk) = Y cn(a”™ +na plk) = Y cpa” + pk Y ne,a™ ! =
r(a) + p?k - r'(a) (mod p?t1).

o By hypothesis, 7(a) 4+ p?k-r'(a) is divisible by p?. So dividing the congruence r(a+ kp?) = 0 (mod p?+?!)
uf(a)

pd

a
by p? yields Lj) + k7' (a) = 0 (mod p), which has the unique solution k = — (mod p), as claimed.
p
e This version of Hensel’s lemma is quite a bit more than we really need here, but it will be helpful to have it
available later.

e Corollary (dth Roots Mod p°): If p € F,[t] is irreducible, d divides |p| — 1, and p does not divide a, then

2% = a (mod p) has a root if and only if 2¢ = a (mod p®) has a root for every e > 1.

o Proof: If there is a solution to ¢ = a (mod p¢) then clearly there is a solution mod p.

o Conversely, if there is a solution mod p, then we claim we may lift the solution mod p® using Hensel’s
lemma.

o We just need to check that the derivative is not zero: for r(z) = z¢ we have r'(a) = da®~1. Then d # 0
mod p because d divides |p| — 1 = p/9°8? — 1 and so d cannot be divisible by the characteristic p, and
also a # 0 mod p because p does not divide a. Thus, Hensel’s lemma applies, and we are done.

e Corollary (Counting dth Powers): If p € F,[t] is irreducible and d divides |p| — 1, then there are ®(p®)/d total
dth-power residues modulo p€.

o Proof 1: Count residue classes: as shown earlier there are (|p| — 1)/d = ®(p)/d total dth-power residue
classes modulo p. By the corollary above, the dth-power residue classes modulo p® are precisely those
that reduce to a dth power modulo p. So the probability of selecting one is ®(p)/(d |p|), and thus the
total number is |p|“ - ®(p)/(d|p|) = ®(p®)/d.

o Proof 2 (sketch): The dth-power homomorphism commutes with reduction modulo p. Then just count
the sizes of the various kernels and images and use the first isomorphism theorem.

o Exercise: Show that for any monic polynomial m, there are ®(m)/d*(™) total dth powers modulo m,
where A(m) is the number of distinct monic irreducible factors of m.

e Returning back to the prime case, in the particular case where d divides ¢ — 1, then the dth roots of unity in
(A/pA)* actually lie inside F,, because ¢ = 1 already has d solutions inside F, (since [y is cyclic of order

q—1).
o We have shown above that a is a dth power modulo p if and only if a{IPI=1/4 = 1 (mod p).

o We can use this as the basis for our definition of the dth-power residue symbol, in analogy with Euler’s
criterion over Z.

o Definition: If p € Fy[t] is irreducible and d divides g — 1, then we define the dth-power residue symbol (Z)
d

to be the unique element of F, congruent to allPl=1/d modulo p.

o Example: For d = 2 over F3[t], we calculate ( =t1 =2 (mod t2 +t+2).

t2+t+2)2
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o Example: For d = 3 over F;[t], we calculate ( t16 = 4 (mod % + 2t + 2).

t2+2t+2>7

t
o Example: For d = 3 over Fy[t], we calculate <t2—|—t+6) =t1© =1 (mod t? + t + 6), which means ¢ is
7

a cube modulo t2 + t + 6.
e Proposition (Properties of Residue Symbols): If p € F,[t] is irreducible and d divides g — 1, the following hold:

1. <a> = 0 if and only if p divides a.
PJa

. If a = b (mod p) then (a) = (b) .
PJa P/a

b b
3. The residue symbol is multiplicative: for any a, b, (a> = <a) <> :
P /g P/a\P/q

[\

4. (Z) =1 if and only if a is a dth-power residue modulo p.
d

5. If ¢ is any dth root of unity in Fy, then there exists a € F,[t] with (a> =(.
P/a
6. The residue symbol is a surjective group homomorphism from (A/pA)* to pq4, the group of dth roots of
unity in F,.

a NG
7. If d|d’ then <> = <) .

P/ P/
8

I €F, then (a) _ ala-D/ddegp,
P/g

o Proofs: (1)-(4) are trivial from the definition or results previously shown. (5) follows by the first isomor-
phism theorem, since the kernel of the (|p| — 1)/dth-power map has size (|p| — 1)/d hence the image has
size d. (6) is a rephrasing of (3) and (5).

d'/d

o (7) follows by noting (;) = (allpI=D/d"yd'/d — o (Ipl=1)/d = (Z) (mod p), and then observing that
@ d

since the residue symbols are both elements of F,, the congruence mod p forces actual equality.
pl -1 _ q%®P -1

o For (8), first note that T = y =(1+g+¢*+-- +q*8" ")(g—1)/d. Then since o’ = a
by Fermat’s little theorem in F,, we have (a) = qlrl=D/d — (o 0.7 - ... oﬂde“fl)(q—l)/d =
P/g

adegr(a=1)/d (mod p). Then as in (7), the congruence modulo p forces equality.

e We can now state the dth-power reciprocity law, which we will prove next time:

e Theorem (dth-Power Reciprocity): If d divides ¢ —1 and P, ) are monic irreducible polynomials in F,[t], then
(Q> _ (—1)(@-D(deg P)(deg @)/d <P> _
P d Q d

0.8 (Sep 29) The dth-Power Reciprocity Law

e To prove the reciprocity law, we first need a reciprocity result about roots of polynomials known as Weil
reciprocity:

e Lemma (Weil Reciprocity): If P(¢t) = (t—7r1)--- (¢t —ry) and Q(t) = (¢ —s1) - - - (t — s, ) are monic polynomials
over a field F, with the r;,s; € F, then [}, Q(r;) = (—1)(des P)dee @ [T | P(s;).

o Proof: Note that Q(r;) = [[j~,(ri — s;) so [[}=, Q(ri) = I[;=, I}, (ri — s;). In the same way,

[T72, P(sj) = T15= TTimi (55 — ma).
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o These expressions are the same up to switching the order of the products and scaling each of the mn =
(deg P)(deg Q) terms by —1, so the result follows.

e We can now prove the dth-power reciprocity law:

e Theorem (dth-Power Reciprocity): If d divides ¢ —1 and P, ) are monic irreducible polynomials in F,[t], then
(Q> _ (—1)@-D(deg P)(deg @)/d (P> _
P d Q d

o The main idea of the proof is to exploit properties of the Frobenius map on the roots of P and @ in their
splitting field over Iy, and then use Weil reciprocity.

d'/d
o Proof: From property (7) of the residue symbol, we have <a) = (a) , 80 it is enough to prove the
d

p P)a
reciprocity law when d = g — 1.
o Now let a be a root of P and 8 be a root of @) in a splitting field E/F, for the polynomial PQ).

o Since E/F, is a finite-degree extension of a finite field, its Galois group is cyclic and generated by the
gth-power Frobenius map.

o Also, since P and @ are irreducible over F,, we must have the factorizations

)

deg P—1

Pt)=(t—a)t—a?)(t—aT) - (t—af
Q)= (t—pB)(t— BNt — Bf) ot ﬁqdegQ,l

since a, of, aq2, ... are all the Galois conjugates of a and P is irreducible (with the same logic applying
to B and Q).
deg P—1

o Inside E[t], we have <g) = [Q(t)](qdegp,l)/(qfl) — [Q(m1+q+q2+...+qdeg Po1 Q(t)Q(t)qQ(t)q2 Q) _
q—1
Q(t)Q(tq)Q(tqz) Qe ) (mod P) since Q(t?) = Q(¢)? in characteristic q.

deg P—1
o Reducing both sides modulo the factor ¢ — a of P (equivalently, evaluating both sides at ¢ = «) then

yields (g) =Q(v)Q(a?) - Q(aqdegp_l) (mod t — ). Since the right-hand side of this expression
—1

is the product of the values of @) evaluated at the roots of P, it is the same for any other root of P we
choose in place of «.

o So by the Chinese remainder theorem, in fact (g) = Q()Q(a?)---Q(a?"* 1) (mod P). But the
qg—1

right-hand side is an element of E, and since it is a (¢ — 1)st root of unity (or alternatively, since it is

Galois-invariant), it must actually be in IF,. So since these quantities are congruent modulo P, they must

actually be equal as elements of IF,.

o This means (g) = Q(a)Q(a?) - Q(a®™ " ~1). In the same way, (g) = P(B)P(BY)--- P(B1"*°~1).
q—1 qg—1
o Weil reciprocity then says Q(a)Q(ad) --- Q(a? " ~1) = (—1)(dee P)(deg Q) p(g) P(39) . .. P(B1°*“~1) 50
we see (g) = (—1)(deg P)(deg Q) (g) , which establishes the case d = ¢ — 1.
g—1 q—1

o The case where d divides ¢ — 1 follows immediately and gives the general statement above.

e Just as in the case of Q, to give a convenient method for calculating residue symbols, we can extend the
definition to include nonprime moduli (i.e., generalizing the Jacobi symbol):

e Definition: If b € F,[t] has prime factorization b = ug}* - - - g% for distinct monic irreducible ¢; and u € Fx,

b;
then we define the general residue symbol as (%) = H?Zl (a) .
d di

e Proposition (Properties of Residue Symbols, II): If b € F,[t] is nonzero and d divides ¢ — 1, the following hold:
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—_

. (%) is either 0 or a dth root of unity, and (%) = 0 if and only if a, b are relatively prime.
d d

2. If a; = as (mod b) then (a—bl)d = (%)d.

3. The residue symbol is multiplicative on the top: (alba2) = (al) (a—2> .
d d d

b
4. The residue symbol is multiplicative on the bottom: (J;) = <a>
192 / 4

5. If ged(a,b) = 1 and a is a dth-power residue modulo b, then (
a ard'/d
6. 1t did then (7) = (%) "
| P\ b/a
a —_ .
7. 1f o € F, then (E)d = qlo-D/ddegb,

o Proofs: (1)-(4) follow straightforwardly from the definition, while (6) and (7) follow the same way as for

the resid bol with pri dulus. For (5), if a = ¢? (mod p) th (9)—f _<E) -1
€ residue sympol wi prime moaulus. or ,lLa=c mod p en b d_ b d— bd_

C
since (5) is a dth root of unity (since it is not zero since a, b are relatively prime).
*
o We will remark that the residue symbol (5) : (A/bA)* — g is still a group homomorphism since it is
d
multiplicative by (3), but it is not necessarily surjective when b is not prime. For example, if b = p? is

d
a dth power, then by (4) we see that (%)d = (Z) =1for all a € (A/bA)*. (This also shows that the
d

converse of (5) is false, as noted above.)
e We can write down the reciprocity law for general dth-power residue symbols:

e Theorem (General Reciprocity Law): If d divides ¢ — 1 and a, b are any nonzero polynomials in [F,[t], then

a b
Z) = (—1)\(@—1)(dega)(degb)/d[q (¢g—1)/d-degbig —(g—1)/d-dega [ Z
( ; ) . (-1 [sgna] [sgnd] (a) K

o Proof (sketch): As in the prime case, reduce to the case d = ¢ — 1. Then pull out the leading coefficients
of a, b (these are where the sgna and sgnb terms come from) and then apply the definition of the general

b
residue symbol to write (%) and () as products of residue symbols with prime moduli, apply
q—1 a g—1

the prime-modulus reciprocity law, and tally up the results. The full details are left as an exercise.

e A standard application of quadratic reciprocity over Z is to characterize all of the prime moduli for which a
given integer m is a quadratic residue.

o Typical examples of such statements: —1 is a quadratic residue mod p when p = 1 (mod 4), 3 is a
quadratic residue mod p when p = 1,11 (mod 12), 5 is a quadratic residue mod p when p = 1,4 (mod
5), and so forth.

o Aside from the special cases of —1 and 2, one may answer this question simply by factoring m as a product

of primes m = ¢ - - - qx, so that <m> = (ql) e <Qk>, and then applying quadratic reciprocity to flip
p p p

m
each of the quadratic residue symbols. The end result is that the statement | — | = +1 is equivalent to
a congruence condition for p modulo 4m, which one may calculate explicitly if desired.

e We can use this same type of argument to solve the analogous problem in function fields:

e Theorem (Criterion for dth-Power Residues): Let m € F,[t] be monic and d|(¢ — 1), and let {ai,...,ax}

be coset representatives for the residue classes in (4/mA)* with (ﬁ) = +1 and {b1,...,b;} be coset
m/d
b
representatives for the residue classes in (A/mA)* with () = —1 (if there are any). Then the following
m/aq
hold:
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1.

2.

If deg(m), (¢ —1)/d, or char(F,) is even, then m is a dth power modulo an irreducible monic polynomial
p if and only if p = a; (mod m) for some 1.

If deg(m), (¢ — 1)/d, and char(F,) are all odd, then m is a dth power modulo an irreducible monic
polynomial p if and only if either deg(p) is even and p = a; (mod m) for some ¢, or deg(p) is odd and
p = b; (mod m) for some i.

o Proof: Note that p = a; (mod m) is equivalent to saying (2) = 1, while p = b; (mod m) is
m/d

equivalent to saying (ﬁ) =—1.
m/d

o Since p and m are monic, by the reciprocity law we see (m) = (—1)(g=1)/d-deg(m) deg(p) (2) .
)4 m/d

o First, if ¢ is even, then char(F,) = 2: then —1 =1 over F, so (m) = (ﬁ) . Likewise, if deg(m)
/)4 m/d

m
or (¢ —1)/d is even, then the exponent of —1 is even, so again we see () = <£> . Together
d

P m/d
with the observation above, (1) follows.

o For (2), if deg(m), (¢ — 1)/d, and char(F,) are all odd, then —1 # 1 and (—1)(a—1)/d-deg(m)deg(p) —

(—1)desr, So (m) = <£> if deg(p) is even while (m) =— (ﬁ) if deg(p) is odd. This yields
p d m/d p d
(2)-

d m

e Example: Identify all monic irreducibles p € F3[t] such that ¢ is a square modulo p.

o

o

(¢]

(¢]

1 2
There are two residue classes in (A/tA)*, namely 1 and 2, and we see (t) = 1 while (t) =—1.
2 2

Since deg(m) =1, (¢ — 1)/d = 1, and char(F,;) = 3, we are in case (2). Thus, m is a quadratic residue
modulo the monic irreducible polynomial p precisely when deg(p) is odd and p = 2 (mod t), or when
deg(p) is even and p =1 (mod t).

For example, we see that ¢ is a square modulo the irreducible polynomial ¢3 4 2t + 2 € F3[t], and indeed
with some more work, one may calculate t = (t2 +t + 2)? (mod ¢ + 2t + 2).

Exercise: Extend this example to describe all monic irreducibles p € F[t] such that ¢ is a square modulo
p for arbitrary finite fields F,,.

e Another interesting application of the dth-power reciprocity law is to establish a “Hasse principle™-type result
for dth powers.

(e}

Obviously, if a polynomial with integer coefficients has a solution in Z, then it also has solutions modulo
p¥ for all prime powers p* (equivalently, it has a p-adic solution for each p) and it also has a real solution.

The Hasse principle asks when the converse of this observation is valid: if a polynomial has a p-adic root
and a real root, does it necessarily have a rational root? The general idea is that one may try to piece
together information modulo the prime powers for many primes p using the Chinese remainder theorem,
but it is not clear when this actually forces the existence of a global solution.

As first proven by Minkowski for integer coefficients (and then later extended by Hasse for number-field
coefficients), for quadratic polynomials this local-global principle holds: if a quadratic polynomial has a
p-adic root and a real root, it necessarily has a rational root.

The result is known to be false for cubic forms: Selmer’s famous counterexample is the cubic equation
323 + 41> + 522 = 0, which has no rational solution but does have real solutions and p-adic solutions for
all p.

Even in the absence of a literal Hasse-principle statement, in many cases one can analyze the precise
obstructions to lifting local solutions to global solutions. (An example of this sort of obstruction can be
found in the statement of the Grunwald-Wang theorem.)

e Theorem (Hasse Principle for dth Powers): Let m € F[t] have positive degree and d|(q — 1). If ¢ = m (mod

p) is solvable for all but finitely many irreducible polynomials p, then x

4 = m has a solution in F,[t] (i.e., m

is globally a dth power).
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o Proof: Let m = qul e q,‘j’“ where the ¢; are distinct monic irreducibles and 5 is a constant. We first show

that if any d; is not divisible by d, then there are infinitely many irreducibles p such that (m) # 1.
P /g

o To show this, suppose without loss of generality that d; is not divisible by d. We inductively construct
m
an infinite set of irreducibles {r;} with [ — ] # 1, so suppose we have a set (possibly empty to start)
i) g4

T

{r1,...,rs} of monic irreducibles not dividing m with (m) # 1 for all 3.
d
o Select any primitive dth root of unity (4: then there exists an element ¢ € F,[t] with <C> = (g4 by our
i/ d

1
properties of the dth-power residue symbol.

o By the Chinese remainder theorem, there exist solutions a to the system of congruences a = ¢ (mod
1), a =1 (mod g2---¢qx), a =1 (mod 7y ---ry). Select any such solution that is monic and has degree
divisible by 2d.

d;
o For this a, we have (ﬂ) = Hle <a> = 51 # 1 since d; is not divisible by d.
m/d qi /) q

o Then by the reciprocity law, we then have (T) = (—1)(a—1)/d-(degm)(dega) (3) = (ﬁ) # 1, since
a d d

d m m

the exponent of —1 has a factor of 2 from dega.

o Since the general dth-power residue symbol is multiplicative on the bottom, there must be some monic

m . a . - . .
) # 1 since (—) # 1. This monic irreducible factor is
Ts+1 m/’d

relatively prime to ry---7s since a = 1 (mod ry ---74), so we have found another monic irreducible to

add to our list.

irreducible factor 7541 of a such that (

o By induction, we can construct infinitely many such irreducibles.

o Now, if 2 = m (mod p) is solvable for all but finitely many irreducible polynomials p, then by the above,
each of the exponents d; must be divisible by d. This means m = j - ¢ for some monic polynomial 7,
so all that remains is to show that g is a dth power.

o For any irreducible p not dividing m, we have (m) = <ﬂ> = pla—1)/ddegp 35 we have previously
d d

p p
shown. Since there are irreducibles of any desired degree in F,[t], select p to be one of degree relatively
prime to d with <m> = 1: then gla—D/ddeer — 1 jmplies B2~1/4 = 1, which is equivalent to saying

d
that g is a dth power. Then m itself is a dth power, as claimed.

0.9 (Oct 1) Transcendence and Localization

e We now move into the second major part of the course, which deals with algebraic function fields: these are
function fields of transcendence degree 1 over a general constant field F.

o Later, we will specialize to function fields over Fy (equivalently, these are the finite-degree field extensions
of Fy(t)), which along with algebraic number fields (the finite-degree field extensions of Q) constitute the
global fields.

o Global fields (to be considered as parallel to local fields) share a number of common properties that we
will elucidate and study.

e We begin by reviewing some basic facts about transcendental extensions.

e Definition: Let K/F be a field extension. We say a subset S of K is algebraically dependent over F if there
exists a finite subset {s1,...,s,} € S and a nonzero polynomial p € F|x1,...,z,] such that p(s1,...,s,) = 0.
If there exists no such p for any finite subset of S, we say S is algebraically independent.

o The general idea here is that a set of elements is algebraically dependent if they satisfy some algebraic
(i.e., polynomial) relation over F'.
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o Example: If z4,...,z, are indeterminates inside F'(z1,...,x,), the function field in n variables, then
the set {z1,...,2,} is algebraically independent over F'.

o Example: Over Q, the set {m, 72} is algebraically dependent, since p(x,y) = 2% — y has p(7, 7?) = 0.
o Example: Over Q, the set {{/2} is algebraically dependent, since p(z) = 23 — 2 has p(¥/2) = 0.
o More generally, the set {a} is algebraically independent over F' if and only if « is transcendental over F'.

o Exercise: Show that the set {z + vy, 2% + y?} is algebraically independent in F(z,y) for any field F' of
characteristic not 2, but is algebraically dependent if F' has characteristic 2.

o Example: In F(z,y), the set {x + y,2? + y* 2® + y3} is algebraically dependent, since p(a,b,c) =
a® — 3ab+ 2c has p(x +y, 2% + y?, 2% + y3) = 0.

e The notion of algebraic independence generalizes the notion of linear independence, and as such the two
concepts are related in various ways.

o It is easy to see that any subset of an algebraically independent set is algebraically independent, while
any set containing an algebraically dependent set is algebraically dependent.

o Since having a basis of a vector space is very convenient for calculations, we might therefore hope to define
an analogous “transcendence basis” to be an algebraically independent set that generates the extension
K/F.

o Unfortunately, such a set need not exist: for example, Q(1/2)/Q has no such set, because there are no
transcendental elements at all.

o The correct analogy is instead to observe that a basis for a vector space is a maximal linearly independent
set:

e Definition: Let K/F be a field extension. A transcendence base for K/F is an algebraically independent
subset S of K that is maximal in the set of all algebraically independent subsets of K.

o Remark: The term “transcendence basis” is also used occasionally.

o By a straightforward Zorn’s lemma argument, every extension has a transcendence base. (Exercise:
Write down this argument.)

o Example: The empty set ) is a transcendence base for Q(v/2)/Q. More generally, K/F is algebraic if
and only if §) is a transcendence base.

o Example: The set {«} is a transcendence base for F'(z) over F.

e Here are some of the fundamental properties of transcendence bases, many of which are analogous to properties
of vector spaces:

e Proposition (Transcendence Bases): Suppose K/F is a field extension and S is a subset of K.

