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0 Number Theory in Function Fields

These are lecture notes for the graduate course Math 7360: Number Theory in Function Fields, taught at North-
eastern in Fall 2025.

0.1 (Sep 3) Overview + Fermat's Last Theorem for Polynomials

• The goal of this course is to elucidate some of the many analogies between number theory in number �elds
and number theory in function �elds.

◦ Some things from classical number theory: primes, factorizations, congruences and modular arithmetic,
Fermat's and Euler's theorems, the prime number theorem, quadratic reciprocity (and higher reciprocity),
Dirichlet's theorem on primes in arithmetic progressions, zeta functions.

◦ Some things from the more modern take on algebraic and analytic number theory: algebraic number
�elds and their rings of integers, Galois theory and its interplay with number �elds, discriminants, class
groups, Dirichlet's unit theorem, cyclotomic �elds, rami�cation, L-functions, the Riemann hypothesis.

◦ Our goal is to do as much of these things as possible in the context of function �elds, where many of
the results are more approachable, because the function-�eld setting has a major kit of additional tools
(namely, algebraic geometry).

◦ Though do note: number theory in function �elds is a beautiful subject in its own right, and not just
because it has so many similarities to algebraic number theory.

◦ We will illustrate how things can become simpler by proving Fermat's Last Theorem, which is quite
notoriously di�cult over Z, for polynomials using only elementary techniques.

• To start, let q = pf be a prime power, and let Fq be the �nite �eld with q elements. The story begins with
the polynomial ring A = Fq[t].

◦ We have the degree map on A: explicitly, for coe�cients ai ∈ Fq and an element f = a0 +a1t+ · · ·+ant
n

with an 6= 0, we de�ne deg(f) = n and sgn(f) = an. (We also set deg(0) = −∞ and sgn(0) = 0.)
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◦ Exercises (trivial): deg(fg) = deg(f)+deg(g), sgn(fg) = sgn(f)sgn(g), and deg(f+g) ≤ max(deg f, deg g)
with equality whenever deg f 6= deg g.

◦ The polynomials with sign 1 (i.e., monic polynomials) behave analogously to the integers with positive
sign (i.e., the positive integers).

◦ We also note that the degree properties easily give a characterization of the units of A: they are the
nonzero constant polynomials.

• Our �rst basic result is the standard division-with-remainder algorithm for polynomials, which we record over
arbitrary �elds for no extra cost:

• Exercise (Polynomial Division): If F is any �eld, then for any f, g ∈ F [t] with g 6= 0, there exist unique
q, r ∈ F [t] such that f = qg + r and deg r < deg g.

◦ The idea is simply to prove that the usual long-division algorithm works by induction on the degree of g.

◦ As a consequence, F [t] is a Euclidean domain, meaning that it is also a principal ideal domain (all ideals
are principal) and a unique factorization domain (every element can be factored uniquely into a product
of irreducibles up to reordering and unit factors).

• As it turns out, unique factorization is essentially all we need to prove Fermat's Last Theorem for polynomials.

◦ We would like to show that the equation fn + gn = hn has no nontrivial solutions in polynomials f, g, h.
Aside from the case n = 4, it is enough to treat the situation where n is a prime.

◦ But we do need to be a little bit careful to write down exactly what the trivial solutions look like, beyond
the obvious ones where one of f, g, h is zero.

◦ For example, if f, g, h are all constants, we can certainly have lots of solutions to fn+gn = hn, depending
on the �eld and on n (e.g., 15 + 15 = 25 inside F3).

◦ We need to avoid the situation where n is divisible by p = char(Fq), since fp + gp = (f + g)p for any
polynomials f, g ∈ Fq[t].

◦ Also, since the equation is homogeneous, we can scale solutions to get new solutions.

◦ To avoid all of these situations, we can consider only the case where f, g, h are relatively prime (since if
they are not, then any common divisor of two of them also divides the third, so we could cancel it) and
where the exponent n is not divisible by the characteristic p.

• Theorem (FLT for Polynomials): Suppose that f, g, h ∈ F [t] are pairwise relatively prime and that p ≥ 3 is
prime with p 6= char(F ). Then the only solutions to fp + gp = hp are when f, g, h are all constants.

◦ We will remark that p ≥ 3 is needed, since the usual parametrization of Pythagorean triples also works
for polynomials: if we take f = a2 − b2, g = 2ab, h = a2 + b2 for any polynomials a, b ∈ F [t], then
f2 + g2 = h2.

• We will give two di�erent proofs: the �rst uses a classical-style in�nite descent argument, while the second
uses a more function-�eld type of argument.

◦ Proof 1: Without loss of generality, we may assume that F is algebraically closed, since any solution to
fp + gp = hp over F is still a solution over the algebraic closure F .

◦ We show the result by inducting on d = deg f + deg g. The base case d = 0 is trivial, since there is
nothing to prove. So now suppose we have a solution with d > 0.

◦ By the assumption that p 6= char(F ), there are p distinct pth roots of unity in F : say, 1, ζp, ζ
2
p , . . . , ζ

p−1
p ,

and we can factor fp + gp = (f + g)(f + ζpg)(f + ζ2
pg) · · · (f + ζp−1

p g).

◦ Next, note that all of the terms f + ζipg are relatively prime: if e divides both f + ζipg and f + ζjpg, then

e also divides the di�erence (ζip− ζjp)g hence divides g, hence also divides (f + ζipg)− ζipg = f , but f and
g are relatively prime by assumption.

◦ Then by unique factorization inside F [t], since all of the terms in the product (f + g)(f + ζpg)(f +
ζ2
pg) · · · (f + ζp−1

p g) are relatively prime and their product is a pth power (namely, hp), each term must
be a pth power up to a unit factor. But since F is algebraically closed, everything in F has a pth root
in F , so the unit factor is also a pth power.
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◦ Thus, in particular, we see that f + g = ap, f + ζpg = bp, and f + ζ2
pg = cp are all pth powers.

◦ Using basic linear algebra to eliminate f and g yields the relation −ζpap + (1 + ζp)b
p = cp, so if we set

a′ = (−ζp)1/pa, b′ = (1 + ζp)
1/pb, and c′ = c, then we have (a′)p + (b′)p = (c′)p.

◦ Note that a′, b′ cannot both be constant, since then f, g would have been constant. But we also have
deg(a′) + deg(b′) = deg(f + g)/p+ deg(f + ζpg)/p ≤ 2 max(deg f, deg g)/p < d, so we have constructed
a solution with smaller positive degree, but this contradicts the induction hypothesis. Therefore, there
are no nonconstant solutions.

◦ Exercise: For any �eld F of characteristic p, we have exhibited nontrivial polynomial solutions to fp+gp =
hp in F [t]. Where and why in the proof of FLT above does the argument break down when char(F ) = p?

• Before giving the second proof, we need a few preliminary results.

◦ First, if f has prime factorization f =
∏
i p
ai
i , de�ne rad(f) =

∏
i pi, the product of the monic irreducible

polynomials dividing f .

• Lemma: We have deg gcd(f, f ′) ≥ deg f − deg radf , where f ′ is the derivative of f .

◦ Proof: Suppose f = paq where p is irreducible and doesn't divide q. Then f ′ = apa−1p′q + paq′ =
pa−1(ap′q + pq′) is divisible by pa−1. Therefore, gcd(f, f ′) is divisible by pa−1.

◦ Taking the product over all primes dividing f shows that
∏
i p
ai−1
i divides gcd(f, f ′), so gcd(f, f ′) ·rad(f)

is divisible by
∏
i p
ai−1
i

∏
i pi =

∏
i p
ai
i = f , so taking degrees yields the inequality.

◦ Exercise: Determine when equality holds, namely when deg gcd(f, f ′) = deg f − deg radf .

• Next, we show a result due independently to Mason and Stothers:

• Proposition (Mason-Stothers): Suppose that f, g, h ∈ F [t] are nonconstant, relatively prime, that f + g = h,
and that not all of f ′, g′, h′ are zero. Then max(deg f, deg g,deg h) ≤ deg rad(fgh)− 1.

◦ Proof: If f + g = h then f ′ + g′ = h′, and then fg′ − f ′g = (f + g)g′ − (f ′ + g′)g = hg′ − h′g.
◦ Note also that fg′ − f ′g is nonzero: if fg′ = f ′g then f must divide f ′g hence that f must divide f ′

since f, g are relatively prime.

◦ Exercise: Suppose f ∈ F [t]. Show that f divides its derivative f ′ if and only if f ′ = 0.

◦ By the exercise we see then that f ′ = 0. But now by the same argument we would also have g′ = 0 and
h′ = 0, contradicting the assumption that not all of f ′, g′, h′ are zero.

◦ Now let df = gcd(f, f ′), dg = gcd(g, g′), dh = gcd(h, h′). Then df , dg, dh all divide fg′− f ′g = hg′−h′g,
and they are all relatively prime since they are divisors of the relatively prime polynomials f, g, h.

◦ This means dfdgdh divides fg′ − f ′g, so taking degrees yields deg(dfdgdh) ≤ deg(fg′ − f ′g) ≤ deg(f) +
deg(g)− 1.

◦ By the Lemma, we have deg(df ) ≥ deg(f)− deg radf , deg(dg) ≥ deg(g)− deg radg, deg(dh) ≥ deg(h)−
deg radh, so summing yields deg(f)+deg(h)+deg(h)−deg rad(fgh) ≤ deg(dfdgdh) ≤ deg(f)+deg(g)−1,
and therefore deg(h) ≤ deg rad(fgh)− 1.

◦ By rearranging we obtain the same bounds on deg(f) and deg(g), and so we are done.

• At last, we can �nish the second proof of Fermat's Last Theorem for polynomials:

◦ Proof 2: Suppose fp + gp = hp. By the assumption on the characteristic, we have (fp)′, (gp)′, (hp)′ are
not all zero.

◦ Then by Mason-Stothers, we see max(deg fp,deg gp,deg hp) ≤ deg rad(fpgphp) − 1, which is equivalent
to p · max(deg f, deg g,deg h) ≤ deg rad(fgh) − 1 ≤ deg f + deg g + deg h − 1 since the radical ignores
powers.

◦ Now apply the simple observation that max(a, b, c) ≥ (a+ b+ c)/3 and set d = deg f + deg g + deg h to
see that p · d/3 ≤ d− 1, which is impossible, since d ≤ p · d/3 by the hypothesis that p ≥ 3.
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0.2 (Sep 8) Quotients of Fq[t]

• We now return to study the structure of quotient rings of A = Fq[t], which (re-posed) is simply studying
modular arithmetic in this ring.

◦ In particular, we will recover almost identical versions of Fermat's little theorem, Euler's theorem, and
Wilson's theorem.

◦ We will also take some time to look at the structure of the unit group of A/gA, which turns out to be a
bit more complicated to write down than the unit group of Z/mZ.

• As noted last lecture, A is a Euclidean domain, so it is a PID and also a UFD. Since every ideal is principal, if
we want to understand the structure of the quotient rings of A, we only have the quotients of the form A/gA
to consider.

◦ We can also assume g is monic by replacing it with its unique monic associate, which does not change
the quotient ring A/gA.

• Using the division algorithm, we can write down the residue classes in A/gA, and in particular compute its
cardinality, quite easily:

• Proposition: Let g ∈ Fq[t] = A be nonzero. Then the residue classes in A/gA are uniquely represented by the
polynomials of degree less than deg(g). In particular, #(A/gA) = qdeg g.