1. If S is algebraically independent and o € K, then S U {«a} is algebraically independent over F' if and
only if o is transcendental over F'(.S).

o This is the algebraic analogue of the statement that if S is linearly independent, then S U {a} is
linearly independent if and only if « is not in the span of S.

o Proof: Suppose S U {a} is algebraically dependent. Then there exists s; € S and p € F[z] with

pla,s1,...,8,) = 0 and p # 0. View p as a polynomial in its first variable with coefficients in
F[s1,...,sy,]: there must be at least one term involving «, as otherwise p would give an algebraic
dependence in S. Then « is the root of a nonzero polynomial with coefficients in F([sy,...,s,] C

F(s1,...,8,) C F(95), so it is algebraic over F(.59).

o Conversely, suppose that « is algebraic over F(S). Then « is the root of some nonzero polynomial
with coefficients in F'(S). Each coefficient of this polynomial is an element of F(.5); clearing denom-
inators yields a nonzero polynomial p with coefficients in F[sy,..., s,] for the elements s; € S that
appear in these coefficients. This polynomial yields an algebraic dependence in S U {a}.

2. S is a transcendence base of K/F if and only if K is algebraic over F(S).

29



o Proof: This follows from (1) and the maximality of transcendence bases: S is a transcendence base
if and only if no elements in K can be adjoined to S while preserving algebraic independence, and
by (1) this is equivalent to saying that all elements in K are algebraic over F(S).

If T is a subset of K such that K/F(T) is algebraic, then T contains a transcendence base of K/F.

o Proof: Apply Zorn’s lemma to the collection of all algebraically independent subsets of T', partially
ordered by inclusion.

o A maximal element M in this collection must then be a transcendence base for K/F: if § € K then
£ must be algebraic over K/F (M) by the maximality of M, and then M is a transcendence base by

(2).
If T is an algebraically independent subset of K, then T can be extended to a transcendence base of
K/F.

o Proof: This is the analogue of the fact that every linearly independent subset can be extended to a
basis, and the proof follows from a similar Zorn’s lemma argument.

If S = {s1,...,8,} is a transcendence base for K/F and T = {t1,...,t,n} is any algebraically inde-
pendent set, then there is a reordering of S, say {ai,...,a,}, such that for each 1 < k < m, the set
{t1,t2, ..., tk, axt1,.-.,an} is a transcendence base for K/F.

o Proof: This is the analogue of the replacement theorem for linearly independent sets, and the proof
proceeds inductively in essentially the same way. (We will omit the details.)

If S is a (finite) transcendence base for K/F, then any subset T of K having larger cardinality than S
must be algebraically dependent.

o Proof: If S = {s1,...,,} is finite, apply the replacement theorem (5) to S and 7. At the end of the
replacement, the result is that {¢1,...,t,} is a transcendence base. But then by (2), any additional
element of T would be algebraic over {¢1,...,t,}, contradicting the algebraic independence of T'.

Any two transcendence bases S and T for K/F have the same cardinality.

o Proof: If the bases are infinite the result is immediate. If S has finite cardinality n, then the result
follows by applying (6), since then T’s cardinality m must satisfy m < n (since T is algebraically
independent and S is a transcendence base) and also n < m (since S is algebraically independent
and T is a transcendence base).

The result of the last part of the proposition shows that any two transcendence bases have the same cardinality,
and in analogy with the situation for vector spaces, this cardinality behaves somewhat like an extension degree:

Definition: Let K/F be a field extension. The transcendence degree of K/F, denoted trdeg(K/F), is the
cardinality of any transcendence base of K/F.

The key property of transcendence degree is that it is additive in towers:

Proposition (Transcendence in Towers): If L/K/F is a tower of extensions, then trdeg(L/F) = trdeg(L/K) +
trdeg(K/F).

o

The idea here is quite simple: we want to show that the union of transcendence bases for K/F and L/K
gives a transcendence base for L/F.

Proof: First suppose that both trdeg(K/F) and trdeg(L/K) are finite, and let S = {s1,...,s,} and
T ={t1,...,tm} be transcendence bases for K/F and L/K. Then SNT = () since each t; is transcendental
over K.

Furthermore, K is algebraic over F'(S), so K(T') is algebraic over F(T')(S) = F(SUT) by our results on
algebraic extensions.

Then since L is algebraic over K (T'), we deduce that L is algebraic over F(SUT), also by our results on
algebraic extensions.

Thus, by property (3) above, S UT contains a transcendence base of L/F.

Finally, we claim S UT is algebraically independent over F', so suppose that p(s1,...,Sn,t1,...,tm) =0
for some p € Flx1,...,Tn,Y1y-- - Ym)-
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o Separate monomial terms to write p(s1,...,Sn,t1,...,tm) =0asasum > fi(s1,...,5,)gi(t1,...,tm) =0
with f; € Flz1,...,2,] and g; € Fly1, .-, Ym]-

o Now, since T is algebraically independent over F'(S) C K, all of the f;(s1,...,$,) must be zero (as
elements of K). But since S is algebraically independent over F', that means all of the polynomials
fi(z1,...,x,) must be zero (as polynomials).

o This means p is the zero polynomial, and so S U T is algebraically independent.

e Fields that are generated by a transcendence base are particularly convenient:

e Definition: The extension K/F is purely transcendental if K = F(.5) for some transcendence base S of K/F.

o Equivalently, K/F is purely transcendental when it is generated (as a field extension) by an algebraically
independent set.

o If S ={s1,...,s,}, then the purely transcendental extension K = F'() is ring-isomorphic to the function
field F(z1,...,2,) in n variables: it is not hard to check that the map sending s; to z; is an isomorphism.

o If K/F has transcendence degree 1 or 2 and F/F is an intermediate extension, then in fact E is also
purely transcendental: the degree-1 case is a theorem of Liiroth that we will prove later, while the
degree-2 case is a theorem of Castelnuovo. In higher degrees, there do exist extensions that are not
purely transcendental, but it is not easy to verify this fact.

e Now let F' be a field and K be an extension of F' of transcendence degree 1.

o By the results above, there exists « € K such that K/F(z) has transcendence degree 0, which is to say,
it is algebraic.

o Since we do not want to worry for the moment about infinite-degree algebraic extensions, we will make
the further assumption that this extension K/F(x) has finite degree.

e Definition: We say K is an (algebraic) function field over F if there exists x € K such that x is transcendental
over F' and K/F(x) is finite.

o Example: Q(x) is an algebraic function field over Q.
o Example: C(z,v/2? — 1) is an algebraic function field over C.

o Note that the algebraic closure of F' inside K has finite degree over F: this follows by noting that if E/F
is algebraic inside K, then [E : F| = [E(z) : F(2)] < [K : F(z)] < 0.

o So, without loss of generality, we may replace F' by its algebraic closure inside K. In this case we call F'
the constant field of K.

o If F' is the constant field of K, then there are no elements of K that are algebraic over F' other than the
elements of F' themselves. Equivalently, every element of K\F is transcendental over F.

o Finally, since the transcendence degree of K/F is 1, for any two a,b € K\F, there is some nonzero
polynomial g € F[z,y] such that F[a,b] = 0.

0.10 (Oct 6) Localization, Discrete Valuations

e Now that we have some very basic facts about function fields, our goal is to do number theory.

o In order to do this, however, we need to know how to define primes in the function field context.

o Over Q, the primes arise as the prime ideals of the ring of integers Z, which we can define starting from
Q purely in terms of integral closures. For other number fields, we also define their primes using integral
closures.

o However, this approach will not work for function fields, because (as noted above) everything in K not
in F' is transcendental over F', so there is no sensible way to define a “ring of integers” inside K using
integrality.

o Instead, we need to use a different sort of construction to give a sensible notion of a prime: that of a
discrete valuation on K.
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e In order to develop all of this properly, we first need to review some facts about localization.

e Proposition (Localization): Let R be a commutative ring with 1 and D be a multiplicatively closed subset
of R containing 1. Then there exists a commutative ring D~!R, the localization of R at D, and a ring
homomorphism 7 : R — D~!'R such that any for any ring homomorphism ¢ : R — S sending 1 to 1 and
such that 1(d) is a unit in S for every d € D, there exists a unique homomorphism ¥ : D"'R — S such that
Wom=n1.

o

o

More succinctly, any homomorphism v : R — S such that i) maps all of the elements of D into units
necessarily extends to a homomorphism ¥ : D™'R — S,

The main idea is simply to define “fractions” r/d with r € R and d € D via an appropriate equivalence
relation, and then to write down the usual rules of fraction arithmetic and verify that all of the definitions
are well posed.

Proof (outline): Define an equivalence relation on elements of R x D by setting (r,d) ~ (s,e) whenever
there exists y € D such that y(ds — er) = 0; it is straightforward to check that ~ is an equivalence
relation.

Denote the equivalence class of (r,d) by the symbol r/d and the set of all equivalence classes by D™ R,
and define the two operations r/d+s/e = (re+ds)/(de) and r/d-s/e = (rs)/(de) on D~1R. It is tedious
but straightforward to see that these operations make D~!R into a commutative ring with 1.

Now define 7(r) = r/1 and suppose ¥ : D"'R — S is a homomorphism with ¥ o 7 = ).
Then we must have ¥(r/1) = (¥ o7)(r) = ¢(r), and also 1 = ¥(1/1) = ¥(1/d)¥(d/1), meaning that
U(1/d) = (d)~t. Then ¥(r/d) = ¥(r/1)¥(1/d) = (r)y(d)~t.

But it is easy to see that this choice of ¥ does work, so it is the only such homomorphism.

e The point here is that D' R is the smallest ring in which all elements of D become units.

e}

When D contains no zero divisors (which is automatically the case if R is a domain and D does not
contain zero), then R injects into DR via r + r/1.

A particular useful case of localization is to construct Q from Z (we take D = Z\{0} and R = Z) or
more generally to construct the field of fractions of an integral domain R (take D = R\{0}).

e We also note in passing that we can localize any R-module M in the same way: one simply writes down the
same construction using pairs (m,d) with m € M and d € D in place of pairs (r,d).

(¢]

o

e}

Alternatively, one can obtain the localization of an R-module using tensor products: D™ 'M = M ®p
D~'R. (This tensor product just extends scalars from R to D~!'R, which is exactly what D~1M is.)

Exercise: Show that localization commutes with sums, intersections, quotients, finite direct sums, and is
exact.

Exercise: Show that if I is an ideal of R, then D = R\I is multiplicatively closed if and only if [ is prime.

e Our main situation of interest is that of localizing at a prime: this is the case where R is an integral domain
and D = R\P is the complement of a prime ideal P of R.

o

Exercise: Show that if P is a prime ideal and D = R\ P, then D! R is a local ring with unique maximal
ideal D='P = m(P) = ep, the extension of the ideal P to D™ R.

The utility of localizing at a prime is that it isolates the ring’s behavior at that prime.

Example: The localization of Z at the prime ideal (p) is the ring Z,) = {a/b € Q : p { b} of rational
numbers whose denominator is not divisible by p. Its unique maximal ideal is pZ,), the set of multiples
of p. The quotient ring Z,)/pZ ) is isomorphic to Z/pZ.

Note that Z,) is not the ring of p-adic integers Z,: the p-adic integers are obtained by taking a completion
of the localization Z,) under the p-adic metric (which we will define later).

Example: Let k& be a field and take R to be the ring of k-valued functions on a set S. If we let M,
be the set of functions vanishing at a point a € S, then M, is a maximal ideal of R. The localization
Ry, ={f/g9 € R : g(a) # 0} is the ring of k-valued rational functions defined at a. The unique maximal
ideal of M, is the ideal of all k-valued rational functions vanshing at a.
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e This second example illustrates the utility of localizing at a prime, because it allows us to study the local
behavior of a rational function near the point a.

o For example, the elements of M, are precisely those rational functions vanishing at a, while the elements
of M? are the rational functions that vanish to order 2 at a (i.e., have a double root), and so forth.

o More generally, if we localize a domain at a principal prime ideal, by looking at powers of the maximal
ideal, we can measure what power of a prime a given element is divisible by.

e We now formalize all of this using discrete valuations, which provide us a way to identify primes using only
the field structure:

e Definition: Let F be a field. A discrete valuation on F' is a surjective function v : F* — Z such that
v(ab) = v(a) + v(b) for all a,b € F and v(a + b) > min(v(a),v(d)) for all a,b € F* with a4+ b # 0. The set
R={reF* :v(r)>0}U{0} is called the valuation ring of v.

o For convenience, if v is a discrete valuation we often also write v(0) = oo, in which case we can ignore
the various exceptions in the definition above (e.g., v(a + b) > min(v(a),v(b)) now holds for all a, b).

o In general, we say an integral domain R is a discrete valuation ring (DVR) if it is the valuation ring for
some discrete valuation on its field of fractions.

T
o Example: For a fixed prime p, the p-adic valuation on Q, which has v, (p”;) =nfor ptrs,is a discrete

1 3
valuation. (For example, v2(4) = 2, Ug(g) =0, and ’Ug(i) = —2: the valuation simply gives the power of

p in a rational number.) The associated valuation ring is the set of rational numbers whose denominator
is not divisible by p: this is Z,), the localization of Z at (p).

o Example: For a fixed irreducible polynomial p, the p-adic valuation on F,(t), which has v, (png) =n for

t t
=1 ——) = —1.) Th
; 1) , and vt+1(t 1) ) e

associated valuation ring is the set of rational functions whose denominator is not divisible by p: this is
A(p), the localization of A = [F,[t] at (p).

p 1 s, is a discrete valuation. (For example, vy (t3) = 3, vy(

o In the two examples above, the valuation rings are both obtained as localizations. We can in fact
construct DVRs by localizing in more generality.

o Exercise (Corollary 8 from Section 16.2 of Dummit/Foote): If R is a Noetherian integrally-closed domain
and P is a minimal nonzero prime ideal of R, then Rp is a DVR. Deduce in particular that if R is a
Dedekind domain and P is a nonzero prime ideal, then Rp is a DVR.

e Proposition (Properties of DVRs): Let R be a discrete valuation ring with field of fractions F' and valuation
v. Also t € R be any element with v(¢) = 1 (such an element is called a uniformizer). Then the following
hold:

1. For any r € F*, either r or 1/r is in R.

2. An element u € R is a unit of R if and only if v(u) = 0. In particular, if { € F' is any root of unity, then
v(¢) =0.

3. If z € R is nonzero and v(x) = n, then x can be written uniquely in the form z = wt™ for some unit
u € R.

4. Every nonzero ideal of R is of the form (¢") for some n > 0.
5. The ring R is a Euclidean domain (hence also a PID and a UFD) and also a local ring.

6. The ring S is a DVR if and only if it is a PID and a local ring but not a field.

o Proofs: Exercises.

e We will also remark that a discrete valuation v on a field F' naturally makes F' into a metric space using the
non-Archimedean metric d,(a,b) = 277~ Explicitly:

1. We clearly have d,(a,b) > 0 with equality if and only if a = b.
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3.

o

e}

Since v(—1) = 0 by (2) in the proposition above, we have v(a — b) = v(b — a) and thus d,(a,b) =
g-v(a=b) — 9-v(b-0) — g, (b, a).

From v(z+y) > min(v(z),v(y)) we have v(a—b) > min(v(a —c¢),v(c—b)), so negating yields —v(a—b) <
max(—v(a — c¢), —v(c —b)). Then d,(a,b) = 2778 < max(2-v(=¢) 2701} = max(d,(a, c), dy(c,b)).

We could also replace 2 by any real number greater than 1 in the definition of the metric without affecting
anything.

With this metric, we can then speak fruitfully of Cauchy sequences, write down the metric topology on
F, and take completions. (Completing Q under the p-adic metric yields the p-adic field Q,, while the
completion of its valuation ring Z yields the ring of p-adic integers Z,.)

e We now have enough background to discuss primes in function fields. The point of all of these preliminaries
is that there is a natural interplay between discrete valuations on F' and the primes associated to F', at least
in the case of F' = Q.

e Definition: If K is a function field over F'; a prime P of K is the maximal ideal of a discrete valuation ring R
containing F' whose field of fractions is K. The associated valuation on K is denoted ordp.

(¢]

Explicitly, the idea is that if we have a discrete valuation on K, then the valuation ring R is a local ring
whose unique maximal ideal represents a prime of K.

e It is worth going through why this definition is (up to some haziness) really the same as the usual one in the

case

K = Q that we already understand.

If we have a discrete valuation v on Q, then v(—1) = v(1) = 0 and so v(n) > 0 for all integers n. This
means that the valuation ring R contains Z.

Exercise: If v is a discrete valuation on Q, the set P = {n € Z : v(n) > 0} is a prime ideal of Z.

By the exercise, P = (p) for some prime p. Then v(a) = 0 for p { a, so if v(p) = r we see v(p”%) =7rn

for p 1 a,b. Since discrete valuations are onto and v(p) > 0, we must have n = 1, and so v is the usual
p-adic valuation on Q.

Therefore, the only discrete valuations on Q are the p-adic valuations. The corresponding valuation ring
is then Z,) with unique maximal ideal pZ,.

We see that for each integer prime p, we obtain a unique prime ideal P = pZ,) inside the associated a
valuation ring of Q. The collection of valuations v,, evaluated on a rational number a € Q, measures
“how divisible” the element « is by each of the primes p.

Note also that in this case, the quotient of the valuation ring R = Z,) by its maximal ideal P = pZ,)
is isomorphic to Z/pZ, which has cardinality p: the size of this quotient R/P naturally gives us a way
to measure the size of the prime P.

e We can do something quite similar in the function field case:

e Proposition (Degrees of Primes): If K is a function field over F and P is a prime with valuation ring R, then
the quotient R/P is a finite-dimensional F-vector space. We define the degree of P to be the dimension of
this vector space.

(¢]

Proof: Since P is a maximal ideal of R and contains F'; R/P is a field extension of F'| so we just need to
show its degree over F is finite.

Suppose y € P\F. As noted earlier, y is transcendental over F' and K/F(y) is a finite-degree extension.
We claim that [R/P: F] < [K : F(y)].

To see this, suppose that z1, s, ...,z € R have the property that their reductions 77, Z3, . . . , T, € R/P
are F-linearly independent, and suppose there is a linear dependence over F(y): say f1(y)x1 + fa(y)za +
<o+ fm(y)xm = 0 for some f;(y) € Fly].

If we cancel any common factors of y from the f;(y), and then reduce modulo P, we obtain a linear
dependence of the Z; in R/P, contradiction (the point is that not all of the f; are divisible by y, so at
least one of them has a nonzero reduction modulo P).
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Thus, any linearly independent set in R/P lifts to a linearly independent set in K, so we obtain the
claimed inequality.

e Let’s work all of this out in the case we mostly understand already: the purely transcendental extension

K =

(¢]

F(t).
From our discussion, if p is any irreducible polynomial in A = F'[t], we obtain a discrete valuation ring
associated to the prime p as the localization R = A, and its unique maximal ideal is P = pA,).

Then R/P = A/(p), in which case the dimension of R/P as an F-vector space is the same as the
dimension of A/(p) as an F-vector space, and this is simply deg(p), since {1,%,...,tdesP—1} ig a basis for

A/(p)-

Thus, the degree as defined above agrees perfectly with our normal sense of the degree of a polynomial.
r
The associated p-adic valuation v, is the same as the one we discussed earlier: v,(p"”—) = n for p{ r,s:
s
r
it pick out the power of the prime p that divides a rational function f = p"— € F(t).
s

Localizing A at a prime ideal yields almost all of the possible discrete valuation rings attached to F'[t].

But there is, in fact, one more: the valuation v (f/g) = deg(g)/deg(f), whose associated valuation
ring is obtained by localizing A’ = F[t~!] at the prime ideal (t~1). The resulting prime is known as the
prime at infinity, and its degree is 1.

Exercise: Prove that the p-adic valuations v, along with v, are the only discrete valuations on F'(t)/F.
(Use a similar argument to the one for Q by identifying all possible uniformizers.)

The general philosophy is that there will be a few “infinite primes”, and the rest are “finite primes” that
arise from localizing at a prime ideal. (Over Q, the infinite prime corresponds to the usual absolute value
|-| resulting in the completion R, but this is not a discrete valuation.)

e We can also give a brief explanation of some of the terminology (e.g., “function field”).