◦ Proof: If f ∈ Fq[t] is any polynomial, then by the division algorithm we can write f = qg + r, and so
inside A/gA we see f = r. So the possible remainders give a complete set of residue class representatives
� but by the uniqueness of the quotient and remainder, no two remainders are equivalent mod g, so in
fact they give all of the residue classes exactly once.

◦ For the counting, if deg(g) = n, then the remainders are of the form c0 +c1t+ · · ·+cn−1t
n−1 with ci ∈ Fq.

Since there are n coe�cients each of which has q possible values, there are qn = qdeg g possible ways to
select a remainder.

• The size of the quotient ring gives a convenient way of measuring the �size� of a polynomial that behaves
pleasantly under multiplication:

• De�nition: For g ∈ Fq[t], we de�ne |g|, the norm of g, to be qdeg g. By the calculation above, |g| = #(A/gA)
when g 6= 0.

◦ Exercise: Show |fg| = |f | · |g| and |f + g| ≤ max(|f | , |g|) with equality whenever |f | 6= |g|.

• Our next goal is to understand the units of A/gA, since this is the context in which to pose Fermat's and
Euler's theorems.

◦ Regardless of the polynomial g, the units of A/gA will contain an isomorphic copy of the constant
polynomials (i.e., the units of A), which is the multiplicative group F∗q .
◦ As is well-known, the multiplicative group of a �nite �eld is cyclic. We record a few proofs of this fact,
for completeness:

• Proposition (Multiplicative Group of Fq): If G is a �nite multiplicative subgroup of a �eld F , then G is cyclic.

◦ All known proofs of this fact are essentially nonconstructive, to varying degrees: there does not seem to
be a nice algorithm for writing down a multiplicative generator of a �nite �eld that is appreciably better
than a brute-force search.

◦ Proof 1: Let G be a �nite multiplicative subgroup of F . By the fundamental theorem of �nite(ly
generated) abelian groups, G is isomorphic to a direct product of cyclic groups.

◦ Let m be the lcm of the orders of these cyclic groups: then xm = 1 for all x ∈ G. Since F [t] has unique
factorization, the polynomial tm−1 ∈ F [t] has at most m roots in F , so #G ≤ m. On the other hand, by
Lagrange's theorem, the order of every element in G divides #G, so m divides #G. We must therefore
have m = #G.
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◦ But since #G is equal to the product of the orders of the cyclic groups, we see that the product of these
orders equals their lcm, so the orders are all relatively prime. This means G is cyclic, as claimed.

◦ Proof 2: Let M be the maximal order among all elements in G: we claim that the order of every element
in G divides M . To see this, suppose g has order M , and let h be any other element of order k. If k
does not divide M , then there is some prime q which occurs to a higher power qf in the factorization of
k than the corresponding power qe dividing M .

◦ By properties of orders, the element gq
f

has orderM/qf , and the element hk/q
e

has order qe. Since these
two orders are relatively prime and gh = hg (since these are elements in a �eld), we see that the element

gq
f · hk/qe has order M · qf−e. This is a contradiction because this element's order is larger than M .

Thus, k divides M as claimed.

◦ For the second claim, any element of orderM generates a subgroup of G havingM elements, soM ≤ #G.

◦ Furthermore, by the above, we know that all elements in G have order dividing M , so the polynomial
tM − 1 has #G roots in F [t]. By unique factorization, this requires M ≥ #G, and so we have M = #G.
Now select any element of order M : it generates G.

◦ Proof 3: Observe by Lagrange's theorem that t#G−1 factors as the product
∏
d|#G Φd(t), where Φd(t) =∏

order(g)=d(t− g) is the dth cyclotomic polynomial.

◦ By an inductive argument, or by observing invariance under the Galois action, all of the polynomials
Φd(t) have coe�cients in F [t].

◦ By induction on d using the fact that td − 1 has at most (hence exactly) d roots in F and in G, one has
that deg(Φd) = ϕ(d). In particular, deg(Φ#G) = ϕ(#G) > 0, so there is an element of order #G in G.

• Now we tackle the question of the units of A/gA.

◦ We can simplify the problem �rst: if we factor g = pa11 · · · p
ad
d where the pi are distinct monic irreducible

polynomials, then all of the ideals (paii ) are pairwise comaximal, so by the Chinese remainder theorem,
we see A/gA ∼= (A/pa11 A)× (A/pa22 A)× · · · × (A/padd A).

◦ Taking units on both sides then gives (A/gA)∗ ∼= (A/pa11 A)∗ × (A/pa22 A)∗ × · · · × (A/padd A)∗. So it is
enough to study the structure of the ring A/paA where p is irreducible.

• Proposition (Structure of A/paA): For A = Fq[t] where char(Fq) = p̃, and p ∈ A is a monic irreducible
polynomial, we have the following:

1. The cardinality of (A/paA)∗ is #(A/paA)∗ = |p|a−1
(|p| − 1) = |pa| (1− 1/ |p|).

◦ Exercise: Show that a commutative ring R with 1 has a unique maximal ideal M if and only if the
set of nonunits in R forms an ideal, which is then a unique maximal ideal M . A ring with this
property is called a local ring.

◦ Proof: The ring A/paA has a unique maximal ideal, namely pA/paA, and is therefore a local ring,
because the quotient (A/paA)/(pA/paA) ∼= A/pA is a �eld by the third isomorphism theorem.

◦ By the exercise above, evvery element not in the maximal ideal is a unit, and the cardinality of the
maximal ideal is 1/ |p| times the cardinality of the entire ring (since the elements in the ideal are
just the multiples of p). The formula follows.

2. (A/paA)∗ ∼= [cyclic group of order |p| − 1]× [an abelian p̃-group].