(¢]

Suppose P is a prime of K/F where F is algebraically closed (e.g., ' = C). Then the quotient R/P is
a finite-degree field extension of F' hence is simply (isomorphic to) F itself.

For any element a € K, we can then simply “read off” the values of a at the various primes P by
interpreting a(P) as the image of a inside the quotient R/P = F.

This is why K/F is called a function field, since we may think of the actual elements of K as F-valued
functions on the primes P. The elements of F' correspond to constant functions, which is why we refer
to F' as the constant field of K.

Furthermore, as we will discuss later, we can think of the primes of P geometrically as “places” or “points”.

For K = C(t), for example, we obtain a finite prime P, corresponding to each element ¢ — r for r € C,
along with the infinite prime. Explicitly, P, is the collection of rational functions vanishing at r (which
is the unique maximal ideal of the ring R of all rational functions defined at r), and the evaluation-at-r
map yields an explicit isomorphism R/P, = C.

Together, the finite primes P, along with the infinite prime form the complex projective line P!(C) =
C U {oo}, which we may view analytically as being the Riemann sphere, and the field K consists of all
of the C-valued rational functions on the Riemann sphere.

0.11 (Oct 8) Student Presentations of HW1

0.12 (Oct 15) Divisors and the Divisor Group

e Our main goal now is to state, show, and use the Riemann-Roch theorem, which is the most fundamental
basic theorem about function fields. The first ingredient is divisors:

e Definition: The divisor group of K, written D, is the additive free abelian group generated by the primes

of K.
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The elements of Dy are of the form D =), npP for np € Z, where all but finitely many of the np are
zero. We will write ordp(D) = np.

o Definition: The degree of a divisor D = ) p,npP is deg(D) = > pnpdeg(P). The degree map is a homo-

morphism from Dy to Z; its kernel is the set of degree-0 divisors.

(¢]

Note that this sum is well defined since all but finitely many np are zero.

e If @ € K* is nonzero, we can attach a divisor to it by calculating its order at each prime P of K.

e Definition: We define the divisor of an element a € K* as div(a) = ) pvp(a)P. The divisors of the form
div(a) for some a € K* are called principal divisors.

(¢]

(¢]

(¢]

(¢]

We will often also write ordp(a) (the order of a at P) interchangeably with vp(a) (the P-adic valuation
of a).

Remark: In many sources, the divisor of a is often written (a). In our context, this can lead to ambiguities,
since the same notation is also used for the ideal generated by a.

A priori, it is not clear we have actually given a well-defined divisor: to show this we need to establish
that vp(a) = 0 for all but finitely many primes P.

Assuming this for the moment, since ordp(a/b) = ordp(a) — ordp(b), summing over all primes shows
that div(a/b) = div(a) — div(b), so the principal divisors are a subgroup of the divisor group Dk .

e We must still show that the divisor of an element is actually well defined:

e Proposition (Divisors of Elements): For any a € K*, we have vp(a) = 0 for all but finitely many primes P of

K.

(¢]

e}

Proof: First, if a € F*, then for any prime P the associated valuation ring R contains F'. In particular,
since a € F'* this means « is a unit in R hence has valuation 0. This means vp(a) = 0 for all P, and so
div(a) = 0.

Now suppose a € F*, so a is transcendental over F' and K/F(a) is finite.

If P is a prime of K and vp(a) > 0, then by definition there is a discrete valuation ring R such that a is
not a unit. Then R contains F'la], and since R is integral over F'[a], it embeds into the integral closure
of Fla] inside K.

We lose nothing by enlarging R, so now assume R is the integral closure of F[a] in K: then R is a
Dedekind domain? since it is Noetherian, integrally closed, and the localization of R at any nonzero
prime is a discrete valuation ring.

Since R is a Dedekind domain, every nonzero ideal can be factored uniquely as a product of prime ideals.
So write Ra = plilpl; pZ’“ for distinct prime ideals pq,po,...,px. Localizing at the prime p; yields a
unique prime P; of K, and since all of the other ideals become invertible, we see ordp,(a) = b;, and

ordg(a) < 0 for any other prime Q.

In particular, we see that there are only finitely many primes for which vp(a) > 0.

In the same way, if vp(a) < 0, by doing the same calculation for a=! (i.e., by taking R’ to be the integral

closure of F[a~!] inside K and factoring R'a™! = q{*---q;* as a product of prime ideals) we see that
there are also only finitely many primes for which vg(a) < 0.

Thus, the divisor div(a) =) pvp(a)P is well defined, as claimed.

e Note that the proof given above gives an algorithm for computing divisors of elements: inside the integral
closure of F[a] (and F[a~!]) inside K, we compute the prime ideal factorization of the ideal (a) (or (a™1));
then the exponents of the various primes give the corresponding valuations.

[¢]

Let’s work this out in the case of K = C(t): suppose we have a nonconstant rational function a = i,
g

. t =) (E— )" - .
which we factor as a = u( ) ( k) for distinct r1,...,7%,81,...,8 € C and some unit

f CX (t*Sl)bl "'(t*Sl)bl
actor u € .

2For additional reference about Dedekind domains, including the factorization result we quote here, see section 16.3 of Dummit/Foote.
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Each of the monic irreducibles ¢ — r; and ¢ — s; yields a unique prime of K. We have vp, , (a) = a;

and vp,_., (a) = —bj for each i,j, and the valuation at every other finite prime is 0. Also, we have
Voo (@) = deg(g) — deg(f) =>_b; — >, ai.
Therefore, div(a) = a1 Ps—y, + -+ apPiy, —b1Pis, — - — i Pi_s, + [ZJ bj — >, a;)oo.

Notice in particular that deg(div(a)) = >_;a; —>_b; + [>2;b; — >_; a;] = 0, which is to say, the divisor
of any element of K * has degree zero.

Furthermore, we see that the primes with positive order at a correspond precisely to the zeroes of a = f/g
(and the order of a at that prime is the order of vanishing of a there), while the primes with negative
order correspond to poles (and the order of a at that prime is the order of the pole there).

We can also give a similar calculation for K = F'(t) where F' is not algebraically closed in terms of the
monic irreducible factors of a = f/g. The resulting divisor decomposition is essentially just the prime
factorization of the rational function f/g:

a]‘ PR ak’
Exercise: For K = F(t),ifa = u% for u € F* and distinct monic irreducibles p1, ..., pr, q1,- -, @
a; - q

having associated primes Py, ..., Py, Q1,...,Q;, show that div(a) = a1 Py + -+ + ax P, — 01Q1 — -+ - —
biQu + [32; bj deg(q;) — 3, ai deg(pi)]oo.

e Motivated by the calculations for K = C(t), we can also pick out the zeroes (respectively, poles) of an element
by extracting only the portion of its divisor with positive (respectively, negative) coefficients:

e Definition: If @ € K* has divisor div(a) = > pnpP, we define divy (a) = > pmax(0,np)P = p, onpP
and div_(a) = > pmin(0,np)P =) p,  onpP.

[¢]
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Notice that div(a) = divy(a) — div_(a) for any element a.

Remark: There are various other notations for these quantities that are often used, such as (a)o for div
and (a) for div_, which are intended to evoke the idea of picking out the zeroes and poles of a.
— ar ... (t — ak
Fora = i = (t=r1) (t =)
g (t_sl)bl...(t_sl)bl
if degg —deg f > 0) and div_(a) = b:Q1 + - -- + 0;Q; (plus [deg g — deg f]oo if deg g — deg f < 0).
Exercise: For any field F, if f(¢),g(t) € F[t] are relatively prime, show that [F(t) : F(%)] =
max(deg f,degg). [Hint: Use Gauss’s lemma to show that ¢(y) = f(y) — %g(y) € F(%)[y} is the

in C(t), we have divy(a) = a1 Pr+- - -+ag Py (plus [deg g—deg f]oo

minimal polynomial of ¢ over F (%)]

In the example above, we can also compute that deg(divy(a)) = deg(div_(a)) = max(deg f,deg g), and
by the exercise above, this quantity is equal to the extension degree [K : F'(a)]. In fact, this result is
true in general:

e Theorem (Divisor Degrees): For any a € K*, we have deg(divy(a)) = deg(div_(a)) = [K : F(a)]. As a
consequence, deg(div(a)) = 0.

(¢]

(¢]

We will defer the proof for F' = [Fy until later, since it requires a number of ingredients we have not
developed yet. The general case we will skip (the result is not that difficult, but it is not especially
enlightening for what we will be doing).

Our main observation here is that the divisor of an element a € K* always has degree 0, which is to say,
the principal divisors are actually a subgroup of the group of degree-0 divisors.

e Definition: We say two divisors Dy and Dy are linearly equivalent (and write Dy ~ Ds) if Dy — D5 is principal.
The resulting equivalence classes (i.e., divisors modulo principal divisors) form a group called the class group,
or the Picard group, of K.

(¢]

o

Exercise: Verify that this relation is an equivalence relation and that the equivalence classes are the
elements in the quotient group of divisors modulo principal divisors.

Some notation for these various groups: Div(K) = Dy is the group of all divisors on K, Div’(K) is the
group of degree-0 divisors on K, C1(K) = Pic(K) = Div(K)/[principal divisors] is the class group of K.
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o

Since principal divisors all have degree zero, we can also form the reduced Picard group PicO(K ) =
Div(K)/[principal divisors|.

e For K = F(t), the reduced Picard group is trivial:

e Proposition (Reduced Picard Group of F(t)): If K = F(t), then Pic’(K) = Div(K)/[principal divisors] is the
trivial group, and Pic(K) = Z.

o

o

o

o

Remark: Tt can be shown that K = F(t) is essentially the only situation where Pic’(K) is trivial.

Proof: The result is equivalent to showing that every divisor of degree 0 is principal, so suppose D =
> pbpP has degree 0.

Let a = Hp;éoo p(t)’, where p(t) is the irreducible polynomial associated to the finite prime P of K.

Then ordp(a) = b, for each prime P # oco. But since ), bp deg(P) = 0 by the assumption on D, and
deg(div(a)) = 0 as well, we must have ords(a) = b also.

Then ordp(a) = b, for all primes P, meaning that div(a) = D and so D is principal as claimed.
The statement that Pic(K) = Z follows immediately from Div(K)/Div’(K) = Z.

e To finish the discussion here, we remark on the analogy with the case of algebraic number fields.

o

e}

(¢]

If K/Q is an algebraic number field, we have an exact sequence
1 — [units of O] — K* — [fractional ideals of O] — [ideal class group of K| — 1.

If K/F is an algebraic function field, the analogous exact sequence is
1 — F* - K* = Div®(K) — Pic’(K) — 1.

The constant field of K plays the role of the units of an algebraic number field, the group of degree-0
divisors plays the role of the fractional ideals in the ring of integers, and the reduced Picard group plays
the role of the ideal class group.

e We now put a partial ordering on divisors motivated by the idea of divisibility for integers and rational
functions: the idea is that if we look at p-adic valuations of elements of QQ, we can identify the elements of Z
as those whose valuations are nonnegative at every prime p.

e Definition: If a divisor D = )", npP has np > 0 for all primes P, we say D is effective and we write D > 0.
We extend this notion to a partial ordering on divisors by writing D1 < D, if and only if Ds — D; is effective.

(¢]

[¢]

Exercise (easy): Check that the relation Dy < Ds is a partial ordering on divisors.

The partial ordering on divisors allows us to specify the order of zeroes and poles: to illustrate, for
K = C(t), saying that f has a pole of order at most 2 at 2 = 0 and a zero of order at least 3 at z = 1 is
equivalent to saying div(f) > —2P, ¢ + 3P,_1.

e Definition: If D is a divisor, the Riemann-Roch space associated to D is the set L(D) = {a € K* : div(a) >
—D} U {0}. Equivalently, an element a € K is in L(D) if and only if vp(a) > —vp(D) for all primes P of K.

(¢]

(¢]

When D is effective, L(D) represents all rational functions whose poles are “no worse” than D.

More generally, if D =} pnpP — 3 o mqQ with n;,m; > 0, then L(D) consists of all a € K such that
a has a zero of order at least mg at each prime ), and may have poles only at the primes P, of order at
most np at P.

It is not hard to see that L(D) is an F-vector space: if a,b € L(D), then a+b € L(D) because vp(a+b) >
min(vp(a),vp(b)) for each prime P, and ca € L(D) for all ¢ € F since vp(ca) = vp(c) +vp(a) = vp(a)
since vp(c) = 0 for all primes P.

Example: For K = F(t) and D = P, we can see that L(D) = span(1,¢~!), since the only possible

poles of an element f/g € L(D) function occur at ¢ = 0 (of order 1) and the function must also have
deg g > deg f since there is no pole at the infinite prime P...

Example: For K = F(t) and D = 3P, we can see that L(D) = span(1,t,t2,t3) since the function f/g
has no poles except a pole of order at most 3 at P, (meaning that degg < deg f + 1), which is to say,
f/g is a polynomial of degree at most 3.
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o Example: For K = F(t) and D = —PF;, we can see that L(D) = {0}, since any nonzero element
f/g € L(D) would need to be zero at ¢ = 0 and defined at all other primes, but this cannot occur
because g would have to be constant, but then deg f > deg g would force f/g to have a pole at P.,.

o Example: For arbitrary K, we have L(0) = F, since div(a) = 0 for all a € F*, but any element
x € K*\F necessarily has at least one pole (at any prime associated to a prime occurring in the prime
factorization of the ideal generated by z—! in the integral closure of F[z~!] inside K).

o Exercise: Determine L(D) when K = F(t) for D = P, — Py, P; + Ps, and P, + P;_1.

o Exercise: Write down an interesting divisor of positive degree for K = F(t) and then compute a basis
for the Riemann-Roch space L(D).

0.13 (Oct 20) The Riemann-Roch Theorem and Applications

e We now study the dimensions of these Riemann-Roch spaces.

e Definition: If D is a divisor, we define (D) = dimp L(D).
o Examples: By the examples worked out above, for K = F\(t) we have [(P;) = 2, [(3Px) = 4, and
o Example: For an arbitrary K, we have £(0) = 1, since L(0) = F.

e Proposition (Properties of I[(D)): Let K be a function field over F' and D be a divisor of K.

1. If Dy < Ds, then £(Dy) < £(Ds).

o Proof: This follows immediately from the definition, since Dy < Ds clearly implies that L(D;) is a
subspace of L(D>).

2. If Dy ~ Do, then L(D;) =2 L(D3) and so ¢(Dy) = ¢(D3).

o Proof: If Dy = D5 + div(g), then the map from L(D;) to L(Ds) sending f — fg is easily seen to be
an isomorphism of vector spaces since it has an inverse map h — h/g.

3. If deg(D) < 0, then L(D) = {0} and (D) = 0 except when D = div(a) is principal, in which case
L(D) = span(a) and (D) = 1.

o Proof: Suppose f € L(D) and f # 0. Then 0 = deg(div(f)) > deg(—D) = — deg(D).
o Furthermore, equality can hold only if D = —div(f) for some f € K*, in which case D is principal.
o If D is principal, then £(D) = £(0) = 1 by (2), and L(D) = Fa = span(a) by the same calculation.

4. If D; and Dy are divisors with Dy < Dy, then dimp(L(D2)/L(D1)) < deg(D2) — deg(D1).

o Proof: Induct on the sum of the coefficients of the primes in the effective divisor D — Dy. The base
case Dy — D1 = 0 is trivial.

[¢]

For the inductive step, suppose that Dy = Dy + P for some prime P, and choose z € K such that
vp(xz) =vp(D3) = vp(Dy) + 1.

Then for any y € L(Ds), we have vp(zy) = vp(x) + vp(y) > vp(D2) —vp(D2) > 0, so xy € Rp
where R is the valuation ring associated to the prime P.

[e]

[e]

By composing with the evaluation map at P (i.e., taking the quotient of Rp by PRp and then viewing
this as isomorphic to R/P), we obtain an F-linear transformation ¢ : L(D2) — Rp/PRp = R/P
with ¢(y) = (zy)(P).

Then y € ker(yp) if and only if (zy)(P) = 0 if and only if vp(zy) > 1 if and only if vp(y) >
1 —wvp(D3) = —vp(Dy), and this last statement is equivalent to y € L(Dy).

Thus, by the first isomorphism theorem, we have an injection from L(D3)/L(D;) to R/P. Taking
dimensions yields dimp(L(D3)/L(D1)) < dimp(R/P) = deg(P).

o This establishes the inductive step, so the general result follows.

o

o

5. For any effective divisor D, we have ¢(D) < deg(D) + 1. In fact, this inequality holds for any divisor D
of degree > 0.
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o Proof: For effective divisors, this follows immediately by induction on the degree of D using (4),
starting with the base case [(0) = 1.

o For general divisors, the result is trivial if ¢(D) = 0, so suppose otherwise that ¢(D) > 1 and let
a € L(D) be nonzero. Then div(a) > —D which is equivalent to D — div(a~—!) > 0.

o Then for D’ = D — div(a™1), we see that D is equivalent to the effective divisor D’, and so by (2)
we have ¢(D) = £(D’) < deg(D’) + 1 = deg(D) + 1, as required.
6. For any divisor D, the quantity ¢(D) is finite.
o Proof: If deg(D) < 0 then (3) gives ¢(D) = 0, while if deg(D) > 0 then (5) gives ¢(D) < deg(D) + 1.

e What we would like to be able to do now is to calculate the actual dimension ¢(D) for arbitrary divisors D.
Rather than delaying the point, we will now get right to our main result:

e Theorem (Riemann-Roch): For any algebraic function field K/F, there exists an integer g > 0, called the
genus of K, and a divisor class C, called the canonical class of K, such that for any divisor C' € C and any
divisor A € Div(K), we have {(A) = deg(A) —g+ 1+ 4(C — A).

o Remarks: The divisor class C, as we will explain at length later in the case of Riemann surfaces, is the
divisor class associated with the Weil differentials of K.

e We will not prove the general function-field version of the Riemann-Roch theorem, since it requires a fair bit
of background to develop the necessary results about Weil differentials.

o Instead, we will go through the proof of the analytic version of Riemann-Roch for Riemann surfaces,
which contains most of the main ideas but is more accessible since the complex-analytic notion of a
differential is quite natural.

e For now, we will run through some consequences of the Riemann-Roch theorem.

e Proposition (Corollaries of Riemann-Roch): Let K/F be an algebraic function field.

1. For any divisor A with deg(A) > 0, we have deg(A) — g+ 1 < £(A) < deg(A) + 1.

o Proof: We showed the upper bound earlier using an inductive argument. The lower bound follows
immediately from Riemann-Roch since £(C' — A) > 0.

2. For C € C we have £(C) = g and deg(C) = 2g — 2.
o Proof: First set A = 0 in Riemann-Roch: this yields £(0) = deg(0) — g + 1 + ¢(C), so since £(0) =1
and deg(0) =0, we get ((C) = g.
o Now set A = C in Riemann-Roch: this yields ¢(C) = deg(C) — g + 1 + £(0), and so deg(C) =
UC)+g—1—1£(0) =29 — 2.
3. If deg(A) > 2g — 2, then ¢(A) = deg(A) — g + 1 except when A € C (in which case ¢(A4) = g).
o Proof: If deg(A) > 2g — 2, then deg(C' — A) <0, and so ¢(C — A) = 0 except when C' — A is principal
(i.e., when A € C).
o When ¢(C — A) = 0 Riemann-Roch immediately gives £(A) = deg(A) — g + 1, and when A € C we
have ¢(A) = g by (2).
4. The genus g is unique, as is the equivalence class C.
o Proof: Pick A of sufficiently large degree: then deg(A) — ¢(A) + 1 = g by (3), so g is uniquely
determined.
o For C, if {(A) =deg(A) —g+1+4(C — A) =deg(A) — g+ 1+ ¢(D — A) for some other divisor D,
then ((C — A) = 4(D — A) for all A.
o Setting A = C yields £{(D — C) = 1 and setting A = D yields ¢(C — D) = 1, and these are
contradictory unless D — C' is principal, which is to say, D ~ C.

e Let’s use Riemann-Roch to examine function fields of small genus. We start with the simplest genus g = 0.

o By Riemann-Roch, we have ¢(A) = deg(A) + 1+ ¢(C — A) for any divisor A, and also deg(C) = —2.
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Also, by (3), if deg(A) > —1 then ¢(A) = deg(A) + 1. In particular, since deg(—C) = 2, we have
0-C) = 3.

Now, for any prime P, we have ¢(P) < deg(P) + 1. So, if P is any prime with P < C (there must be at
least one since deg(—C') is positive), we see {(P) < ¢(—C') = 3. Thus, deg(P) must be either 1 or 2.

First suppose that there is a prime P of degree 1. Then ¢(P) = 2. Since F' is a subspace of L(P), there
is a basis of L(P) of the form {1, 2} for some = ¢ F.

Then since deg(div(z) + P) = 1 and div(z) + P > 0, we must have div(z) + P = @ for some prime
(necessarily of degree 1). Then div(xz) = P — @, and so [K : F(z)] = deg(divy (x)) = deg(P) = 1, which
means K = F(z).

Exercise: Show in this case that the canonical class contains every divisor of K of degree —2.

Now suppose there is no prime P of degree 1: per earlier, we have a prime P < C of degree 2.

Then ¢(P) = 3, so again since L(P) contains F', we may take a basis for L(P) of the form {1,z,y} for
some F-linearly independent z,y & F.

In the same way as above, we see that div(z) = P — @ and div(y) = P — R for some (necessarily distinct)
primes @ and R of degree 2.

Then [K : F(z)] = deg(divy(x)) = 2 and [K : F(y)] = deg(divs(y)) = 2 also. Since F(x) # F(y) (by
linear independence and the fact that K is a degree-2 extension of both), we see K = F(x,y).
Furthermore, Riemann-Roch says that ¢(2P) = 1 4 deg(2P) = 5, but we can find six different elements
in L(2P), namely {1, z,y, 2, zy,y?}. They must therefore be F-linearly dependent, so we see that x and
y satisfy some quadratic relation az? + bxy + cy® + dz + ey = f.

Geometrically, this case corresponds to a conic, while the case K = F(z) corresponds to a line (since we
can think of F(z) = F(x,y) where y is a linear function of z).

e We can use similar ideas to study the case where the genus ¢ is equal to 1.

o

In this case, for ¢ = 1 Riemann-Roch and its corollaries say that ¢(A) = deg(A) + ¢(C — A), that
deg(C) =0 and £(C) = 1, and that if deg(A) > 1 then £(A) = deg(A).

Unlike the case g = 0, we are not necessarily guaranteed to have a prime of any given degree any more,
since we cannot use C' to construct a prime of small degree — indeed, since deg(C) = 0 and £(C) =1, in
fact C' is principal (and C' ~ 0).

So let us instead merely suppose that we do have a prime P of degree 1. Then ¢(2P) = 2, so choose a
basis {1,z} for L(2P), where we necessarily must have vp(z) = 2 since « ¢ L(P). Then ¢(3P) = 3, so
choose a basis {1,z,y} for L(3P), where we must necessarily have vp(y) = 3 since y ¢ L(2P).

Then, as above, [K : F(x)] = deg(divy(x)) = 2 and [K : F(y)] = deg(divy(y)) = 3, so since 2 and 3 are
relatively prime, we see K = F(z,y).

Now we would like to identify what kind of algebraic relation x,y must satisfy (they are, after all,
algebraically dependent), which we can do by looking at the spaces L(kP) for larger values of k, since
the various monomials z’y? will all only have poles at P.

We have £(4P) = 4, but we can only identify 4 elements that must lie in this space: {1,z,y,2%}. (In
fact, they are all linearly independent since they all have different valuations at P.)

Likewise, £(5P) = 5, but we only have 5 elements in this space: {1, x,y, 22, zy}, but again, these elements
are all linearly independent since they have different valuations at P.

But now consider £(6P) = 6: we can generate 7 elements in this space: {1,z,y,z2 zy, 23, y?}. We
must therefore have a linear dependence among these elements, and in fact since 23 and y? are the only
elements with valuation 6 at P, they must both occur with nonzero coefficients.

By rescaling z,y appropriately, we obtain an algebraic relation of the form y2 4+ a1 zy +azy = 2> + a2 +
asx + ag for some ay,as,as,as,a¢ € F: this is an elliptic curve, and the corresponding function field
K = F(z,y) is called an elliptic function field. (The indices on the coefficients a; are listed that way
because they are giving the “missing” pole valuation at P for the corresponding monomial term.)

When the characteristic of F is not 2 or 3, we may complete the square in y and the cube in z to obtain
a simpler equation y? = x> + Az + B.
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e QOur analysis, even in these comparatively simple situations, indicates a correspondence between algebraic
function fields and algebraic plane curves.

o As we will discuss later at length, there is an equivalence of the following two categories:
1. (Objects) Algebraic function fields K/F of transcendence degree 1 where K N F = F
(Morphisms) Field injections fixing 1 (up to isomorphism)
2. (Objects) Smooth projective curves defined over F
(Morphisms) Non-constant rational maps defined over F (up to isomorphism)

o The correspondence is obtained by associating a smooth curve C' with the field of rational functions
defined on C.

e We will now use Riemann-Roch in our specific case of interest with base field /' = F,. Our first result is that
there necessarily exist divisors of all degrees:

e Proposition (Existence of Degree-1 Divisors): If K is a function field over Fy, then there exists a divisor D of
degree 1 over K, and hence there exist degrees of all degrees over K.

o Proof (sketch): Let P be a prime of K and let o = Frob, be the g-power Frobenius automorphism of K.

o Exercise: If R is the valuation ring of P, show that ¢ R is also a valuation ring with maximal ideal ¢ P, and
that o gives an isomorphism of R/P with o R/oP. Show also that for any a € K, v,p(a) = vp(oc~ta).

o By the exercise, o P is also a prime of K and it has the same degree as P, so o P — P has degree 0.

o It can be shown that o P — P is equal to oD — D for some degree-0 divisor D (this is essentially Hilbert’s
theorem 90), which means o(P — D) = P — D.

o Then P — D is a divisor that is fixed by the Frobenius map, which (one may show) necessarily implies
that P — D has degree 1. (The principle is the same as the observation that the elements of I, fixed by
Frobenius are precisely the elements of F,, which generate extensions of degree 1.)

e Asan immediate consequence of the proposition above, we obtain an exact sequence 0 — Pic’(K) — Pic(K) —
7 — 0.

o Our next goal is to show that the reduced Picard group is finite.
e Proposition (Finiteness of the Class Group): Let K be a function field over F' = F,. Then the following hold:

1. For any n > 1, the number of primes of K having degree n is finite.
o Proof: Let € K\F, so that [K : F(z)] is finite. If P is a prime of K having degree n, then P lies
over some prime of F'(z) of degree < n.

o Since there are only finitely many primes in F(z) of degree < n, and there are only finitely many
different primes in a finite-degree extension [K : F(x)] that lie above a particular prime in F(z)
(specifically, this number is bounded by the extension degree), we see that there are only finitely
many primes of K.

o Exercise: Show that the number of primes of degree < n in K is at most [K : F(x)]¢™ for any
x € K\F.
2. For any n > 0, the number of effective divisors of K having degree n is finite.
o Proof: Suppose D = ) ,npP is effective and has degree n. Then deg(P) < deg(D) = n for each
prime P appearing with a positive coefficient.

o By (1), there are only finitely many possible primes P of degree at most n. For each such prime P,
the coefficient np is at most n/deg(P), so there are finitely many possible choices for each np.

o Thus, there are only finitely many possible terms np P that can appear in D, and so the number of
effective divisors of degree n is finite.

o Exercise: Give an explicit upper bound in terms of [K : F(z)], ¢, and n for the number of effective
divisors of degree n in K.

3. The reduced Picard group Pic’(K) is finite.
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o Proof: Let D be a divisor of degree 1. If A is any divisor of degree 0, then deg(gD + A) = g, so
gD+ A) > deg(gD + A) — g+ 1 =1 by Riemann-Roch.
o Pick any nonzero f € L(gD + A): then div(f) + gD + A > 0 is some effective divisor B.

o Then A ~ B — gD, so since there are finitely many possible B by (2), and gD is fixed, there are
finitely many possible classes for A.

4. Tf hy is the class number of K (the cardinality of Pic’(K)), then there are exactly hx divisor classes of
each possible degree.
o Proof: Let D be a divisor of degree 1. Then for any divisor A of degree n, we see A —nD has degree
0, and so by (3) there are hi possible classes for A — nD up to equivalence.
o Since nD is fixed, this means there are hy possible classes for A up to equivalence, as required.

0.14 (Oct 22) Proof of Riemann-Roch Over C

e We now discuss the details of Riemann-Roch in the case F' = C, where we can give an essentially complete
argument (aside from some reliance on a few facts from complex analysis and differential topology).

o Under the correspondence of curves and function fields, we are analyzing smooth complex projective
curves, which are the same as 1-dimensional complex differentiable manifolds.

o If we instead work over the reals, we can equivalently think of a 1-dimensional complex differentiable
manifold as a compact Riemann surface X.

o In this situation, the genus g also represents the topological genus of X (i.e., the number of “holes” in
the surface, also equal to 1 — x/2 where x is the Euler characteristic).

o The primes of the function field K are then simply the points P in X (since we are over C, all of the
primes have degree 1).

o The elements of the function field K are then the meromorphic functions on X (i.e., the functions that
are complex-differentiable except at a finite set of poles).

o For f € K*, the divisor div(f) = > pcx vp(f)P tabulates the zeroes and poles of f: if vp(f) =k >0
then f has a zero of order k at P, while if vp(f) = —k < 0 then f has a pole of order k at P.

o Two divisors Dy and D5 are equivalent when D; — D is principal, which is to say, when they differ by
the divisor of a meromorphic function.

o We can also deduce a few facts about divisors of functions analytically (rather than algebraically as we
did earlier).

o For example, suppose div(f) = 0: then f has no poles and is therefore holomorphic, but since X is

compact this means |f| is bounded and so by Liouville’s theorem, f is constant. (This also shows that
the only functions holomorphic on all of X are the constants.)

o Exercise: For any nonzero meromorphic f on X, show that deg(div(f)) = 0. [Hint: Use Cauchy’s
f/
!

1
argument principle: for any contour C, ot /. ¢ 7 dz = Z — P is the number of zeroes minus the number
YINA

of poles in C']

e So far all of the basic theory is the same. However, on a differentiable manifold, we also have a natural notion
of a meromorphic differential dw.

o Specficially, a meromorphic 1-form (also called a meromorphic differential) is a differential that may
locally be written as dw = f(z)dz for some meromorphic function f, where z is the local coordinate.
(Being more precise requires a careful discussion of local coordinates and charts.)

o Example: If X is the Riemann sphere with its usual coordinate z on C and 1/z on C U {co}\{0}, some

dz (it has

examples of meromorphic differentials are z dz (it has a zero at 0 and a pole at oo) and 1
z
a zero at 0 and a pole at —1).
o We can then define the divisor of a meromorphic differential dw = f dz as div(dw) = Y pc y vp(f)P.

o If dwy and dws are two meromorphic differentials, then dw, /dws = f1/ f2 is locally a ratio of meromorphic
functions hence is itself a meromorphic function.
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o This means all meromorphic differentials share the same divisor class: this is the canonical class C.

o We also have the natural notion of a holomorphic differential, which is a meromorphic differential having
no poles. (This is the differential analogue of an effective divisor.)

o From differential topology, we have the following fundamental fact: the dimension of the vector space of
holomorphic differentials on X is equal to the genus g. (Very roughly speaking, we can obtain independent
holomorphic differentials by integrating around non-contractible paths on X.)

o Exercise: Explain why this fact is equivalent to saying ¢(C) = g.
e Our goal now is to give a concrete way to understand the dimension ¢(C' — A) for a divisor A.

o We can do this by defining a space of differentials that mimics the Riemann-Roch space L(D) = {a €
K : div(a) > —D}.

e Definition: If D is a divisor on a compact Riemann surface X, we define Q(D) to be the space of differentials
d¢ such that div(d¢) > D.

o In the same way as for L(D), it is easy to see that (D) is an F-vector space.

o Note that £(0) is the space of holomorphic differentials on X, which has dimension g as we noted earlier.

e Proposition: For any divisor D on a compact Riemann surface X, if C' = div(w) for a meromorphic differential
w, then Q(D) & L(C — D).

o Proof: Suppose that d¢ € Q(D) and consider d¢/dw: it is some meromorphic function f, and we have
div(f) = div(d¢/dw) = div(d¢) — div(dw) > D — C, so f € L(C — D). (Remember that the definition
for the Riemann-Roch space L has a minus sign!)

o Thus, the map d¢ — d(/dw is a linear transformation from Q(D) to L(C — D), and since clearly the map
f — fdwis an inverse, it is an isomorphism.

e We now have most of the necessary ingredients for Riemann-Roch. The key additional piece is to introduce
the calculation of residues of functions and differentials at a point P.

o Given a nonzero rational function f, we may write f as a Laurent series centered at P: i.e., as f =
> warz® where k = vp(f) (which may be positive or negative) and z is the local uniformizer at P.
We define the residue of f at P to be the coefficient a_.

o By Cauchy’s residue theorem, we can also calculate residues via integration: fc f(z)dz =2mi)" , Resp(f),
where the sum is over all points P inside the contour C. In particular, by reversing the orientation of
the curve and summing the results, we can see that the sum over all P of the residues of f is zero. (This
is essentially just Stokes’s theorem.)

o In particular, if we have an effective divisor D = P; + P, + - - - + P, for distinct points P;, we obtain a
map ¢ : L(D) — C* by taking ¢(f) = (Resp, (f), Resp,(f),...,Resp,(f)). The kernel of this map is the
set of functions g € L(D) whose residue is zero at each P;, but this would mean g is holomorphic on all
of X, hence constant.

o Thus, we obtain an exact sequence 0 — C — L(D) 5 CF,

e Intuitively, the statement of Riemann-Roch now comes from trying to answer the question: how close is the
map ¢ to being surjective? In other words, what conditions are there on the values of the residues of a
meromorphic function in L(D) at the points P;?

o We can answer this question by looking at the residues of holomorphic and meromorphic differentials.

d
o If dw € Q(0) is holomorphic, we define the residue of dw at P as the residue of the ratio d—j at P where

d
dz is the local uniformizer at P (this is well-defined because d—w is a meromorphic function).
z

o In the same way as for functions, the sum of the residues of any meromorphic differential over all points
must be zero: thus, for each dw € 2(0) and f € L(D), we see that the sum of the residues of f dw must
be zero. This means each differential imposes a linear condition on the possible choices of residues for f.
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o

[¢]

More precisely, if D = P, + Py + --- + Py for distinct points P;, we obtain a map ¢ : Q(0) — CF by
taking (D) = (Resp, (dw), Resp, (dw), ...,Resp, (dw)). The kernel of this map is the set of differentials
dw € Q(0) whose residue is zero at each P;, which is to say, dw € Q(D).

Thus, we obtain another exact sequence 0 — Q(D) — Q(0) % c*.

The images of the two maps ¢ and 1 are orthogonal by the observation made above: for any f € L(D) and
any w € 2(0), the inner product of ¢(f) and (dw) is Zle Resp, (f)-Resp, (dw) = Ele Resp, (f dw) =0
by Stokes’s theorem.

So, since the images of ¢ and v are orthogonal, we see that dim(imy) + dim(imy) < k = deg(D).
By the nullity-rank theorem, since ker(¢) = C we get dim(imy) = dim(L(D)) — 1 =£(D) — 1.
Likewise, since ker(y)) = Q(D) we get dim(ime)) = dim(Q(0)) — dim(Q(D)) = g — ¢(C — D).
Thus, we obtain the inequality ¢(D) — 1+ g — ¢(C — D) < deg(D).

e If we had equality everywhere (i.e., if the images of ¢ and v were actually orthogonal complements) then we
would get the Riemann-Roch theorem!

(¢]

As it is, we only have the weaker statement that ¢(D) — 1+ g — ¢(C — D) < deg(D), which is known as
Riemann’s inequality (and only in the case where D is effective and a sum of distinct points P, +- - -+ Py,
though we can remove the restriction that D is a sum of distinct points using a limiting argument).

One can in fact establish that the images of ¢ and 1 are orthogonal complements with quite a bit more
work.

In the event that C'— D is also effective, however, we can extract the desired result just from Riemann’s
inequality: in such a case, we have (D) — 1+ g —¥¢(C — D) < deg(D) and also {(C — D) —1+¢g—¥¢(D) <
deg(C — D) = deg(C) — deg(D), so adding the two inequalities yields 2g — 2 < deg(C).

But since deg(C) = 2g — 2 (another calculation we take for granted), we must have equality in both
cases.

This establishes Riemann-Roch for divisors D where both D and C'— D are effective divisors (or equivalent
to effective divisors, since as we showed, ¢(D1) = ¢(D3) when Dy ~ Ds).

In fact, this is nearly enough to get the general result, since as we showed, if L(D) # 0 then D is
equivalent to an effective divisor. In general, one needs to verify that when ¢(C — D) = 0, one has
deg(D) > 4(D) —1+g.

Assuming the inequality deg(D) > ¢(D) — 1+ g, one obtains the general statement of Riemann-Roch: if
both D and C — D are equivalent to effective divisors, the result is as above, and if D is but C — D is
not, the result follows from deg(D) > ¢(D) — 1+ g, and if C — D is but D is not, the result is equivalent
by interchanging D and C' — D.

Finally, if neither D nor C' — D is equivalent to an effective divisor (i.e., if (D) = ¢(C — D) = 0), then by
the inequality above we must have deg(D) > g — 1 and deg(C' — D) > g — 1. But since deg(C) = 2g — 2
this forces deg(D) = g — 1, in which case we do get deg(D) = ¢(D) — 1+ g — {(C — D), as required.

0.15 (Oct 27) Differentials, Residues, and Zeta Functions in Function Fields

e To summarize, the main tools used in proving Riemann-Roch involve studying the relationships between
divisors and differentials, and using structural statements about residues of functions and differentials. In
order to prove Riemann-Roch in an arbitrary function field K, we would need to develop the analogues of all
of these ingredients over K.

e}

o

(¢]

We already have divisors and can define the residue of an element of K at a prime P by using series
expansions in terms of uniformizers, similarly to how it works generally in C.

Explicitly, given a nonzero element a € K* and a prime P, we can express a as a Laurent series with
coefficients in the residue field R/P with respect to a fixed uniformizer t at P.

For simplicity first suppose that vp(a) > 0: then a € R is defined at P. Let ¢ : R — R/P be the
projection map, by definition the “value” of a at P is ¢(a) = ag; then a —ag € P so a = ag + b1t for an
element b, € R.

45



o Now let ¢(by) = a1, s0 by —a; € P and thus by = a; + bot for some by € R: now a = ag + ayt + byt>. We
may clearly continue this process indefinitely to generate a power series expansion a = ag+at+ast?+---

o Exercise: Let P be a prime of the function field K with valuation ring R and residue field F = R/P.
Show that the power series expansion method yields a one-to-one ring homomorphism of the metric space
R (under the metric induced by the discrete valuation vp) into the formal power series ring E[[t]] (under
the metric induced by the order valuation v;, giving the lowest-degree term with a nonzero coefficient).

o For arbitrary rational a € K* with vp(a) = d we may apply this method to obtain a power series
expansion for t~%a, and then scale by t% to obtain a Laurent expansion.

o Finally, we can define the residue resp(a) of an element ¢ € K* at a prime P with respect to the
uniformizer ¢ to be the coefficient a_; in its corresponding Laurent expansion. When P has degree 1, in
particular, the residue field R/P is (naturally isomorphic to) K, and we can correspondingly view the
residue as an element of K.

e However, giving a reasonable analogue of a differential is more challenging. The most standard approach is
to use Weil differentials, but the ideas can also be formulated using the more natural notion of derivations on
modules.

e Definition: Let K/F be a function field and M be an F-module (i.e., a vector space over F'). A derivation of
K/F into M is an F-linear transformation D : K — M such that D(ab) = aD(b) + bD(a) for all a,b € K.

o In other words, a derivation is an F-linear function that also obeys the Leibniz formula for the product
rule.

o Example: The usual derivative map D : F(t) — F(t) with D(f(¢)) = f'(¢) is a derivation.

o Exercise: Suppose D : K — M is a derivation of K/F into M. Show the following:

1. D(¢)=0forall ce F.

2. (Quotient Rule) D(a/b) = [bD(a) — aD(b)]/b? for all a € K, b € K*.

3. (Chain Rule 1) For any f(x) € Flz] and any a € K, we have D(f(a)) = f/(a)D(a) where f’ is the
usual formal derivative of f.

o For any x € K\F, the chain rule shows that the value of a derivation D on F[z] is completely determined
by the value D(x), and the quotient rule then extends this observation from F[x] to F(z). If K = F(z)
is purely transcendental, then clearly the value of the derivation on K is completely determined by D(z),
but otherwise, K is a finite extension of F(x).

o Unfortunately, if we do not make a good choice for z, then the value D(z) need not determine the value
of D on all of K, since for example if char(K) = p and « = y? for some y € K then D(z) = D(y?) =0,
but D need not be identically zero on all of K.

o Fortunately, this is essentially the only possible problem: one can show in fact that if x is a separating element

of K/F (one for which K/F(z) is finite and separable) then the value of D(x) completely determines D
on all of K.

o Exercise: Suppose K/F is a function field with € K\ F and where K/F(z) is separable. If Dy and Dy
are derivations from K/F to M and D;(x) = Ds(z), show that Di(a) = Dz(a) for all a € K. [Hint:
First show Dy and D agree on F(z). Then for any y € K, apply D; and D5 to its minimal polynomial
m(y) = 0 over F(z); separability ensures that m/(y) is not the zero polynomial.|

o It can likewise be shown that if x is a separating element of K/F, then a derivation defined on F(x)/F
extends uniquely to a derivation defined on K/F. (We omit the precise details, since they are fairly
technical and unenlightening.)

o Applying this extension result to the natural differentiation map D : F(x) — K with D(f(x)) = f'(x)
yields that for any separating element x of K/F there exists a derivation D, : K — K such that
D, (z) = 1: this map corresponds to “derivation with respect to x”.

o Exercise: For a function field K/F, let Derx denote the space of derivations D : K — K.