◦ Proof: The reduction-mod-p map is a surjective group homomorphism from (A/paA)∗ → (A/pA)∗,
and the latter is the multiplicative group of the �eld A/pA hence is cyclic of order |p| − 1.

◦ Pulling back a generator yields that (A/paA)∗ contains a cyclic subgroup of order |p| − 1. By the

cardinality calculation in (1), the remaining piece has order |p|a−1
and is therefore a p̃-group (and

it is clearly abelian).

◦ Remark: The direct product decomposition writes each element modulo pa as [its residue modulo p]
times [an element congruent to 1 modulo p].

3. The p̃-part of (A/paA)∗ has exponent at most p̃s where p̃s ≥ a.
◦ Proof: By the above, the elements in the p̃-part are of the form 1 + bp for some b ∈ Fq[t].
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◦ Since we are in characteristic p̃, we then have (1 + bp)p̃
s

= 1 + (bp)p̃
s

, and since pp̃
s

is divisible by pa

by assumption, we see (1 + bp)p̃
s ≡ 1 (mod pa), which is to say, the element 1 + bp modulo pa has

order dividing p̃s (as required).

4. As a→∞, the number of cyclic factors in the p̃-part of (A/paA)∗ goes to in�nity.

◦ The point here is that we get a di�erent kind of behavior than over Z: over Z, we see that (Z/paZ) ∼={
Z/(pa − pa−1)Z for odd primes p

(Z/2Z)× (Z/2a−3Z) for p = 2
, and so even for large prime powers, the quotient is either

cyclic or basically cyclic.

◦ For polynomials, we end up getting a large number of cyclic factors when we take a large power,
regardless of the prime.

◦ Proof: Since the exponent of the p̃-part is at most p̃s, if we have a total of j cyclic factors then the
order of the group is at most p̃sj . So we need p̃sj ≥ |p|a−1

= qdeg(p)·(a−1) = p̃f ·deg(p)·(a−1) and so
j ≥ f · deg(p) · (a− 1)/s.

◦ Since s ∼ logp a, we see that for a �xed �eld Fq (i.e., �xed f) and �xed prime p (i.e., �xed deg p),
we have j ∼ C(a− 1)/ logp a→∞ as a→∞.

• Now that we have established some basic things about the unit group of A/paA, we can establish the analogues
of Fermat's little theorem, Euler's theorem, and Wilson's theorem.

◦ First, we need the analogue of the Euler phi-function. We de�ne Φ(f) = #(A/fA)∗ to be the number
of polynomials of degree less than deg f that are relatively prime to f .

◦ By our calculations with the unit group earlier, we have the usual formula Φ(f) = |f |
∏
p|fprime(1−1/ |p|),

which is the analogue of ϕ(n) = n
∏
p|n prime(1− 1/p) for the phi-function over Z.

• Proposition (�Euler�): If f ∈ Fq[t] is nonzero and g is relatively prime to f , then gΦ(f) ≡ 1 (mod f).

◦ Proof 1: Apply Lagrange's theorem to g in (A/fA)∗.

◦ Proof 2: Multiplication by g is a bijection on the cosets in (A/fA)∗. Thus,
∏
u∈(A/fA)∗ u =

∏
u∈(A/fA)∗(ug) =

gΦ(f)
∏
u∈(A/fA)∗ u inside (A/fA)∗, and cancelling the unit factor

∏
u∈(A/fA)∗ u yields gΦ(f) = 1 inside

(A/fA)∗.

• Proposition (�Fermat�): If p ∈ Fq[t] is irreducible, then a|p| ≡ a (mod p) for any a ∈ Fq[t].

◦ Proof: If p|a the result is trivial. Otherwise, a is a unit modulo p and the result follows from Euler above.

• We can use the analogue of Fermat's theorem to prove an analogue of Wilson's theorem:

• Proposition (Factoring, 1): If p ∈ Fq[t] is irreducible of degree d, then x|p| − x ≡
∏

deg f<d(x− f) mod p.

◦ Proof: As we have noted, in A/p the polynomials of degree < d represent all of the residue classes modulo
p.

◦ By Fermat, each of these polynomials is a root of x|p| − x. But by unique factorization, this polynomial
has at most |p| distinct roots, and we have just exhibited |p| roots, so these are all of the roots, and the
factorization follows.

• Corollary (�Wilson�): If p ∈ Fq[t] is irreducible of degree d, then
∏

deg f<d,f 6=0 f ≡ −1 (mod p).

◦ Proof 1: Dividing the result above by x yields x|p|−1 − 1 ≡
∏

deg f<d,f 6=0(x− f) mod p.

◦ Now set x = 0: if the characteristic is odd, then the number of minus signs on the RHS is even and the
result follows, while if the characteristic is even, then 1 = −1 so the result still follows.

◦ Proof 2: If f does not have order 2 in A/pA, then f 6= f
−1

and so we can pair up and discard (f, f
−1

)
without a�ecting the product.

◦ When we have done this for all possible pairs, the only elements left are the elements of order dividing
2 (i.e., the solutions to x2 = 1), which are x = ±1. In characteristic not 2, the product is −1, while in
characteristic 2, the product is 1 = −1.
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◦ Exercise: Generalize proof 2 of Wilson's theorem to show that if G is a �nite abelian group, then the
product of all elements in g is the unique element in G of order 2 (if there is one), or is otherwise the
identity.

• We also record a useful result about roots of unity:

• Proposition (Roots of Unity): If p ∈ Fq[t] = A is irreducible and d divides |p| − 1, then there are d dth roots
of unity in A/pA; equivalently, xd ≡ 1 (mod p) has exactly d solutions.

◦ Exercise: For positive integers a, b, show gcd(xa − 1, xb − 1) = xgcd(a,b) − 1 in F [x].