1. Show that Derg is a K-vector space under pointwise addition and scalar multiplication.

2. Show that for any derivation D € Dery and any a € K* we have D = D(z)- D,. Deduce that Derg
is 1-dimensional (as a K-vector space).
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e We can finally define differentials in terms of derivations, as follows:

o Definition: Let K/F be a function field and Z be the set of ordered pairs (a,z) such that a € K and z is a
separating element of K/F. Define an equivalence relation ~ on pairs via (a,z) ~ (b,y) when b = a - D,(z),
and denote the equivalence class of (a,z) as the differential a dz.

o

Exercise: If x and y are separating elements of a function field K/F, show the chain rule: that D, =
D,(y) - Dy as functions on K. Deduce that ~ is in fact an equivalence relation.

We have a natural K-module structure on the space Diff ¢ of differentials of K/F, as follows: for any
fixed separating element z € K and any differentials adz and bdy, we have adx = [aD,(x)]dz and
bdy = [bD.(y)] dz by the chain rule, so we may define adz + bdy = [aD,(x) + bD,(y)] dz.

It is easy to see by another application of the chain rule that this addition operation is well defined, as
is the natural scalar multiplication ¢ - (a dz) = (ca) dz for ¢ € K.

Exercise: Show that the map d : K — Diff i via d(a) = 1da when a is a separating element and d(a) = 0
when a is non-separating is a derivation of K/F.

The space Diff x is the natural “module of differentials” of K/F, in that any other derivation of K/F
into a module M must factor through Diff i: explicitly, if D : K — M is a derivation, then there exists
a unique F-linear map p : Diff x — M with D = pod.

The module of differentials Diff i is a 1-dimensional K-module with basis {dz} for any separating z € K,
as follows from the observations above: the elements of Diff x are adz for a € K, and 1dz # 0 since
(1, 2) is not equivalent to (0, 2).

Since this module is 1-dimensional, we may then define the quotient of one differential by another by
setting (adz)/(bdz) = a/b € K. In particular, if © € K is separating, then the quotient dy/dx is defined
for any y € K, and indeed we have dy/dx = D,(y) by the chain rule. (This also explains why we call it
the chain rule, since in this formulation D, (z) = D,(y) - Dy(z) says that dz/dz = (dy/dz)(dz/dy).)

The differential quotient also shows up when calculating residues with respect to different uniformizers:
if s and ¢ are both uniformizers at a prime P of degree 1 (so that the residue of a is an element of K),
then resps(a) = resp(a - ds/dt), as one can show by comparing the series expansions using the chain
rule.

We may, at last, use this to define the residue of a differential at a prime of degree 1: for any choice
of uniformizer ¢, we set resp(a dt) = resp(a); the change-of-uniformizer formula above ensures that the
residue does not depend on which uniformizer ¢ we select.

With some effort, one can then prove that for a nonzero differential dw, the residue resp(dw) = 0 for all
but finitely many primes P (i.e., any nonzero differential has finitely many zeroes and poles), and thus
we may attach a divisor to a differential dw by setting div(dw) = )" p resp(dw)P.

Exercise: If K/F is a function field and F' is algebraically closed, show that all nonzero differentials lie
in the same divisor class.

Finally, we obtain an analogue of the residue theorem we observed earlier for C: for any function field
K/F where F is algebraically closed and any differential dw of K/F, we have ), resp(dw) = 0.

As a final remark, we note that we can drop the hypothesis that F' is algebraically closed by using the
Galois action to work over appropriate subfields of F' (the effect being that a degree-d prime of F' will
correspond to a sum of d degree-1 primes over the algebraic closure of F).

e We now begin our next major task, that of constructing zeta functions for function fields.

(¢]

e Definition: If K is a function field over F, and A > 0 is an effective divisor, the norm of A is NA =g¢

[¢]

We use essentially the same definition as for F,[t], using the fact that effective divisors of K are the
natural analogues of the monic polynomials in F[¢], aside from some small considerations about the
prime at co.

deg A

The norm is multiplicative: if A, B > 0, then N(A + B) = ¢i°¢(4+5) = N(A)N(B).

e Definition: If K is a function field over Fy, the zeta function of K is (x(s) = >_450(NA) ™ =345 g sdes A,
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o Exercise: Show using the divisor-counting results from earlier that the zeta function (x (s) = > 450¢™° deg A
converges absolutely for Re(s) > 1. (We will later improve those estimates, but the weak ones in the
earlier exercises are good enough here.)

o0 b’l’L

o By grouping together the effective divisors by degree, we see that (x(s) = >, — where b, is the
q

number of effective divisors of degree n.

o For K = TF,(t), the zeta function of K is almost identical to that of the subring A = F,[t], aside from
the behavior of the prime at infinity.

o Explicitly, any monic polynomial p € A yields a unique class of effective divisors of the form div(p)+nPs
for n > deg(p), and conversely, for any effective divisor D = )", npP of K, we get a unique associated

monic polynomial p € A as p = Hp;ﬁoo p:Pi(D).

1
(I—g) A —q*)
o Also, since the norm is multiplicative, we get an Euler product for the zeta function: (x(s) = [[p(1 —
NP~%)~1 Tt is also absolutely convergent for Re(s) > 1.

o Exercise: Show that (g, 1)(s) = (1 —¢ )" Cr,(s) =

o By grouping the primes together by degree, we see that (x(s) = [[j—;(1 — ¢~"™*)~* where a4 is the
number of primes of K of degree d.

e To go further, we need to improve our estimates on divisor-counting.

e Proposition (Divisor-Counting): Let K be a function field over F,.

1. For any divisor A of K, the number of effective divisors equivalent to A is (¢/» —1)/(¢ — 1).
o Proof: As we have previously noted several times, that there exists an effective divisor B equivalent
to A if and only if there exists f € K* such that B = div(f) + A > 0, if and only if f € L(A).
o Thus, if £(A) = 0, the formula is correct, since there are no effective divisors equivalent to A.

o If £(A) > 0, then consider the function from L(A)\{0} to the effective divisors equivalent to A given
by f +— div(f) + A. This map is surjective, and also f, g will have the same image precisely when
div(f) = div(g), which is to say, when div(f/g) = 0, i.e., when f/g € F.

o Thus, since the function is surjective, the cardinality of the domain is #[L(A4)\{0}] = ¢/ — 1, and
each fiber has size ¢ — 1, the cardinality of the image is (¢/» —1)/(¢ — 1), as claimed.

2. If the hx divisor classes of degree n are represented by Aj,..., Ay, then the number of effective divisors
(A _ 1
q

qg—1
o Proof: As noted in our earlier proposition, there are exactly hy divisor classes of degree n.

of degree n is Z?zl

o By the well-definedness of divisor classes, each effective divisor class of degree n is equivalent to
exactly one of Ay,..., Ay, so summing over the divisor classes and applying (1) yields the result.

3. The zeta function (x(s) = > 45o(NA)™*, and also its Euler product (x(s) = [[(1 — NP~%)~!, both
converge absolutely for Re(s) > 1.
o Proof: By Riemann-Roch, if deg(A) > 2g — 2 then ¢(A) = deg(A) —g + 1.
o Applying (2) shows that for n > 2g — 2, the number b, of effective divisors of degree n is h -
gdes(A)—g+1 _ g o
41 ° (q").

o Thus, the zeta function sum is bounded in absolute value by > >°  O(¢")g~"*, which converges
absolutely for Re(s) > 1.

o Similarly, for the Euler product, by the usual results about convergence of products, (x(s) =
I, — g~ %*)7% will converge provided Y o7, a4 |qu| converges, but ag < by, so it does con-
verge for Re(s) > 1.
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0.16 (Oct 29) The Weil Conjectures

e QOur next goal is to prove the Weil conjectures for K. The general statement of the Weil conjectures for
projective varieties over F, (equivalently, for function fields of arbitrary finite transcendence degree) are as
follows:

e Theorem (Weil Conjectures): Let K be an algebraic function field of transcendence degree n over its constant
field F,, with associated zeta function (x(s). (Equivalently, let Y be a nonsingular n-dimensional projective
variety defined over IF,.) Then the following properties hold:

1.

(Rationality) The zeta function (x(s) is a rational function of v = ¢~3.

2n oo (—1)it1 _ P1 (u)pg(u) e ~p2n_1(u) f . . ] _
- U = or appropriate polynomials p;(u) € 1+tZ[t], where pg(u) =
[T;Zopi(u) 2o ()P () pan (1) ppropriate poly pi(u) 2] po(w)

1 —u, pap(u) =1 —q"u, and p;(u) = [[;(1 — a; ju) for some o; ; € C.

More specifically, (x(s) =

. (Functional Equation / Poincaré Duality) The zeta function has a functional equation (x(n — s) =

+¢"F/2uF (g (s), where E = 2 — 2g is the Euler characteristic of K. In particular, the map o — ¢"/a
maps the zeroes of p; to the zeroes of po,_;.

(Riemann Hypothesis) For each 4, , the inverse zeroes «; ; of p; have |a; ;| = ¢*/2. Equivalently, all of
the zeroes of py(u) lie on the line Re(u) = k/2.

(Betti Numbers) If K is the function field of a nonsingular variety X defined over an algebraic number
field with good reduction modulo p = char(F,), then the degree of p; is the ith Betti number of the space
X (C) of complex points on X.

e In our situation, we have n = 1 (i.e., for curves), in which case the Weil conjectures read as follows:

. Ck(s) is a rational function of u = ¢

L (u)
(1 —u)(1 - qu)

~%: specifically, (x(s) = for some polynomial

L (u) =T[;(1 - aju).

2. For & (s) = ¢ D3¢k (s), we have £x (1 — s5) = Ex(s).
3. The roots of Lk all lie on the line with Re(s) = 1/2.
4. The degree of L is 2g.

e Exercise: Using the explicit formula (g, ) (s) =

1
(1—g )1 —qg'9)

, verify the Weil conjectures for K = F(¢).

e The Weil conjectures have a long history. Here is a brief summary of some of it:

(¢]

In the early 1800s, Gauss identified some components of these general results in particular examples for
certain curves, in the context of counting points on elliptic curves modulo p.

In 1924, Artin conjectured the general results for curves and Hasse independently proved the results for
elliptic curves.

In 1949, Weil formulated the general statement of the Weil conjectures (he had previously established
Artin’s conjectured statements in the case of curves).

Establishing the Weil conjectures in full took the development of about 20 more years’ worth of algebraic
geometry machinery: Dwork proved (1) in 1960, while Grothendieck proved (1), (2), and (4) in the 1960s,
and Deligne finished (3) in 1973.

e At this point, we can prove parts (1), (2), and (4) of the Weil conjectures in our setting using the Riemann-
Roch theorem.

e}

(e}

The main idea in the proof of (1) is to use the simple estimate given by Riemann-Roch for the number
of effective divisors of large degree. To establish (2) requires using the full statement for divisors of low
degree. Once (1) and (2) are established, (4) is quite simple, requiring only a calculation of the degree
of a polynomial.

Proof (1): Write u = ¢~* and set Zx(u) = Cx(s) = Y pobyu™ where b, is the number of effective
divisors of degree n over K.
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qnfg+1 -1

o As we showed earlier, for n > 2g — 2 we have b,, = hg - where hg is the class number of K

qg—1
and g is the genus of K. Thus,
29—-2 n g+1 _ 1
Zg(u) = Zbu+ZhK u”
n=0 n=2g—1
2g9—2 00
- S hars [z st 3 ]
= n=2g—1 n=2g—1
29g—2

q’ 1 2g—1
— b hi _ 9-1
Z A P {1—qu 1—u}“

o Therefore, we have

2g—2
h
(1)l qZxn) = (=)= qu) Y b + G g (1= )+ (1= qu))
n=0
29g—2 1 q— q
— _ _ 2g 1 2g
so Ly (u) T;)bnu (1—w)(1 qu)+th 1 + hi P

Each term is a polynomial with integral coefficients (since ¢ — 1 divides ¢? — 1 and ¢ — ¢9), and the total
degree is clearly at most 2g, as required.

o Furthermore, setting u = 0 yields Lk (0) = 1, so Lx (u) € 1+tZ[t]. Also, setting u = 1 yields Li (1) = hg
and setting u = 1/q yields Li(1/q) = ¢ " 'hg. In particular, we see that Ly is nonzero at 1 and 1/g, so
Zx(u) = (i (s) does indeed have poles at s =0 and s = 1, as required.

o Proof (2): As calculated in (1), we have Zx (u) = 3229 ? bu™ + hc @ 1 u?9-1
7 ’ K n=0 "n (g—1) [1—qu 1—u '

£(A) _q
o Also, from our proposition earlier, we have b, = Zdeg(Z):n qil, where the sum is over the hg
q—

divisor classes A of degree n.

o Plugging this in and multiplying by ¢ — 1 to clear denominators yields

2g—2

_ g,,29—1 2g—1
(a=DZkw) = > | 3 @W-1 u"+hK‘11“ ~hit
n=0 |deg(A)=n T -
9u29*1 1
0<deg(A)<2g—2 9
o Therefore,
_ — Iu9 1—g
(4= Véxls) = (g — D' 7Z() = w0 3 g DuE g py

0<deg(A)<2g—2

_ Z ql(Z)udEg(Z)*gJrl 4 hKM —hk = g_ :
1—qu 1—u!

0<deg(A)<2g—2

o We claim that this last expression is invariant under the substitution u + ¢~ 'u~!. This is clearly the

case for the last two terms (since they are interchanged and each get a minus sign under the substitution),
so we need only check the result for the sum.

1 deg(A)+g—1 _ {(C—A), deg(C—A)

o Substituting u — ¢~ 'u~" in the sum yields 3= qou @) <ag_2 4" (qu)~ = Y 0<deg(@)<2g—2 I

using Riemann-Roch and the fact that deg(C) = 2¢ — 2.

o But again, since deg(C) = 2g — 2, this sum is the same as the original since the map A — C' — A merely
reverses the order of the terms in the summation.
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o Therefore, we see that (¢ — 1){x (1 —s) = (¢ — 1)€k(s), as claimed.

o Proof (4): As calculated in (1), we see that Lx has degree at most 2g.

o But as also calculated in (1), we have Ly (0) =1, and by (2) since ¢ 9u=29 L (u) = Lk (¢ 'u™?), taking

u — oo shows that L (u)/u?9 — q7 is nonzero, which means Ly (u) has degree exactly 2g.

e We do not have all of the necessary tools to establish the Riemann hypothesis part of the Weil conjectures
yet.

o However, we can do half of it: by (2), since ¢ 9u=29Lg (u) = Li (¢~ u™"), the map u +— ¢~ 'u~! must

permute the roots mi, 2, ..., mo4 of Lx, which means that (suitably ordered) we must have m; = q/maq—;.

1 1

o Equivalently, this says that the roots of (x(s) come in pairs, reflected across the line Re(s) = 1/2. The
Riemann hypothesis is that all of these roots actually lie on the line Re(s) = 1/2 itself.

e Even though we cannot actually prove the Riemann hypothesis right now, we can still give some of its
applications.

e Proposition (Hasse-Weil Bound): If K is a function field of genus g over F,, then the number a; of prime
divisors of K of degree 1 satisfies the inequality |a; — ¢ — 1| < 2¢,/7.

o Equivalently, if one phrases this in terms of algebraic curves, it says that the number of F,-points a; of
a smooth projective curve defined over F, satisfies [a; — ¢ — 1| < 2g,/q.

o This result was shown for genus g = 1 (i.e., for elliptic curves) by Hasse in 1933 and subsequently
generalized by Weil to larger genus in 1949.

H?i1(1 — Tiu)
(1 —u)(1 —qu)’
o Thus, log Zk(u) = Z?il log(1 — mu) —log(1 — u) — log(1 — qu), so

o Proof: We have Zx (u) = > 7 byu" =

U qu

d 29
usllog Zc(u)] = P Ly

l—u 1—qu p

[e’e) 29
- Z(l +q" — Zﬂ'?)u".
n=1 i=1

U

1771'1'11,

d
o In particular, the coefficient of u! of ud—[log Zr(u)]is1+q— Z?il .
u
. s dre d o du? s
o Butsince Zx (u) = [~ (1—u®)~ %, we also have u%[log Zg(u)] =>4, T d = Y on=112apn dadlu”.

d
o In particular, the coefficient of u' of ud—[log Zr(u)] is also ay.
u

o So, by the triangle inequality, we have a; = ¢+ 1 — Z?il 7, 80 lag —q—1] = ‘21211 m| < Zfil || =

29/, where the last equality follows by the Riemann hypothesis |m;| = ¢'/2.

e Exercise: Show that if ¢ > 4¢2, then there must exist primes of degree 1 in K.

Proposition (Class Number Bounds): If K is a function field of genus g over F,, then the class number hg
satisfies (/g —1)%9 < hx < (y/g+1)%.

o Proof: As we noted previously, hx = Lk (1) = Hfil(l —m) = Hfil(m —1).

o Since |m;| = ¢'/2, the absolute value of the product is bounded below by (/g — 1)?9 and above by
(Va+ 1)29, as required. Since hx is positive, we obtain the stated bounds.

e Exercise: Show that if ¢ > 4 and g > 0, then the class number of K is greater than 1.

We can also use a similar calculation to establish the analogue of the prime number theorem for K.
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e Theorem (Prime Number Theorem for Function Fields): If K is a function field of genus g over F, and a,, is

the number of primes of K having degree n, then a,, = T +O(
n

n/2

qn ).

d
o Proof: As we calculated above, S.°° (1 4 ¢" — 279, af)u™ = u@[log Zr(u)] = 3021 [ gy daalu™.

o Thus, we have 3°, dag =1+ ¢" — 29, 77, s0 by Mobius inversion and the fact that |m;| = ¢'/2, we
obtain the formula
al 29
n n/d
an = - ST w1+ gt =37
| dn i=1
1 [ 2g 29
I CETAED SE ORI DI ISR SE L
L =1 d|n,d<n i=1
1
= |a" +200(¢"/%) + O(¢"/?)]
n n/2
q q
= —+40
—+0(=—)
as claimed.
e In the proof above, if we replace the Riemann hypothesis assumption |m;| = q'/? by the weaker estimate

|| < ¢* then we instead get an error term of O(q%/n).

o

For completeness, we can give a fairly simple argument now that a bound of this nature does hold for
some o < 1.

e Proposition (Zero-Free Region for Zeta): If K is a function field over F,, then (x(s) has no zeroes on the
line Re(s) = 1, and thus there exists an a < 1 such that |m;| < ¢* for each of the inverse zeroes m, ... mg, of

CK(S).

[¢]

(¢]

[¢]

(¢]

Our proof that there are no zeroes on Re(s) = 1 mimics the proof in the classical case over Q.

In the classical case, zero-free regions to the left of Re(s) = 1 have been established, but they approach
Re(s) = 1 as Im(s) — oco. We are able to obtain an improvement in the function field case (i.e., the
second part, which allows us to move a uniform distance away from Re(s) = 1) because the zeta function
is periodic in the imaginary direction, so we need only identify its zeroes on a compact region.

Proof: First, note that 3 + 4 cos 6 + cos 26 = 2(1 + cos6)? > 0 for real 6.

If we write s = o + it with o > 1, then the real part of log (x(s) is

Re[logCk(s)] = Re[z —log(1 — NP~%)]
P
= Re[)_ i %NP“‘"”}
P m=1
= > ) %NP"”” cos(t - log(NP)™).
P m=1

Now, by replacing ¢ with 0, ¢, and 2¢, using the trigonometric identity above for 6 = log(NP)™, and
summing over all P and all m, we see that 3Re[log {x (0)] + 4Rel[log (x (o + it)] + Rellog (k (o + 2it)] > 0.

Exponentiating therefore yields [Cx (o)|” - |Cx (0 + it)[* - |Cx (o + 2it)| > 1 for all o > 1 and all real ¢.

Recall that we have shown (x(s) is a rational function of u = ¢~* and its only poles are simple poles
at s = 1 and s = 1/q. In particular, it is periodic with period 27i/loggq, and so the poles on the line
Re(s) = 1 are located at the multiples of 27i/ log q.

Now suppose that (x (1 + it) = 0; note that we must have ¢ # 0, since (x(s) has a single simple pole at
s=1.
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0.17

o The

o In such a case, we see that (o0 — 1) |(c — 1)(k(0)|

it

o Sxlo+it)
o —

a simple pole at s = 1. Finally, (x (o + 2it) is bounded as 0 — 1 as long as ¢ is not an odd multiple of

7/ logq.

is bounded as o — 1. Also, (0 — 1){k(0) is bounded as ¢ — 1 again since (x(s) has

. 4
t
3. W’ - ¢k (o + 2it)] is equal to (o — 1) times

a product of three bounded quantities as ¢ — 1, so the limit as ¢ — 1 is zero. This is impossible, since
the limit must be > 1 by the inequality above.

o If t is an odd multiple of 27/logq, which is to say, when ¢~ (%) = —1/q, we require a different

approach. As we will prove later, we have Li (—1) = hg,/hk, where K, = KFg (i.e., the field obtained
by extending the constant field of K from F, to F,2).

o Then (i (1+it) = Zx(—1/q), which is nonzero by the functional equation and the fact that Ly (—1) # 0.
o We conclude that (x (1 + it) # 0 for all real ¢, as required.

o For the second part, we have just shown that (x(s) does not vanish for Re(s) = 1. Furthermore, since

Ck (s) is represented by an absolutely-convergent Euler product for Re(s) > 1, it does not vanish there,
and so by the functional equation, (x(s) also does not vanish for Re(s) < 0.

o Therefore, for m; = ¢”*, we have 0 < Re(f;) < 1. If we then take a = max(Re(f;)), then a < 1 since

there are only 2g total ;. Then |m;| < ¢“ as required.

(Nov 3) Affine Space and Affine Curves

e So far, our development and study of function fields has been analogous to number theory (with a little

analysis thrown in).

o However, a key part of the story is the correspondence between function fields and projective curves, and

in many cases, thinking in terms of curves using algebraic geometry is more natural.

o For example, there is another very important interpretation of the zeta function in terms of counting

points on curves over F, and its finite-degree extensions.

o In order to exploit this correspondence as fully as possible (which is necessary in order to motivate the

proof of the Riemann hypothesis for curves), we will now give a brisk treatment of algebraic varieties,
with a particular focus on algebraic curves.

e First, the basics of affine space:

o Definition: For f € k[x1,..., ], we define the vanishing locus of f to be V(f) ={P € A"(k) : f(P)
L

o Definition: For a field k, we define affine n-space A" (k) = {(x1,22,...,2,) : z; € k} to be the set of

n-tuples of elements of k. The elements of A™(k) are called points.

0}, the set of points P € A" (k) where f vanishes. We extend this definition to subsets T C k[z1,...,zy]
by setting V(T') = NyerV(f) = {P € A"(k) : f(P)=0forall f €T}.

o Exercise: Draw V(z), V(2?), V(y — ), V(y — 2%), V(xy), V(z,y), and V(y? — 23) in A%(R).
o Definition: For a subset S C A"(k), we define the ideal of functions vanishing on S to be I(S) = {f €

Elx1,...,2,] : f(P)=0for all P € S}. It is easy to see that I(S) is an ideal of k[z1,...,z,] for any set
S.

o Exercise: Identify I(S) in R[z,y] for S = {(¢,0) : t € R}, {(t?,t) : t € R}, {(1,1)}, {(0,0),(1,1)},

{(cost,sint) : t € R}, and {(¢,sint) : ¢t € R}.

e We have various properties of the maps V and I:

1. If T is the ideal generated by T C k[z1,...,x,], then V(T) = V(I). Thus, we need only consider the

behavior of V' on ideals, meaning that we will only consider I and V' as maps I : [sets] — [ideals] and
V : [ideals] — [sets].

V() =A"Kk), V(1) =0, and V(z1 — a1, ..., Tn —an) = {(a1,--.,a,)}.

2
3. I(0) = k[x1,...,xy], I(A™) = 0 when k is infinite, and I({(a1,...,an)}) = (21 —a1,...,2n — apn).
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V(UiL) = NV (I;) and V(IJ) = V(I) UV (J).

5. For ideals I and J, if I C J then V(I) 2 V(J), and for sets X and Y, if X C Y then I(X) D I(Y).

(Thus, both I and V are inclusion-reversing.)
For any subset S of k[z1,...,2,], S CI(V(S)) and V(S) = V(I(V(9))).

7. For any subset X of A"(k), X C V(I(X)) and I(X) = I[(V(I(X))). Furthermore, I(X) is a radical®

ideal.

o Proofs: Exercises.

e Definition: For a field &, an affine algebraic set in A" (k) is a subset of A”(k) of the form V(I) for some ideal

1.

o

Examples: Single points {(a1,...,a,)} = V(z1 —a1,...,2, — ay) are affine algebraic sets by (2) above.
The sets {(t,0) :t € k} = V(y) and {(t?,t3) : t € k} = V(y? — 2?) are affine algebraic sets.

By (4), we see that affine algebraic sets are closed under finite unions and arbitrary intersections, and
(3) shows that A™ and () are affine algebraic sets.

Thus, if we consider affine algebraic sets to be closed (with the open sets therefore being their comple-
ments), we obtain a topology on A™(k). This topology is known as the Zariski topology.

By Hilbert’s basis theorem, every ideal of k[xi,...,x,] is finitely generated, so by (4) above, we see
that every affine algebraic set is of the form V(f1) NV (f2)N--- NV (f;) for some polynomials fi,..., f;.
(Equivalently, the complements of the sets V(f;) form a base for the Zariski topology.)

It is natural to seek “minimal” elements under the Zariski topology.

e Definition: An affine algebraic set V' is reducible if it can be written as V = V3 U Vo where V1, V5 # V, and it
is irreducible otherwise.

e We have a few more properties:

8. V is irreducible if and only if (V) is a prime ideal of k[z1, ..., x,].

(¢]

(¢]

Proof: If V =V, UV, with V1, V, # V, then I(V4) and I(V2) both properly contain V: if f € I(V1)\V
and g € I(Vo)\V then fg € I(V1) N I(V,) = I(V), meaning that I(V') is not prime.

Conversely, if fg € I(V) with f,g € I(V), we can take V4 = VN V(f) and Vo = V N V(g): then
ViuVe =V and V1, V5 #£ V so V is reducible.

9. Any affine algebraic set V' can be written uniquely as a union of irreducible affine algebraic sets V3 U Vo U
UV, such that V; Z V; for any ¢ # j. (These sets V; are the irreducible components of V)

e}

(¢]

This is the geometric version of primary decomposition (generalizing the notion of prime factorization of
elements).

Proof: For existence, let F be the collection of all V' that cannot be written as a union of irreducible
affine algebraic sets and consider the collection Z = {I(V') : V € F}, and suppose F is nonempty.

Since 7 is a collection of ideals in the Noetherian ring k[x1,...,x,], it has a maximal element. The
corresponding set V' is then a minimal element of F. If V' is irreducible we obviously have a contradiction,
and if V is not irreducible then it can be written as a proper union V = V; U V5, but by minimality,
V1 and Vs can both be written as a union of irreducible affine algebraic sets. In either case we get a
contradiction, so F is empty.

We may freely assume that V; € V; for any ¢ # j by throwing away any V; that is a subset of another V.

For uniqueness, suppose V = W U---U W} is another decomposition. Then V; = Ué?:l(Vi NW;) so since
V; is irreducible we must have V; N W; = V; for some j, meaning V; € W;. By symmetry we must also
have W; contained in some V;/, but then V; C Vs which forces ¢ = ¢’ and then equality holds every, so
Vi =Wj.

Thus, each V is equal to some W. In the same way, we see each W is equal to some V', so we are done.

3Recall that if I is an ideal of a commutative ring R, then the radical rad(I) = {r € R : 7™ € I for some n > 1}, and I is a radical
ideal if I = rad([). (Note that rad([) is an ideal, as is easily seen via an application of the binomial theorem.)
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e Exercise: If k is finite, show that the irreducible affine algebraic sets in A™(k) are () and single points.

e Exercise: If k is infinite, show that the irreducible affine algebraic sets in A%(k) are (), A%(k), single points,
and curves of the form V' (f) for a monic irreducible polynomial f € k[x,y]. [Hint: Show that if f, g € k[z, y]
are relatively prime, then (f,g) contains a nonzero polynomial in k[z] and a nonzero polynomial in k[y].]

e Although it may appear that I and V should behave like inverses, they are not quite.

o For example, even in Al(k), we have V(2?) = {0} so that I(V(2?)) = (z). The point here is that I = (z?)
is not a radical ideal, and in this case, I(V(I)) = rad({).

o However, even if I is radical, it is not always true that I(V(I)) = rad(I): for example, in A!(R) we have
V(1+2?%) =0 so that I(V(1 + 2?)) = Rx].

o Indeed, there is no subset S of A'(R) with I(S) = (1+2?) since the only set S with I(S) D (1+2?) is the

empty set. The issue here is that R is not algebraically closed: if instead we work in C, then S = {4, —i}
does have I(S) = (1 + z?).

e When the field & is algebraically closed, we do in fact solve all of the issues described above; this is the main
content, of Hilbert’s Nullstellensatz:

e Theorem (Hilbert’s Nullstellensatz, weak version): If k is an algebraically closed field and I is a proper ideal
of k[x1,...,xy,], then V(I) # 0.

o Proof: Since I C J implies V/(I) 2 V(J), it suffices to show the result when I is a maximal ideal (since
any non-maximal ideal is contained in a maximal ideal, and so its vanishing locus is at least as big as
that of the maximal ideal).

o If I is maximal, then k[z1,...,x,]|/I is a field extension of k: we claim it is equal to k. Assuming this,
then for each i we would have T; = a; for some a; € k in the quotient ring, meaning that z; —a; € I and
thus T contains (1 — a1,...,Z, — ay).

o But then since (x; — aq,...,2, — a,) is actually maximal (the quotient ring is isomorphic to the field
k), we must have I = (1 — a1,...,%n — ay), in which case V(x1 —a1,...,z, —an) = {(a1,...,a,)} is

nonempty as claimed.

o Exercise: Prove Zariski’s lemma: a field L that is finitely generated over k as a ring is finitely generated
over k as a module. [Hint: Induct on the number of generators.|

o By Zariski’s lemma, since L = k[xy,...,2,]/I is a field extension of k that is finitely generated as a ring
(since I is finitely generated) it is necessarily finitely generated as a module. This means it has finite
degree over k, but since k is algebraically closed, we must have L = k as required.

e Using the so-called “Rabinowitsch trick” we may bootstrap this statement into the full Nullstellensatz:

e Theorem (Hilbert’s Nullstellensatz, strong version): If k is an algebraically closed field and I is any ideal of
klx1,..., 2y, then I(V(I)) = rad().

o Explicitly, if the polynomial g vanishes whenever fy,..., f, vanish, then there exists some N and some
c; € k[xy,...,m,] such that ¢ =c1f1 + - + ¢ fr.

o Proof: It is easy to see that rad(I) C I(V(I)): if f* € I, then f™ and hence f vanishes on V(I).

o Now suppose g € I(V(f1,..., f-)) and define the ideal J = (f1,..., fr,Tny19 — 1) of k[z1,. .., Tn, Tni1]-

o By hypothesis, V(J) = 0 since all of f1,..., f, vanishing implies that 2,119 — 1 = —1.

o Thus, the weak Nullstellensatz, J cannot be a proper ideal, so 1 € J. Thismeans 1 =, A;(x1,...,Zp41)fit+
B(z1,...,Zn41)(Xne19 — 1) for some polynomials A;, B.

o Plug in x,1; = 1/y and then clear denominators in y to obtain an equation of the form 3V =
22:1 Ci(xla v axnvy)fi + D(mla s ,xmy)(g - y)

o Now evaluate both sides at y = g: this yields gV = Y7_, C;(21,...,2n, g(x1, ..., gn)) fi, which is precisely
of the desired form.

e Per the Nullstellensatz and its various implications, we see that I and V give nice bijections between various
sets in A™(k) and ideals of k[z1,...,z,].
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o By the full Nullstellensatz, since I(V(I)) = rad(I), we obtain a correspondence between radical ideals
and affine algebraic sets.

o Furthermore, by the weak Nullstellensatz, if I is a proper ideal then V(I) must contain some point
(a1,...,ay), whence I is contained in I({(a1,...,a,)}) = (1 —a1,...,2, — a,). But since the quotient
of klx1,...,zn] by (21 —as,...,z, — a,) is isomorphic to k via the evaluation map p — p(aq,...,a,),
the latter ideal is maximal. Thus, the maximal ideals of k[x1,...,z,] correspond precisely with points
(Cll, ey an).

o Also, by the full Nullstellensatz, if I is a prime ideal, then I(V(I)) = rad(I) = I since prime ideals
are radical, and so by property (8) earlier, we see that V(I) is irreducible. Thus, the prime ideals of
k[x1,...,x,] correspond with irreducible affine algebraic sets.

o To summarize, we have the following correspondences:

I
[Affine algebraic sets|] = [Radical Ideals]
v
1
[Trreducible affine algebraic sets] = [Prime Ideals]
%
I
[Points of A™(k)] = [Maximal Ideals]
%

e Now we can bring function fields into the discussion.

e Definition: If & is algebraically closed, an irreducible affine algebraic set in A™ (k) is called an affine variety. The
coordinate ring of an affine variety V' is the ring T'(V') = k[z1, ..., 2,]/I(V), and its associated field of rational functions
(or function field) k(V') is the field of fractions of I'(V).

o Exercise: Let F(V, k) be the ring of k-valued functions on V. We say f € F(V,k) is a “polynomial
function” if there exists g € k[z1, ..., z,] such that f(P) = g(P) for all P € V. Show that I'(V') is the set
of equivalence classes of polynomial functions under the relation g1 ~ go if g1 (P) = g2(P) for all P € V..

o By the exercise above, the coordinate ring of V' can be thought of as the collection of distinct polynomial
functions on V, and thus the field of rational functions is, quite explicitly, the collection of rational
functions on V.

e Rational functions can have poles, which are points P € V where the function is not defined.

e Definition: If V' is an affine variety, we say f € k(V) is defined at a point P if f = a/b for some a,b € T'(V)
and b(P) # 0. If f is defined at P, its value f(P) is the ratio a(P)/b(P) € k. The local ring of V at P,
denoted Op(V), is the set of rational functions f € k(V') that are defined at P.

o As we have essentially discussed already in the context of the function field F(¢) in one variable, the
local ring Op (V) is in fact a local ring, with maximal ideal mp (V') given by the elements f € Op(V)
that vanish at P.

o The points P for which f is not defined are the poles of f, since they are necessarily zeroes of its
denominator.

o Exercise: Show that I'(V) = Npecy Op(V): in other words, that a function with no poles is a polynomial.
(Note of course that k is algebraically closed here!)

e We will emphasize here that there may be numerous ways to write f = a/b as a quotient of polynomials,
and it may be necessary to work with different “equivalent” formulas in order to verify that f is defined at a
particular point P.

e Example: Consider the affine variety V = V(y? — 2% + 1) in A?(k) for k = C and the rational function

="t

-1
o Tt is clear from the expression f = 77 that f is defined at all points P = (x,y) € V where y # 0.
Yy
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o However, because I'(V) = k[z,y]/(y* — 2% + 1), we see that y> = 22 — 1 in T\(V), by factoring and
rearranging we see that L —y’_ 1 inside k(V'). Therefore, f is also equal to %, and this latter
x x

expression shows that f is also defined at the point (1,0).

z—1
o On the other hand, there is no way to rewrite f = in such a way that it is defined at (—1,0): if
z—1

Yy
which is a contradiction.

— P then (x — 1)g = yp but then evaluating both sides at P = (—1,0) produces —2¢(P) = 0,

o Remark: More generally, the same argument shows that if the expression for f(P) is of the form a/0 for
a # 0, then f is not defined at P. (If, of course, we obtain an expression 0/0, then f could possibly be
defined at P.)

e Definition:If V' is an affine variety with function field k(V'), its dimension is defined to be the transcendence
degree of k(V') over k. An affine curve is an affine variety of dimension 1.

o Examples:V (y — x) and V (y? — 2% + 1) are affine curves in A?(k).

o If we think of V' = V(I) as being cut out from A™(k) by the generators of I, then the dimension (as
defined above) agrees with the intuitive topological sense of the dimension of V(I) as a (hyper)surface,
when k£ = C.

e We outline some facts about affine plane curves (i.e., affine curves in A%(k)):

1. Via the correspondence C' — V' (f), an affine plane curve C'is the same as a nonconstant monic irreducible
polynomial f € k[z,y]. We define the degree of C to be the degree of the corresponding polynomial f.

o Proof: As noted in an exercise earlier, the irreducible affine sets in A2(k) are () (dimension 0),
single points (dimension 0), A?(k) (dimension 2), and the sets of the form V(f) where f is a monic
irreducible polynomial (these are the only sets of dimension 1, so they are the only curves).

2. If P is a point of the affine curve C' = V(f), we say P is a singular point if f,(P) = f,(P) = 0, and
otherwise we say P is a nonsingular point (or smooth point or simple point). We say that C' itself is
smooth if all points of C' are smooth points.

o The main idea here is that a point P is singular if and only if C' does not have a well-defined tangent
line at P.

o To find the tangent line(s) to a curve at a point P, we simply expand the defining polynomial f as
a local Taylor series centered at P = (o, o), i-., as f = ap,0 + a1,0(z — x0) + a0,1(y — yo) + az,0(z —
z0)? + a11(x — x0)(y — yo) + ao2(y — yo)* + - -. Then the tangent lines are obtained by factoring
the lowest-degree homogeneous component appearing in the factorization.

o In particular, since ag,o = f(P) =0, a1,0 = fz(P), and ag1 = f,(P) by the usual Taylor expansion,
we see that there is a unique tangent line precisely when the linear term does not vanish (i.e., P has
multiplicity 1), which is to say, precisely when f,(P) and f,(P) are not both zero.

o Example: The point (0,0) lies on the variety V(z + 2% — 2y — y5). Writing the curve locally near
(0,0) yields f = (z — 2y) + 2> — 3, and the lowest-degree homogeneous component is z — 2y. Here,
the curve has a unique tangent line at (0,0) given by  — 2y = 0 (which one may check explicitly
using calculus).

o Example: The variety V(y? — 22 — 2%) has a singular point at (0,0). Writing the curve locally near
(0,0) yields f = —2? + y? — 23, and the lowest-degree homogeneous component is (—xz? + y?) =
(—x+1vy)(—z —y). Here, the curve has two different tangent lines, y = x and y = —z, which is made
very clear by actually graphing y? = 23 4+ 22 (the curve crosses itself at (0,0)).

o Example: The variety V (y? — 2®) has a singular point at (0,0). Writing the curve locally near (0,0)
yields f = y? — 23, and the lowest-degree homogeneous component is y2. Here, the curve has a
double tangent line y = 0, which can be seen by graphing y? = 2 (the curve has a cusp at (0,0)).

o The degree of the lowest term with a nonzero coefficient in the local expansion of f at P is called
the multiplicity of P. One may show that for sufficiently large n, the multiplicity of C' at P is equal

to dimy (m%/m’5tt), where mp is the maximal ideal of the local ring Op at P.
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3. A point P is on an affine curve C is smooth if and only if the local ring Op(C) is a discrete valuation
ring.

o Proof: We will show more specifically that if L : {ax + by + ¢ = 0} is any line through P not tangent
to C at P, then the image of L in Op(C) is a local uniformizer.

o For this, apply a linear change of variables to move P to (0,0), to make y the tangent direction, and
2 the line through P not tangent to C' at P. Then (regardless of the behavior at P), the maximal
ideal mp(V) of the local ring Op(V) is generated by z and y.

o Furthermore, following the linear change of variables, the local expansion of f is f = y+[terms of degree >
2], which is of the form yg(z,y) + 2h(z,y) for some polynomials g, h € k[x,y] where g(0,0) = 1. In

— h
the coordinate ring T'(C) = k[z,y]/(f), we have g = —22h, and so y = —x?— in the function field
g

kE(V). Since g(0,0) = 1 is not zero, this shows y is defined at P and in fact evaluates to zero at P,

so y € mp and y is a multiple of x. Thus, = generates mp, which establishes the claimed result.
o For the converse, we invoke the fact noted above that for sufficiently large n, the multiplicity of C
at P is equal to dimy(m%/ms""), where mp is the maximal ideal of the local ring Op at P. Here,

since the multiplicity is equal to 1 by hypothesis, the valuation of y must actually equal 1.