◦ Proof: As shown above, x|p|−1 − 1 splits completely mod p . By the exercise, xd − 1 divides x|p|−1 − 1
when d divides |p| − 1, and so xd − 1 also splits completely, which is to say, it has d roots mod p.

◦ Exercise: Prove the converse: if there are d dth roots of unity in A/pA, then d divides |p| − 1.

0.3 (Sep 10) Prime-Counting and The Zeta Function

• Now that we have established most of the classical results for modular arithmetic, we move to our next item:
counting primes.

◦ We will do things in a more ad hoc manner �rst, and then give a more general approach using zeta
functions that will allow us to go further.

• Our �rst step is to write down a generalization of the fact we used to establish Wilson's theorem above:

• Theorem (Factoring, II): For a positive integer m, the polynomial tq
m − t factors in Fq[x] as the product of

all monic irreducible polynomials of degree dividing m.

◦ Proof 1 (�Elementary�): We will show that tq
m − t has no repeated factors, that each of the claimed

polynomials does divide it, and that no other polynomials divide it.

◦ Exercise: A polynomial in F [t] is separable (i.e., has no repeated factors) if and only if it is relatively
prime to its derivative.

◦ Since (tq
m−t)′ = qmtq

m−1−1 = −1 in characteristic p, the polynomial is relatively prime to its derivative,
so it has no repeated factors by the exercise.

◦ Exercise: For positive integers q, a, b, show that gcd(qa − 1, qb − 1) = qgcd(a,b) − 1 in Z. (This is almost
identical to the polynomial version mentioned earlier.)

◦ Next, suppose p is irreducible of degree dividing m. If p = t the result is trivial, and otherwise, in A/pA
we have tq

m−1 ≡ 1 mod p because qm − 1 is a multiple of |p| − 1 = qdeg p − 1 by the exercise above along
with Euler's theorem. This means tq

m−1 − 1 is divisible by p as required.

◦ Finally, suppose p is irreducible of degree not dividingm. Then in A/pA we have tq
m−1 ≡ tqgcd(m,deg p) 6= 1

mod p by the exercise above along with Euler's theorem and the fact that qgcd(m,deg p) < qdeg p. This
means tq

m−1 − 1 is not divisible by p as required.

◦ We have shown that tq
m − t has no repeated factors, that each of the claimed polynomials does divide it,

and that no other polynomials divide it. Since the polynomial is monic, its factorization must therefore
be as claimed.

◦ Proof 2 (�Galois�): By basic Galois theory, Gal(Fqm/Fq) is a cyclic group of order m generated by the
Frobenius map x 7→ xq1.

◦ By the Galois correspondence, the intermediate �elds of Fqm/Fq are Fqd for d|m. Therefore, p is irre-
ducible of degree dividing d ⇐⇒ Fq[t]/(p) is (isomorphic to) an intermediate �eld of Fqm/Fq ⇐⇒ p
divides xq

m − x.
◦ Since xq

m − x is separable, its factorization must therefore be as claimed.

1This follows by noting that Fqm is the splitting �eld of xqm − x over Fq and since this polynomial is separable as noted in proof
1, the order of the Galois group is m. The Frobenius map is an injective �eld map from Fqm to itself, hence an automorphism by

�niteness, and its order is clearly at least m (since xqd − x has at most qd solutions) and at most m (by Lagrange).
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• Corollary: If ad is the number of irreducible monic polynomials in A = Fq[t] of degree d, then
∑
d|n dad = qn.

◦ Proof: Count degrees in the theorem above.

• We can use this recurrence to write down an exact formula for ad using Mobius inversion.

• De�nition: The Mobius µ-function is de�ned as µ(n) =

{
0 if nis not squarefree

(−1)r if nis the product of rdistinct primes
. Note

µ(1) = 1.

◦ Exercise: Show that
∑
d|n µ(d) =

{
1 for n = 1

0 for n > 1
.

• Proposition (Mobius Inversion): If f, n are integer functions such that g(n) =
∑
d|n f(d), then f(n) =∑

d|n µ(d)g(n/d).

◦ Proof: Induct on n. The base case n = 1 is trivial.

◦ For the inductive step, we have
∑
d|n µ(d)g(n/d) =

∑
d|n µ(d) ·

∑
d′|n/d f(d′) =

∑
dd′|n µ(d)f(d′) =∑

d′|n f(d′)
∑
d|(n/d′) µ(d) = f(n) because the last inner sum is zero except for when n/d′ = 1.

• By using Mobius inversion on the sequence {dad}, we can write down formulas for the number of monic
irreducible polynomials of degree d.

• Proposition (Prime Counting): If an is the number of monic irreducible polynomials in Fq[t] of degree n, then

an =
1

n

∑
d|n µ(d)qn/d.

◦ The �rst few values are a1 = q, a2 = 1
2 (q2 − q), a3 = 1

3 (q3 − q), a4 = 1
4 (q4 − q2), a5 = 1

5 (q5 − q),
a6 = 1

6 (q6 − q3 − q2 + q), ....

◦ Proof: Immediate from applying Mobius inversion to the sequence {nan}.

• We can also do some basic asymptotic analysis using the formula above.

◦ The main term is
1

n
qn, and then the next biggest possible term is

1

n
qn/2, so we see that an =

1

n
qn +

O(qn/2/n).

◦ If we write X = qn (which is the total number of monic polynomials of degree n), we see that the number

of �primes� in A of �size� ∼ X is an =
X

logqX
+O(

√
X

logqX
).

◦ This is quite in the spirit of the prime number theorem over Z, which says that the number of primes ≤ X
is Π(X) =

X

logX
+ O(

X

(logX)2
). If we replace X/ logX with the logarithmic integral li(x) =

´ x
2

dt

log t
,

then as shown by von Koch, the Riemann hypothesis is equivalent to the error estimate Π(X) = li(x) +
O(
√
X log x).

◦ Qualitatively, then, we have already obtained a prime-counting result that is closely analogous to the
best possible one predicted by the Riemann hypothesis.

• Up until this point, our approach has been purely algebraic. However, by introducing analytic methods, we
can give even easier solutions to these (and other) counting problems. The necessary object of study is the
zeta function, which we now de�ne:

• De�nition: For A = Fq[t], the zeta function of A is ζA(s) =
∑
f∈A monic

1

|f |s
for s ∈ C.

◦ Compare to the de�nition of the Riemann zeta function ζ(s) =
∑
n>0

1

ns
for s ∈ C.
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◦ Unlike the Riemann zeta function, however, we can actually just evaluate the zeta function for A: since

there are qd monic polynomials of degree d, we see that
∑

deg(f)≤d monic

1

|f |s
= 1+

q

qs
+
q2

q2s
+ · · ·+ qd

qds
=

1− q(d+1)(1−s)

1− q1−s , and so taking d → ∞ we see that ζA(s) =
1

1− q1−s whenever Re(s) > 1 (to ensure

convergence).

◦ We have an obvious meromorphic continuation for ζA(s) to the complex plane (i.e., via the formula
above), and it is clear that ζ is analytic everywhere except for a simple pole at s = 1.

◦ Exercise: Show that the residue of ζA(s) at s = 1 (which is to say, the value of lims→1(s − 1)ζA(s)) is
1/ log q.

◦ We also have a functional equation for ζA(s): if we set ξA(s) = q−s(1 − q−s)−1ζA(s), then ξA(s) =
ξA(1− s).
◦ Exercise: Do the algebra to establish the functional equation.

• We can also represent ζA(s) as an Euler product, just as with the Riemann zeta function.

◦ Explicitly, by the uniqueness of prime factorization, we can formally write ζA(s) =
∑
f∈A monic

1

|f |s
=∏

pmonic irred(1+
1

|p|s
+

1

|p|2s
+· · · ) =

∏
pmonic irred(1−1/ |p|s)−1, and both sides are absolutely convergent

for Re(s) > 1.

◦ To prove this equality rigorously, we need to do some estimations on tails of the respective series, but
since everything converges absolutely, this is not so di�cult; we leave the precise details as an exercise.

• We can use the Euler product for the zeta function to obtain the same prime counts that we got earlier.

• Proposition (Prime Counting, Again): If ad is the number of irreducible monic polynomials in A = Fq[t] of

degree d, then
∑
d|n dad = qn, and so by Mobius inversion as before, we see an =

1

n

∑
d|n µ(d)qn/d.

◦ Proof: Group the terms in the Euler product together by degree: if deg p = d then |p|s = qds.

◦ Thus, since there are ad monic irreducibles of degree d by de�nition, we see that ζA(s) =
∏
pmonic irred(1−

1/ |p|s)−1 =
∏∞
d=1(1− q−ds)−ad .

◦ Noting from earlier that ζA(s) =
1

1− q1−s , if we substitute u = q−s, we obtain the equality
1

1− qu
=∏∞

d=1(1− ud)−ad .

◦ Taking the log-derivative of both sides yields
q

1− qu
=
∑∞
d=1

dadu
d−1

1− ud
. These expressions are equal as

power series in u, and thus corresponding coe�cients must also be equal.

◦ The LHS is
q

1− qu
= q

∑∞
k=0(qu)k while the RHS is

∑∞
d=1 dadu

d−1
∑∞
l=0 u

dl =
∑∞
d=1

∑∞
l=0 dadu

d(l+1)−1.

So the coe�cient of un−1 on the LHS is q · qn−1 = qn, while the coe�cient of un−1 on the RHS is∑
d(l+1)=n dad =

∑
d|n dad.

◦ Thus, qn =
∑
d|n dad as claimed.

• Of course, we have already proven this result by counting irreducible polynomials algebraically. However, this
approach using the zeta function also extends to solve other counting problems quite conveniently.

• Proposition (Squarefree Counting): The number of monic squarefree polynomials of degree n over Fq[t] is
equal to bn := qn− qn−1. Equivalently, a randomly-chosen degree-n polynomial is squarefree with probability
1− 1/q = 1/ζA(2).

◦ Compare this result to the corresponding fact about integers (which is a little harder to pose because
we have to phrase it over a range): if αn is the probability that a randomly-chosen integer in [1, n] is
squarefree, then limn→∞ αn = 6/π2 = 1/ζ(2).
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◦ Proof: Consider the product π =
∏
p monic irred(1 + |p|−s).

◦ By multiplying out the terms, we see that for Re(s) > 1, we have π =
∑
f monic

δ(f)

|f |s
where δ(f) ={

1 if f is squarefree

0 if f is not squarefree
, since the denominators in the Euler product only include prime factors of

exponents 0 and 1.

◦ Now, since 1 + |p|−s =
1− |p|−2s

1− |p|−s
, taking the product over monic irreducibles and using the fact

that the resulting numerator and denominator products converge absolutely allows us to write π =∏
p monic irred

1− |p|−2s

1− |p|−s
=

∏
p monic irred 1− |p|−2s∏
p monic irred 1− |p|−s

=
ζA(2s)

ζA(s)
.

◦ Setting u = q−s yields
1− qu2

1− qu
=
ζA(2s)

ζA(s)
= π =

∑
f monic

δ(f)

|f |s
=
∑∞
n=0 bnu

n.

◦ But as a power series in u, we have
1− qu2

1− qu
= (1−qu2)(1+qu+q2u2 + · · · ), and so comparing coe�cients

yields bn = qn − qn−1 as claimed.

• In a similar way, we can use the zeta function to write down formulas for the number of monic kth-powerfree
polynomials of a given degree over Fq[t].