4. If C, = V(f) and Cy = V(g) are two distinct affine plane curves sharing no common component, then
their intersection C1; N Ce = V(f, g) is finite. We may associate a divisor to this intersection C; N Cy as
ZPeCmCQ np P, where np is the intersection number of C;NCy at P given by np = dimg Op(A2)/(f, g).

o For polynomials in one variable, the ideal (f,g) is principal and generated by the ged of f and g.
(One may check that the intersection number at a point P, under the definition above, is the power
of t — P that divides their ged.)

o For polynomials in two variables (f,g) will no longer be principal, but it still carries the natural
sense of being a “common divisor”. Thus, we can think (roughly) of the divisor }pc o, nPP as
describing the precise way in which the curves intersect.

o It is not particularly obvious that this value dimy Op(A?)/(f,g) is really the right definition. It is not
hard to see that the value is invariant under linear changes of coordinates, and that the intersection
number is 1 whenever P is a simple point of C; and Cy where C; and Cs meet transversally (i.e.,
their tangent lines at P are different). It is also additive when we take unions of curves.

o We will not really use this particular formulation of divisors; it is merely some motivation for how
divisors arise in a fairly natural way in the context of curves.

e With all of this in hand, we can see that if C'is a smooth affine curve over an algebraically closed field k, then
the points of C' all correspond to primes of the associated function field k(C'), since by hypothesis the local
rings are all DVRs.

o However, even for A'(k), there is one prime missing, namely, the prime at oo, which does not arise as
the local ring corresponding to any point of C.

e To fix this issue, we instead need to work instead with projective varieties, which will neatly solve this issue
of “missing primes”.

0.18 (Nov 5) Student Presentations of HW2

0.19 (Nov 10) Projective Space and Projective Curves
e First, the basics of projective space:

o Definition: For a field k, we define projective n-space P*(k) = {[zo : @1 : - -+ : Zp] : @; € k not all zero}/ ~,
where P ~ @ if P = AQ for some nonzero A € k. Equivalently, P"(k) is the set of lines through the
origin in A"T1(k).

o We use the notation [zg : 21 : --- : x,] to evoke the idea of considering only the ratios between the
coordinates, since (for example) in P!(k) the points [1 : 1] and [2 : 2] are the same. The coordinates z;
of a point P € P"(k) are not well-defined, but since the equivalence is only up to scaling by a nonzero
constant, the statement “z; = 07 is still well-defined, as are the ratios z;/z;.
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o For the set U; = {[xo : 1 : -+ : ®y] 1 @ = 1}, we can see that U; looks exactly like A™(k) (if we just
delete the coordinate z; = 1), and P™(k) = U U;.

o The complement of the set U; is the hyperplane z; = 0, and it looks exactly like P"~1 (if we just delete
the coordinate z; = 0).

o Thus, somewhat informally, we have P"(k) = A" (k) UP"~!(k), where we can think of A"(k) as being
the points with x,, = 1 and P"~!(k) as being the points with =, = 0.

o Example: We have P!(k) = {[z: 1] : z € k} U {[1,0]}, which looks like A along with a point at cc.

e We cannot sensibly plug a projective point into an arbitrary polynomial, since the result is not well-defined
even up to scaling®. However, for our purposes we only need to describe vanishing sets, which (at least) have
a chance of being better behaved.

o For example, for f(x,y) = 2% — y?, it is reasonable to say that the projective point [1 : 1] should be in
the vanishing set for f: not only do we have f(1,1) = 0, but in fact for any point [t : ¢] equivalent to
[1:1], we have f(t,t) =0 as well.

o On the other hand, for g(x,y) = x — 92, it is less reasonable to say that [1 : 1] should be in the vanishing
set for f: although f(1,1) =0, in general f(t,t) =t — t? need not be zero for other values of ¢.

o One option would be to say that P € P"(k) is in the vanishing set of f € k[xo,...,x,] if f(P) =0 for
all choices of coordinates for P.

o Exercise: Suppose k is an infinite field, P € A"*1\{0}, and f € k[zo,...,x,]. If we write f = fo +
fi+ -+ + fq for homogeneous® polynomials f; of degree i, show that f(AP) = 0 for all A € k> if and
only if f;(P) = 0 for all 4. [Hint: Use linear algebra and the fact that Vandermonde determinants are
nonvanishing,. |

o Per the exercise above, we see that when & is an infinite field, requiring f(P) = 0 for all choices of
coordinates for P is equivalent to requiring that all of the homogeneous components of f vanish.

o For consistency with finite fields (which have nonzero polynomials that vanish everywhere, causing issues
with the argument above), we instead define the vanishing of a polynomial f on a projective point P in
terms of homogeneous components.

e Definition: If f € Ek[xo,...,z,] is a polynomial with f = fo+ f1 + - + fq for homogeneous polynomials f; of
degree i, we say that f vanishes at P € P"(k), and write f(P) =0, if f;(P) = 0 for each 1.

o Note that f;(AP) = M f(P) so the vanishing condition on f; does not depend on which equivalent
coordinates are used for P.

o Example: The polynomial f(x,y) = 2 — y? vanishes at the projective point [1 : 1] since its only nonzero
homogeneous component 2 — y? vanishes at P, but the polynomial g(x,y) = x — y* does not since its
homogeneous components are z and —y? and these do not vanish at [1 : 1].

o The main theme is that when we want to work with polynomials in projective space, we want to consider
only homogeneous polynomials.

e Now that we have given a reasonable definition of vanishing for projective points, we can define the projective
versions of the operators V and I:

e Definition: If S is any set of polynomials in k[zo, ..., x,], we define the vanishing locus V(S) = {P € P"(k) :

f(P)=0for all f € S}. Conversely, if X is any set of points in P (k), we define the ideal of functions vanishing on X
as I(X) ={f € k[zo,...,zs]) : f(P)=0forall Pe X}.

o Exercise: Identify V(zg), V(23), V(21 — x0), V(z1 — 23), V(22 — 23), V(z0,71), V(20,21,72), and
V(zozy — 23) in P2(k).

4For example, if f(z,y) = 2 +y2, we could try to define f on the projective point [1 : 2] by plugging in = 1 and y = 2, thus yielding
the value 5, but this clashes with attempting to define f on [2 : 4] by plugging in = = 2 and y = 4 to obtain 20, since [1: 2] = [2: 4] as
points in P! (k).

5Recall that a polynomial is homogeneous of degree d if all of its monomial terms have total degree d. For example, 22y — 323 + zyz
is homogeneous of degree 3.
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o Exercise: Show that all of the basic properties of the affine operators I and V' also hold for the projective
I and V (suitably modified):

1. If I is the ideal generated by T C k[zo, ..., x,], then V(T) =V (I).

2. V(0) =P"(k), V(1) =0, and V({a;z; — a;x; o<ij<n) = {{ao : a1 : -+ : an]}.

3. I(0) = K[zo,...,xyn], I(P") = 0 when k is infinite, and I({fag : a1 : --- : an]}) = ({aiz; —
aji}0<i,j<n)-

4. V(U;L) = niV(I) and V(1) = V(I) UV (J).

5. For ideals I and J, if I C J then V(I) D V(J), and for sets X and Y, if X C Y then I(X) D I(Y).

6. For any subset S of k[zg,...,x,], S C I(V(S)) and V(S) = V(I(V(9))).

7. For any subset X of P*(k), X C V(I(X)) and I(X) = I(V(I(X))). Furthermore, I(X) is a radical

ideal.

e Owing to our definition of vanishing in terms of homogeneous components, the ideals of sets in P™(k) have an
additional property:

e Definition: An ideal I of k[zg,...,z,] is homogeneous if, for any f € I with homogeneous decomposition
f=fo+ fi+---+ fq, it is true that each component f; € I.

o It is easy to see that I(X) is homogeneous, since for any f = fo+ f1 + -+ fa € I(X), by definition of
vanishing we see that for any P € X we have f;(P) =0 and so f; € I(X).

o Exercise: Show that an ideal I of k[x,...,x,]| is homogeneous if and only if I is generated by finitely
many homogeneous polynomials.

e We also have a projective version of the Nullstellensatz, which is essentially the same as the affine version
except that we must account for the fact that the vanishing locus of the ideal (zg,1,...,2,) in P" is empty
since [0: 0 :---: 0] is not a point of P™:

e Theorem (Projective Nullstellensatz): Let k be an algebraically closed field and I be a homogeneous ideal of
klxo, ..., 2zn]. Then the following hold:

1. (Weak) V(I) = 0 if and only if I contains all monomials of sufficiently large degree, if and only if rad(1)
contains (zo, ..., Z,).

2. (Strong) If V(I) # 0, then I(V (1)) = rad(I).

o The proofs are similar to those of the affine Nullstellensatz, and are left as exercises.

o Owing to the fact that its vanishing locus is trivial, and thus can essentially be ignored when doing
computations, the ideal (zg, 21,...,z,) in k[zg, ..., 2,] is called the irrelevant ideal.

e Next, we define algebraic sets, varieties, and coordinate rings in P. The ideas proceed essentially the same
way:

e Definition: A projective algebraic set is a set in P™(k) of the form V(I) for some ideal I of k[zg,...,x,]. A
projective algebraic set V' is reducible if it can be written as V = V3 UV, where Vi, Vo # V| and it is irreducible
otherwise. A projective variety is an irreducible projective algebraic set.

o By essentially the same arguments as in the affine case, V is irreducible if and only if I(V') is a prime
ideal of k[, ..., x,], and any projective algebraic set can be written uniquely as a union of irreducible
components V3 U Vo U--- UV, such that V; € V; for any i # j.

e Definition: If V' is a projective variety, then its (homogeneous) coordinate ring is the integral domain I'(V') =
klzo, ..., zp]/I(V).

o As before, we may decompose the polynomials f € T'(V') as f = fo+ f1+: - -+ fq where f; is homogeneous
of degree i.

o Since I(V) is prime, the coordinate ring is an integral domain, so its fraction field is well defined. Unlike
in the affine case, however, the elements of this fraction field do not generally determine functions on V/,
because a ratio of polynomials need not be a function on V.
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. . . . +hHh+-+ . .
o The first obvious issue is that for a ratio f = fot 1y fd, the various homogeneous terms in the

. , g gotgit+-+ga , _
numerator and denominator will not transform the same way if we choose a different representative for

the projective point P € V' at which we are attempting to evaluate f/g. (For example: what is the value

2
of £ +y at the projective point [1 : 1]7)
Y

o To handle this issue, we must only have a single homogeneous component in the numerator and de-
nominator. But even here, in order for the ratio to be well-defined, the degrees of the numerator and
denominator must be equal.

o When we restrict to rational functions of this form, however, we do obtain well-defined functions on
fP) _ XUf(P) _ f(P)
g(AP)  Xlg(P)  g(P)

projective points: if f, g are both homogeneous of degree d, then , so the ratio

f/g is well defined regardless of the representative of P we use.

o Definition: If V' is a projective variety, its function field £(V') is the set of elements z in the fraction field of T'(V')

such that z can be written in the form z = ! for some homogeneous polynomials f, g € k[xo,...,z,] of the
g

same degree. We say z is defined at a point P € V if z = i for some g with g(P) # 0. The local ring of V_ at P
g
is Op(V)={z € k(V) : z is defined at P} with maximal ideal mp(V) ={z € Op(V) : z(P) =0}.

o As in the affine case, we may require different expressions z = f/g at different points P.

X -7

e Example: Consider the affine variety V = V(Y2 + Z2 — X?2) in P?(C) and the rational function f = v

k(V).

S

that f is defined at all points P = [X : Y : Z] € V where

Y # 0, which is to say, at all points of the form [X : 1: Z] after rescaling. The only points of V' with
Y =0 are those with X2 = Z2, which gives two points: [1:0:1] and [1:0: —1].

o However, because I'(V) = k[z,y]/(Y? + Z? — X?), we see that Y? = X2 — Z2 in T'(V), by factoring and

Y
rearranging we see that = X1z inside k(V'). Therefore, f is also equal to X127 and this

latter expression shows that f is also defined at the point [1: 0 : 1] (and in fact it vanishes there).

o It is clear from the expression f =

—7Z
o On the other hand, there is no way to rewrite f = in such a way that it is defined at [1:0: —1]:
X -7
Y
Y =0, Z = —1 produces —2¢(1,0,—1) = 0, which is a contradiction since this means ¢(P) = 0.

if

— L then (X — Z)q = Yp but then evaluating both sides (as polynomials in X,Y, Z) at X =1,
q

o Remark: Note that this is just the projective version of the example we did earlier for the affine variety
V=V(y*+1—2?)in A2

e As clearly indicated by the similarity of the calculations in the example above and the nearly-identical affine
example from earlier, there is quite a lot of interplay between projective and affine spaces.

o One such correspondence is obtained by viewing P" as the lines through the origin in A"*!, so for any
set S in P" we may write down the set of its corresponding points in A”*! by converting the point

[xo : 21 : -+ : @] to the point (g, z1,...,Zy,).

o Explicitly, if S C P, the cone C(S) of S in A" is the set {(zo,21,...,2p) @ [¥o : @1 : -+ : x,] €
S}uU{(0,0,...,0)}.

o Exercise: When V is a nonempty projective algebraic variety, show that Lgine(C(V)) = Iprojective(V),

and when I is a homogeneous ideal with Vjrojective (1) 7 0, show that C(Virojective(I)) = Vatine ().

e Although the cone of a variety shares the same underlying ideal, and thus has the same coordinate ring and
function field, its dimension is different.
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o

o

We would like instead to think of P™ as being A™ plus a hyperplane at co, and so an affine variety in A"
should give rise to one that looks essentially the same in P, except for having some additional points in
the hyperplane at oo.

The main idea, as exemplified by comparing the example above to its affine version, is that of homoge-
nization and dehomogenization.

e Definition: If F € k[xo,z1,...,2,] is a polynomial, its dehomogenization with respect to zg is Fi =
F(l,z1,...,2,). Inversely, if f € k[z1,...,2,] is a polynomial, its homogenization with respect to z is

f*

e Our

= xgcg(f)f(xl/x(b $2/x07 s 7xn/x0)-

More explicitly, if f € k[zi,...,2,] has homogeneous decomposition f = fo + f1 + --- + f4, then
Fr=alfotal it + fa

Example: The homogenizations of 2% + 2, 4 +z123 — 325, and 1 are 22 + xoz2, 423 — r3z123 — 325, and
1 respectively.

Example: The dehomogenizations of x3 + 3zor1 + z172, T3 + dwo23 + 23, and 23 are 1 + 3z1 + 2179,
1+ 422 + 23, and 1 respectively.

The main idea is that dehomogenizing removes the variable xo by setting it equal to 1 (thereby usually
creating a non-homogeneous polynomial in the remaining variables x4, ..., z,) while homogenizing takes
a non-homogeneous polynomial in z1,...,z, and makes it homogeneous in g, z1,...,z, by using the
extra variable xy to make all of the terms have the same degree.

Homogenization and dehomogenization are essentially inverses of one another, aside from occasionally
losing powers of zg.

Exercise: Show that (FG). = F.Gy, (fg)* = f*g*, (f* )« = f, (Fu)* = F/xgxo(f), (F+G). = F. +G,,

and 08U HdeR(@)—dea(+0) (p o e pde(@) g pden()

interest here is that homogenizing an affine equation creates a projective one, and dehomogenizing a

projective equation yields an affine one, thereby giving a correspondence between affine varieties and projective
varieties.

o

Motivating Example: Homogenizing the affine equation x7; + zo = 1 yields the projective equation
x1 + z2 = xo. An affine point (1, x2) satisfying x1 + 22 = 1 then yields a projective point [1 : z; : 2] =
[yo : y1 : yo] satisfying y1 + y2 = yo. If we compare the affine points to the projective ones, we see that
the projective variety consists of the points [1 : 1 : 3], which all correspond to affine points, along with
one additional point [0 : 1 : —1] which we think of as the point at co on this line.

Motivating Example: Dehomogenizing the projective equation x3zq = x3+z123 yields the affine equation
r3 = 23 + r1. A projective point [zg : 71 : x2] satisfying x3z9 = 23 + 2122 then yields an affine point
(y1,y2) = (w1/20,72/70) satisfying y3 = y3 + y1, as long as 29 # 0. When we dehomogenize, the
projective points [z : 1 : 23] with 2y = 0 “disappear” from the affine curve (note here that there is only

one such point, namely [0: 1 :0]).

e In order to make this precise, we can extend homogenization to ideals and then to affine algebraic sets:

e Definition: If I = (f1,..., fx) is an ideal of k[z1, ..., x,], the homogenization of I is the ideal I* = (ff,..., f{)
generated by the homogenizations of the generators of I. Conversely, if J is an ideal of k[xg,z1,. .., 2], the
dehomogenization of J is the ideal J, = {g. : g € J} of dehomogenizations of the elements of J (and is

generated by the dehomogenizations of the generators of J).

[¢]

e}

Per the definition, we see immediately that I* is a homogeneous ideal.

Note also that the homogenization of I is not simply the set of homogenizations of elements of I (the
latter is not generally an ideal, since it is not closed under scaling by (), but rather the ideal generated
by these homogenizations; this is why the two definitions appear slightly different. The dehomogenization
of J is, however, just the set of dehomogenizations of elements of J.

Example: For I = (22,21 + 23), we have I* = (2%, 211 + 13).
Example: For J = (2321, 2% + 23), we have J, = (z1,2% + 23) = (71).
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e Definition: If V' is an affine algebraic set, then for I = I,gne(V) we define the homogenization of V' to be
the projective algebraic set V* = Viyojective (L *). Conversely, if W is a projective algebraic set, then for
J = Iprojective (W) we define the dehomogenization of W to be the affine algebraic set W, = Vagine(Jx)-

o Example: If W = V(2321 + moz3) in P2, then J = [(W) = (2321 + 2023) so J. = (z1 + 23) and thus
W, = V(z1 +23) in A%

o Example: If V = V(21 + 23) in A2, then I = (V) = (z1 + 23) so I* = (xoz; + 23) and then V* =
V(zozy + 23) in P2,

o In the pair of examples above, we can see that (W,)* = V(xoz1 + 23) is not equal to W (the defining
polynomial is now missing a factor of xg, resulting in a loss of most points of the form [0 : x; : 5] from
W), whereas (V*), is equal to V.

e These examples typify the general behavior of homogenizing and dehomogenizing: up to some minor issues
regarding losing powers of xg, these operations are essentially inverses, and thus allow us to go back and forth
between P" and A™.

e Proposition (Homogenization of Affine Sets): Let k be an algebraically closed field, let Hy, = V(x0) denote
the hyperplane at co inside P", and let Uy = P™\ Ho, be its complement. Also let V, Vy, V5 be affine algebraic
sets and W, W1, W5 be projective algebraic sets.

For any V we have (V*), = V.

For @g : A™ — P" with @o(21,...,2,) = [L: 211+ : @), we have VN Uy = ¢o(V).

If Vi C Va C A" then Vi C Vi C P, and if Wy € Wa C P™ then (Wy), C (Wa), C A™.
If V is irreducible in A™ then V* is irreducible in P".

If V C A™ then V* is the smallest projective algebraic set in P that contains ¢q (V).

S o D

If V =u;V; is an irreducible decomposition in A", then V* = U,;V;* is an irreducible decomposition in
P,

If V is a nonempty proper algebraic subset of A™, then no component of V* lies in or contains H.

~

8. If W is a nonempty proper algebraic subset of P" and no component of W lies in or contains H.,
then W, is a proper algebraic subset of A™ and (W,)* = W. More generally, for any W we have
W =W.)*U(Hx NW).

o Proofs: (1)-(3) are immediate from properties of (de)homogenization and V' and I.

o (4) follows by observing that if I is prime then so is I*.

o For (5), suppose that W C P" contains po(V'). Then for any f € I(W), we must have f, € I(V), so
f= xgmo(f)(f*)* € I(V) as well. Therefore, I(W) C I(V)* so W contains V*.

o For (6), note that (4) shows that each V;* is irreducible and (3) shows that none of them contain
another. Also, U;V;* is also the smallest projective algebraic set that contains U;po(V;) = ¢o(V) so
it equals V* by (5).

o For (7), we may assume by (6) that V' is irreducible. Then V* is not a subset of H., because (2)
tells us that V* N Uy = ¢o(V) # 0. For the other part, by the Nullstellensatz, since V' is a proper
subset of A™ we have I(V) # 0: then for any nonzero f € I(V) we see that f* is not a multiple of
xo. But if V* contains H, then I(V)* C I(Hy) = (0), which is a contradiction.

o For (8), assume again by (6) that W is irreducible. Since @o(W.) C W, it is enough to show
that W C (W.,)*, which follows by (3) from showing I(W,) C I(W). So suppose f € I(W,): then
f™ € I(W),by the Nullstellensatz, which means 2% (f™)* € I(W) for some power k. But since I(W) is
prime and xo & I(W) because W is not contained in V(z¢) = Ho, this means (f*)* = (f*)" € I(W),
so again by primality this means f* € I(W) as required. The second part follows by analyzing the
various possible cases for W N H..

e Per (1), (4), and (5) above, if we identify V with its image ¢o(V) in P", we can view V* as being the
projective closure of the affine variety V.

o In particular, if we ignore varieties contained entirely within the hyperplane H,, then (7) and (8) tell
us that we have a natural bijection between nonempty affine and projective varieties.
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Based on the simplicity of the relationship between V and V*, it is natural to expect that the function
fields of V and V* should be the same, which is in fact the case:

e Proposition (Equivalence of Function Fields): If V is an affine variety with projective closure V*, then the
function fields k(V') and k(V*) are isomorphic. Furthermore, if P is any point on V' with corresponding point
P* on V*, then the isomorphism of k£(V) and k(V*) also yields an isomorphism of Op (V) with Op-(V*) and
of mp(V) with mp~(V*).

e}

Proof: Suppose that ?76 I'(V*) is a homogeneous polynomial in k[x, ..., z,]/I(V*). By dehomogenizing,
we get a residue class f, € k[z1,...,2,]/I(V); note that this residue class is well defined by (1) from the
proposition above.

We may extend this map on coordinate rings to one on the fraction fields k(V*) to k(V) by taking
W(f/g) = f«/g« for any homogeneous polynomials f and g of the same degree. (Note that this map is
simply dehomogenization; the point is that it is still well defined up to equivalence.)

On the other hand, we also have a natural inverse map from (V') to k(V*) by homogenizing: explicitly,

we may take 7(p/q) = a:geg(q)fdeg(p ) /q*, which is a quotient of homogeneous polynomials of the same

degree and is therefore an element of k(V™*).

Since 1 is clearly a ring homomorphism, we see that k(V*) is isomorphic to k(V'). It is also easy to see
that this isomorphism restricts to an isomorphism on the corresponding local rings, since g(P) # 0 if
and only if ¢,(P*) # 0, and f(P) = 0 if and only if f.(P*) =0.

0.20 (Nov 12) Rational Maps and Extensions of Function Fields

e We can also homogenize and dehomogenize with respect to other variables (e.g., z1, 2, ... , ©,); there is no
particular reason to use x( specifically, other than convenience.

(¢]

In particular, since the intersection of the hyperplanes V(x¢), V(21), ... , V(z,) in P" is empty, their com-
plements cover P". Each of these complements corresponds to a copy of A" obtained by dehomogenizing
with respect to the corresponding variable.

Thus, if W is any projective variety, we may analyze any point of W “affinely”, inside one of the possible
dehomogenizations of W.

Since our interest is in plane curves, we will use uppercase letters (X,Y,Z) for the variables of projective
equations and lowercase letters (x,y,2z) for the variables of affine equations, and indicate which variable
is being homogenized or dehomogenized.

For example, we may dehomogenize the projective equation Y2Z = X3 + 3X Z? with respect to X to
obtain the affine equation y%z = 1+ 322, or with respect to Y to obtain the affine equation z = 2 + 3222,
or with respect to Z to obtain the affine equation 3% = 2% + 3.

By dehomogenizing, we see that the projective point [1:2: 1] on Y2Z = X3 + X Z? corresponds to the
affine point (y, z) = (2,1) on y?z = 1 + 22, the affine point (z,2) = (1/2,1/2) on z = 2° + 222, and the
affine point (x,y) = (1,2) on y* = 23 + 3z.

Likewise, the projective point [0:1:0] on Y2Z = X3 + X Z2, which disappears on the two affine curves
y?z = 1+ 22 and y? = 23 + z since the dehomogenized variable is zero, still corresponds to a point
(x,2) = (0,0) on z = 23 + x22.

We think of the projective point [0 : 1 : 0] as being a “point at infinity” on the affine curve y? = a3 +x; if
we want to study its local ring, we can simply work instead with the other dehomogenization z = x> +x22,
where it corresponds to (0, 0).

e We can see, therefore, that working with projective curves nearly addresses the issue of “missing” points at
infinity, which (in the language of function fields) corresponds to primes at infinity.

[¢]

Furthermore, by working with appropriate dehomogenizations, we may import all of our terminology
and results about affine plane curves from earlier without much change: e.g., projective plane curves are
of the form V(f) for a homogeneous irreducible polynomial f € k[X,Y, Z], a point of V is nonsingular
when fz, fy, f- are not all zero, and so forth.
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o Exercise: Show that if f € k[X,..., X,] is homogeneous of degree d, then X fx, +--- + X, fx, = df.
(This is a famous result of Euler.) Deduce that for a homogenous f € k[X,Y, Z], if two of fx, fy, fz
are zero then the third is as well.

o Let us now be more precise about the correspondence between smooth projective curves and function
fields over an algebraically closed field k.

o If we have a smooth projective curve C, then its associated function field k(C) is a function field that
has transcendence degree 1 over its constant field & (in our language). Each point P on the curve has an
associated local ring Op(C) that corresponds to a prime of the function field; each of these local rings is
a DVR since C is smooth.

o If we have a function field K/k of transcendence degree 1, to construct the associated curve, first choose
any prime P of K (necessarily of degree 1 since k is algebraically closed). Then the associated DVR Op
is finitely generated as a ring over k, so since it is a domain, it is isomorphic to k[z1,...,z,]/I for some
prime ideal I. If we take C' = V(I), we obtain an affine curve whose function field is K. With some
additional work, one can eventually show that the projective closure of this affine curve (whose function
field is also K, as we showed above) is smooth.

e So far, we have mostly been assuming that the constant field k is algebraically closed. In particular, since we
want to focus on function fields over Fy, we need to remove this assumption.

o Explicitly, suppose V is a variety over k and F is a subfield of k. We would naively like to define the set
of E-points of V as VN A"(E) if V is affine, and as V N P"(E) if V is projective.

o We may make this more precise using Galois actions: specifically, assuming that k = E, then the Galois
group of k/E acts naturally on the k-points of V.

o Definition: Let E be a field with algebraic closure k, and let G = Gal(E/k). If V is a variety over k, we define
the E-points of V to be the set of points of V' over k that are fixed by G.

o Explicitly, P is an E-point of V if and only if o(P) = P for all o € Gal(E/k).

o The set of E-points of V is precisely V N A™(FE) if V is affine, and is V NP"*(E) if V is projective, since
the given condition is equivalent to saying that all of the coordinates of the point lie in E.

o Example: For E = F5 and V = V(y? — 22 — 1) in A?, the set of E-points of V is (z,y) = (0,1), (0,4),
(2,0), and (3,0).

o Example: For F = F3 and V = V(Y222 — XZ3 — X*) in P2, the set of E-points of V is [X : Y : Z] =
0:0:1],[0:1:0],[1:0:2].

o We can also define the elements of the coordinate ring and function field of V' over E, namely, as the
elements of I'(V') and k(V) fixed by E, respectively.

e Definition: If F is a field with algebraic closure k, we say that a variety V is defined over E if I(V) can be
generated by polynomials with coefficients in E.

o We will think of all varieties as implicitly being defined over an algebraically closed field, even if it they
are actually defined over a subfield.
o Thus, we may meaningfully speak of the points of V' on arbitrary algebraic extensions of F.

e We now discuss maps between varieties. The most natural starting point is to consider maps defined by
polynomials:

e Definition: If V is an affine variety in A™(k) and W is an affine variety in A™(k), a map ¢ : V — W
is called a polynomial map from V to W if there exist polynomials T4,...,T,, € k[x1,...,2,] such that

olar, ... ,an) = (T1(ar, ... an), Tolar, ... an)y ..., Tm(ag, ..., an)).

o Example: The map ¢ : Al — A! with p(a) = a® + a is a polynomial map, as is the map ¢ : Al — A3
with ¢(a) = (a,a?,a?).

o Example: The map ¢ : V(22 +y? — 1) — A! with ¢(x,y) = x is a polynomial map.
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o Example: The map ¢ : A2 — V(22 +y? — 22) with ¢(a,b) = (2ab, a® — b?,a® + b?) is a polynomial map.
Note that this map is well-defined because (2ab)? + (a? —b?)? — (a® +b%)? is indeed zero for all (a,b) € A?,
s0 (2ab,a® — b?,a® + b%) € V(22 + y> — 22).

o Example: The map ¢ : V(y — 22?) — V(z — ay) with ¢(x,y) = (z,y,2?) is a polynomial map. Note that
this map is well-defined because for all (z,y) € V(y—12?) we have y = 22, and then (z,y,23) € V(2 —zy).

e Polynomial maps are equivalent to homomorphisms of coordinate rings:

e Proposition (Polynomial Maps and Coordinate Rings): If V' and W are affine varieties, then any polynomial
map ¢ : V — W induces a homomorphism ¢ : I'(WW) — I'(V') on coordinate rings via “plugging in”: ¢(f) =
f o . Conversely, any homomorphism ¢ : I'(W) — I'(V) is induced by a unique polynomial map ¢ : V — W
with 3(f) = fo'p.

o Proof: First suppose ¢ : V — W is a polynomial map. For any f € k[z1,...,x,], define ¥(f) = f o ¢.
Clearly, v is a ring homomorphism (since it is just polynomial evaluation). Furthermore, this map ¥
descends to a well-defined map ¢ : T'(W) — T'(V): this follows by noting that if f € T'(W) is the
I(W)-residue of a polynomial G(z1,...,x,), then ¢(f) = f o ¢ is the I(V)-residue of the polynomial
G(Ty,...,Ty).

o For the converse, we can simply reconstruct the map ¢ from its action on each variable x;. Explicitly,
suppose that ¢ : T(W) — T'(V) is a homomorphism. Then ¢ maps x; + I(W) to some polynomial
T; + I(V) for each 1 < ¢ < m. Then the map ¢(ay,...,an) = (Ti(a,...,an),..., Tm(a1,...,a,)) is
a polynomial map from A" to A™, and it induces a map ¢ : I'(A™) — T'(A™). From the information
given we know that ¢(I(W)) C I(V), so (V) C W. Thus, ¢|y is a polynomial map from V' to W, and
&(f) = f o ¢ as required.

e Definition: If V and W are affine varieties, a polynomial map ¢ : V — W is an isomorphism if it possesses
an inverse polynomial map ¢ : W — V (i.e., with p o9 = idy and ¥ o p =idy).

o By the above, we see that V and W are isomorphic if and only if their coordinate rings are isomorphic
as k-algebras (i.e., if their coordinate rings are isomorphic as rings where the isomorphism also fixes k).

o Example: The map ¢ : V(x —y) — V(z — 2y) with p(z,y) = (2z,y) is an isomorphism with inverse
U(z,y) = (2/2,y).

e We would like to write down a similar definition for projective varieties, which we can do at the cost of a bit
of added complexity.

o The most immediate issue is that we need to insist that all of the polynomials T; be homogeneous of the
same degree, in order to ensure that “plugging in” to a polynomial map is well defined.

o However, this is not the only obstruction; difficulties also arise in the event that all of the polynomials
T; vanish simultaneously, since then the resulting value does not yield a well-defined point in P*.

e Definition: If V' and W are projective varieties, a rational map from V to W is a map of the form ¢ = [pg :
©1 ¢+ ¢ @m] where the ¢; € k[xg,...,z,] are homogeneous polynomials of the same degree, and such that
for all f € I(W), we have f oo = f(po(zo,..-,Zn)s -, om(Zos...,xpn)) € I(V).

o If ¢ is a rational map, then for P € V' we can evaluate ¢(P) = [po(P) : ¢1(P) : - -+ : o (P)] € W as long
as not all of the values ¢;(P) are zero. We can see that this value ¢(P) is well defined because the ¢;
are homogeneous of the same degree, and p(P) € W precisely because f o € I(V) for any f € I(W).

o To illustrate, consider the map ¢ : V(X2 +Y2 —Z2) - Pl given by p[X : Y : Z] = [X +Z : Y]. On
its face, this would appear to be a perfectly well-defined function, since for any equivalent representative
[AX 1 \Y : \Z] we have g[AX : \Y : \Z] = AX + AZ: \Y] = [X+Z:Y] = g[X :Y : Z].

o However, for the point P = [1:0: —1] in V(X2 + Y? — Z?2), the definition states ¢(P) = [0 : 0], which
is not a point of P!.

o Notice, though, that if we work inside I'(V'), we see that [X + Z: Y] =[(X+2)(X - 2):Y(X - 2)] =
[-Y2:Y(X — Z)] = [-Y : X — Z] and this latter expression is defined at [1 : 0 : —1] since it evaluates
to [0 2].
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o

We would like to extend our interpretation of the value of ¢(P) in a way that allows us to make these
kinds of manipulations.

e Definition: If ¢ : V — W is a rational map, we say that ¢ = [ : -+ : @] is defined at P if there exist
homogeneous polynomials vy, . . ., 1, of the same degree such that ¢;1; = ¢;9; (mod I(V')) for all pairs (4, j),
and where 1;(P) # 0 for some 4, and we write ©(P) = [tpo(P) : - -+ : P (P)].

(¢]

(¢]

The idea here is that, inside I'(V'), we view the homogeneous coordinates [¢g : - - : @] and [thg @ -+ - = Pp]
as being projectively equivalent.

We call these “rational maps” because if we work affinely, they arise from rational functions.

e Definition: If V and W are varieties, a morphism from V to W is a rational map that is defined at all points
of V. An isomorphism is a morphism possessing an inverse morphism.

(¢]

If ¢ : V — W is a morphism, then ¢ induces an injective homomorphism on function fields ¢ : k(W) —

k(V) via composition: @(f) = fo .

As in the affine case for polynomial maps, the converse is true as well: any injective k-algebra homo-

morphism on function fields ¢ : k(W) — k(V) (i.e., a ring homomorphism fixing k) yields a morphism

p: V=W,

Example: The map ¢ : V(Y2Z — X3 — XZ?%) — P! given by ¢[X : Y : Z] = [Y : Z] is a morphism. (Note

that there are no points of V(Y27 — X3 — X Z?) where ¢ is undefined, since if Y = Z = 0 then X would

also be zero.)

Example: The map ¢ : V(X2 +Y?—Z22) — Pl given by p[X : Y : Z] = [X + Z : Y] is a morphism, since

it is defined at all points of V(X2 + Y2 — Z?2) as shown earlier.

Example: The map v : P — V(X2 +Y? — Z?%) given by ¢[S : T] = [S? = T? : 25T : S? + T?] is a

morphism. In fact, it is the inverse of the previous morphism, since we have (po¥)[S : T| = ¢[S? —T?:

28T : S24+T? =[25%2:28T) =[S :T)and (o)X : Y : Z] =¢[X +Z:Y]=[(X +2)?-Y?:

V(X +2Z): (X + 22 +Y?=2X(X+2):2Y(X+2):2Z(X+2)|=[X:Y:Z].

Example: Themap ¢ : V(Y2Z—-X3-XZ?) - V(Y?Z-X3-XZ?) givenby Y[ X : Y : Z] = [X : =Y : Z]

is a morphism. In fact, it is an isomorphism, since it is its own inverse.

Example: If & has characteristic ¢ and V is defined over F,, the map ¢ : V — V given by ¢[Xy : X7 :
0 Xp] =[XJ: X{ -+ X2 is a morphism called the Frobenius morphism.

Example: The map ¢ : P! — P? given by ¢[X : Y] = [X?: XY : Y?] is a morphism giving an embedding
of P! into P? (it is an example of the general family of d-uple embeddings). The image of ¢ is the variety
V(XZ - Y?).

Example: Themap ¢ : V(Y2Z-X3-273) - V(Y2Z-X3-Z3) givenby [ X : Y : Z] = 2XY (Y2-92?) :
Y44+18Y222%2-277% : 8Y3Z] is amorphism. (Actually checking that it is well-defined is rather unpleasant,
but it does work out!) This particular morphism arises as “multiplication by 2” on the elliptic curve
V(Y?Z - X3 — 7).

e Restricting now to the case of projective curves, we have the following facts:

1.

2.

If C7 is a smooth projective curve, then any rational map ¢ : C; — Cs is automatically a morphism.

o The idea here is that if P is any point on Cy, then since C; is smooth at P (meaning that the local
ring Op(V) is a DVR), we may choose a local uniformizer ¢ at P.

o Then we can rescale the components of ¢ = [pg : @1 : -+ : ¢] by an appropriate power of ¢ in order
to make the minimum valuation among the y; equal to zero, at which point we see that ¢ is defined
at P.

If ¢ : C; — Cs is a nonconstant morphism of projective curves, then ¢ is surjective, and k(C}) is a
finite-degree extension of @(k(C3)).

o The first statement follows from the result that the image of a morphism of a projective variety is
itself a projective variety (this is usually phrased as saying that projective varieties are complete).
Thus, the image ¢(C1) is a subvariety of Cy: if its dimension is 1 then since Cy is irreducible this
means ¢(Cp) = Ca, and otherwise if its dimension is 0 then ¢(Cy) would be a single point and ¢
would be constant, which we assumed it was not.
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3.

o The fact that k(Cy) is an extension of k£(C2) follows from the fact that ¢ is surjective, and the fact
that the extension has finite degree follows because both k(C7) and k(C2) have transcendence degree
1 over k.

If o : kK(C2) — k(Ch) is an injection fixing k, then there is a unique nonconstant morphism ¢ : Cy — Co
such that ¢ = ¢.

e By putting (3) together with (2), and then letting Galois groups act on both sides (so as to remove the
requirement that k be algebraically closed) we obtain our claimed equivalence of categories from much earlier:

1.

2

Objects) Algebraic function fields K/k of transcendence degree 1 where K Nk = k
Morphisms) Field injections fixing 1 (up to isomorphism)

Objects) Smooth projective curves defined over k

Morphisms) Non-constant rational maps defined over k& (up to isomorphism)

(
(
(
(

e We will now study morphisms of curves in the context of function fields: from the equivalence above, this is
the same as studying field extensions of algebraic function fields K /ks over E/k;.

o

The main advantage here is that in addition to exploiting number-theoretic ideas about field extensions
and ramification, we can also exploit geometric ideas about morphisms between curves.

We may view function field extensions as consisting of two parts: constant field extensions (where we
simply extend scalars in the constant field, by going from E/F, to EF¢n/F¢n for some n) and field
extensions fixing the constant field (going from E/F, to K/F, where K is a finite-degree extension of
On the curves side, constant field extensions are vaguely trivial: they correspond simply to viewing the
curve as being defined over Fy» rather than over Fy. (Very usefully, we can also think of constant field
extensions in terms of the Frobenius morphism, as we will discuss in a moment.)

Field extensions fixing the constant field correspond to morphisms from one curve to another; for this
reason these extensions are called geometric extensions (since they arise “geometrically” rather than from
merely changing the field of definition).

e With all of this in mind, if K is a function field over F,, we can give another very useful interpretation of the
zeta function (k (s) in terms of counting points.

e}

Explicitly, if X is the smooth projective curve corresponding to K /F,, then for P € X(E) we define the
degree of P to be the degree of the residue field Op/mp over F,.

The connection with the degree of a divisor of K is as follows: a divisor D = ) pnpP is defined over
Fg» precisely when it is fixed by the nth power of the Frobenius map.

For an automorphism ¢ we have 0(D) = > pnpo(P) = Y pn,-1(pyP, and so we see 0(D) = D precisely
when n,-1py = np for all points P. By repeatedly applying o, we see that this is equivalent to saying
that all of the Galois conjugates of P have the same coefficient np.

Thus, for example, a point of X defined over F,2 has a single nontrivial Galois conjugate o(P), and the
corresponding prime divisor over F, is P 4+ o(P), has degree 2.

In the same way, a point of X defined over Fy» has a total of n Galois conjugates (including itself), and
so the corresponding prime divisor over F, is P + o(P) + --- + 0"~ 1(P), which has degree n.

1

e Definition: If X is a smooth projective curve over F,, the zeta function of X is defined as (x (s) = doPex vTE

(P)®

[Tpex (1= N(P)=*)~! where N(P) = ¢4°&(") as usual.

[¢]

It is not hard to see, per the discussion above, that (x(s) = (x(s) where K is the function field of X.

e We can give another formula for (x (s) in terms of the cardinalities N,, = #X (Fyn ), the number of F»-points
of X.
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o Explicitly, since X(F,) = U,>; X(Fg), and X(Fgo) C X(F,») whenever a|b, we can see that with
u = ¢~ ° as usual, we have

logCx(s) = Y ~log(1—udeP)=3" 3" &

PeX n=1PeX n=1

where the last equality follows because a point P shows up a total of a times in the sum for n = k
whenever P is defined over Fk/a.

o " t1

n=1

o Example: For C = P!, we have #C(F,») = ¢" + 1. Then log(c(s) =
1
(I—g=*)(1—¢'7*)

n = _log(l —u) —
T = —log(1 - w)

log(1 — qu) = which agrees with our usual zeta function for the rational function

field F,(t)/F,.

o Notice also that if ¢ is the g-power Frobenius map, then the fixed points of ¢™ are the points of X (Fyn).

(1 —u)(1 —qu)
log Cx (u) = 3222, log(1 — myu) — log(1 — u) — log(1 — qu) = S°°  [32%, 7 — 1 — ¢"]u™, and so we get
the formula #C(Fgn) = ¢" +1 — Z?il .

o By the Riemann hypothesis, we obtain the inequality |#C(Fyn) —¢" — 1| < 2g¢"/?, which tells us that

for large n, the number of points on C(Fyn) is ¢™ + O(g"™?). (This is really just a rephrasing of our
results for the general prime number theorem for function fields.)

o By using the Weil conjectures we can make this quite explicit: from (x(u) = we have

Well, you’re at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2018-2025. You may not reproduce or distribute this
material without my express permission.

69