◦ Speci�cally, these values are packaged as the coe�cients in the Euler product
∏
p monic irred(1 + |p|−s +

|p|−2s
+ · · · + |p|−(k−1)s

) =
ζA(ks)

ζA(s)
, and then by doing a calculation like the one above, one can write

down an explicit formula.

◦ Exercise: Finish this calculation and give the actual formula for the number of cubefree polynomials of
degree n.

◦ It is also worthwhile interpreting this Euler product calculation heuristically in terms of probabilities.

◦ Explicitly, we would expect (under suitable probability assumptions) that the probability of a given
polynomial not being divisible by f is (1− 1/ |f |).
◦ So, assuming independence (which can be made rigorous by appealing to the Chinese remainder theorem),
the probability that a given polynomial is not divisible by any prime power pk for all monic irreducible
p is

∏
p monic irred(1− 1/ |p|k) = 1/ζA(k): this is why the 1/zeta factor shows up in the answer.

0.4 (Sep 15) Dirichlet Series and Multiplicative Functions

• Another classical object of study in elementary number theory over Z are arithmetic functions related to
divisors, such as the Euler ϕ-function, the divisor-counting function, and the sum-of-divisors function.

◦ All of these are examples of multiplicative functions, which have the property that f(ab) = f(a)f(b)
whenever a, b are relatively prime. (Note the infelicitous terminology: if f(ab) = f(a)f(b) for all a, b, f
is instead called completely multiplicative.)

◦ In particular, if n has prime factorization n =
∏
i p
ai
i and f is multiplicative, then f(n) =

∏
i f(paii ).

◦ We will brie�y review some results about multiplicative functions in the classical setting, and then redo
them in the function-�eld setting.

• It is a standard combinatorial principle that if we want to understand a function with domain N, we should
look at its generating function.

◦ A natural �rst guess would be to use the standard power series
∑∞
n=0 f(n)xn.

◦ However, this type of generating function is useful primarily for functions that behave additively. For
number-theoretic functions, we instead want to use a Dirichlet series.
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• De�nition: If h : N → C is a complex-valued function de�ned on positive integers, then its associated

Dirichlet series is Dh(s) =
∑∞
n=1

h(n)

ns
.

◦ Example: If h(n) = 1 for all n, then Dh(s) = ζ(s), the Riemann zeta function.

◦ In order for this series to converge, we need h not to grow too fast. One may check that if h(n) = O(nα)
then Dh(s) is absolutely convergent for Re(s) > 1 + α. (We will mostly ignore issues of convergence,
since our functions will grow polynomially at worst, and so we may manipulate the series as if they were
formal power series.)

◦ If h is multiplicative, then it is a straightforward calculation to see that Dh(s) has an Euler product

expansion: Dh(s) =
∏
p prime(1 +

h(p)

p
+
h(p2)

p2
+ · · · ), on the appropriate domain of convergence.

• The key property of Dirichlet series is that they reproduce desired behaviors under multiplication:

• Proposition (Dirichlet Multiplication): If f, g : N→ C are functions, then Df (s) ·Dg(s) = Df?g(s) where f ∗g
is the Dirichlet convolution de�ned via (f ∗ g)(n) =

∑
d|n f(d)g(n/d).

◦ Proof: Df (s)Dg(s) =
∑∞
a=1

∑∞
b=1

f(a)g(b)

(ab)s
=
∑∞
n=1

1

ns
∑
ab=n f(a)g(b) =

∑∞
n=1

(f ∗ g)(n)

ns
= Df∗g(s).

• The Dirichlet convolution, owing to the fact that it is merely multiplication of the underlying Dirichlet series,
has various nice properties.

◦ Exercise: Show that Dirichlet convolution is commutative and associative, and has an identity element

given by I(n) =

{
1 for n = 1

0 for n > 1
.

◦ Exercise: Show that f has an inverse under Dirichlet convolution if and only if f(1) 6= 0.

◦ Exercise: If f(1) 6= 0 and f is multiplicative, then its Dirichlet inverse f−1 is also multiplicative.

◦ Exercise: Show that if two of f , g, and f ∗ g are multiplicative, then the third is also.

• By exploiting Dirichlet convolution, we can �nd the Dirichlet series for many basic multiplicative functions in
terms of the Riemann zeta function.

◦ Recall I(n) =

{
1 for n = 1

0 for n > 1
and the Mobius function µ(n) =

{
0 if nis not squarefree

(−1)r if nis the product of rdistinct primes
.

◦ Also de�ne N(n) = n and 1(n) = 1 (for all n).

◦ Exercise: Show that DI(s) = 1, D1(s) = ζ(s), and DN (s) = ζ(s− 1).

◦ First, we note that µ ∗ 1 = I, since (µ ∗ 1)(n) =
∑
d|n µ(d)1(n/d) =

∑
d|n µ(d) =

{
1 for n = 1

0 for n > 1

as noted in an exercise previously. Therefore, by multiplicativity of the Dirichlet series, we see that

Dµ(s)D1(s) = DI(s), so that Dµ(s) =
1

ζ(s)
.

◦ Exercise: Use µ∗1 = I to establish Mobius inversion: if g(n) =
∑
d|n f(n) then f(n) =

∑
d|n µ(d)g(n/d).

◦ Exercise: For the Euler ϕ-function, show that
∑
d|n ϕ(d) = n.

◦ The previous exercise says that ϕ ∗ 1 = N , and so by composing with µ and using associativity, we see

that ϕ = µ ∗N . Then we have Dϕ(s) = Dµ(s)DN (s) =
ζ(s− 1)

ζ(s)
.

◦ In principle, we could have established this fornula for Dϕ(s) by manipulating the zeta function directly,
but this method is both more di�cult and requires knowing the actual (non-obvious) formula for the
answer ahead of time.

◦ We can also �nd the Dirichlet series for the divisor-counting function d(n) = #{d ∈ N : d|n} quite easily
by noting that d(n) =

∑
d|n 1(d)1(d/n): this means d = 1 ∗ 1, so Dd(s) = D1(s)2 = ζ(s)2.
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◦ Exercise: If σ is the sum-of-divisors function σ(n) =
∑
d|n d, show that Dσ(s) = ζ(s)ζ(s− 1).

◦ Exercise: If σk is the sum-of-kth-powers-of-divisors function σk(n) =
∑
d|n d

k, �nd and prove a formula

for Dσk
(s) in terms of the Riemann zeta function.

• One of the main applications of computing the Dirichlet series for these various arithmetic functions is that
we can extract information about average growth rates from them.

◦ In the classical case, obtaining average-growth results is moderately delicate, so we will instead just focus
on the function-�eld case.

• Here are the function-�eld analogues of these classical multiplicative functions, which are now complex-valued
functions on monic polynomials rather than positive integers:

◦ The identity: I(f) =

{
1 for f = 1

0 for f 6= 1
.

◦ The norm: N(f) = |f |.

◦ The Mobius µ-function: µ(f) =

{
0 if f is not squarefree

(−1)r if f is the product of rdistinct primes
.

◦ The Euler Φ-function: Φ(f) = #(A/fA)∗ = |f |
∏
p|f prime(1− 1/ |p|).

◦ The divisor-counting function: d(f) = #{monic d|f}.
◦ The sum-of-divisors function: σ(f) =

∑
d|f monic |d|, or more generally the sum-of-kth-powers-of-divisors

function σk(f) =
∑
d|f monic |d|

k
. (Note here that we take the norm of the divisors, since we want a

C-valued function.)

◦ It is easy to check that all of these functions are multiplicative, and to write down formulas for all of
them in terms of the prime factorization of f = pa11 · · · p

ak
k .

◦ Exercise: Verify that d(f) = (a1 + 1) · · · (ak + 1) and σ(f) =
|p1|a1+1 − 1

|p1| − 1
· · · |pk|

ak+1 − 1

|pk| − 1
.

• We have essentially the same de�nition for the Dirichlet series in the function-�eld case:

• De�nition: If h : {monics} → C is a complex-valued function de�ned on monic polynomials in Fq[t], then its

associated Dirichlet series is Dh(s) =
∑
f monic

h(f)

|f |s
.

◦ As before, we will mostly ignore issues of convergence, but just as in the classical case, one may check
that if h(f) = O(|f |α) then Dh(s) converges absolutely for Re(s) > 1 + α.

◦ We also have the same Dirichlet convolution operator: if g, h : {monics} → C are functions, then
Dg(s) ·Dh(s) = Dg?h(s) where (g ∗ h)(f) =

∑
d|f monic g(d)h(f/d).

◦ Dirichlet convolution is commutative, associative, and has the identity element I(f) =

{
1 for f = 1

0 for f 6= 1
.

◦ All of the same formulas for our arithmetic functions in terms of the zeta function follow through just
as before. Here, however, we can actually write out the expressions explicitly, since we have a formula

ζA(s) =
1

1− q1−s .

• Proposition (Some Dirichlet Series): For u = q−s, we have the following formulas: DI(s) = 1, DN (s) =

ζA(s − 1) =
1

1− u
, D1(s) = ζA(s) =

1

1− qu
, Dµ(s) =

1

ζA(s)
= 1 − qu, DΦ(s) =

ζA(s− 1)

ζA(s)
=

1− qu
1− q2u

,

Dd(s) = ζA(s)2 =
1

(1− qu)2
, and Dσ(s) = ζA(s)ζA(s− 1) =

1

(1− qu)(1− q2u)
.

◦ Proof: Exercise.
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• Using these formulas we can recover average-value results quite easily.

• De�nition: If h : {monics} → C is a function, the average value of h on degree-n polynomials is Avgn(h) =
1

qn
∑

deg(f)=n monic h(f). If the limit limn→∞Avgn(h) exists, we call it the �average value� of h.

◦ We can also easily average h on polynomials of degree≤ n: the desired sum is instead
1

1 + q + · · ·+ qn
∑

deg(f)≤n h(f).

◦ Exercise: Show that if limn→∞Avgn(h) = α, then limn→∞
1

1 + q + · · ·+ qn
∑

deg(f)≤n h(f) = α as well,

so it is irrelevant whether we average over degree exactly n or ≤ n.
◦ The nice result here is that we can read o� the value of Avgn(h) from the coe�cients of the Dirichlet series

for h: explicitly, we have Dh(s) =
∑∞
n=1

∑
deg(f)=n h(f)

qns
=
∑∞
n=1

qnAvgn(h)

qns
=
∑∞
n=1 q

nAvgn(h)un for

u = q−s.

◦ So we can calculate these averages by simply expanding out the Dirichlet series calculated above as power
series in u = q−s and then dividing by qn.

◦ For example, Dµ(s) = 1 − qu, so the average value of µ is 1 on degree-0 polynomials, −1 on degree-1
polynomials, and 0 on higher-degree polynomials.

◦ Similarly, Dd(s) =
1

(1− qu)2
= (1 + qu+ q2u2 + · · · )2 = 1 + 2qu2 + 3q2u3 + · · · , so the average value of

d on degree-n polynomials is n+ 1.

◦ Likewise, DΦ(s) =
1− qu
1− q2u

= (1− qu)(1 + q2u+ q4u2 + q6u3 + · · · ) = 1 + (q2 − q)u+ (q4 − q3)u2 + · · · ,

so the average value of Φ on degree-n polynomials is (q2n − q2n−1)/qn = qn − qn−1.

◦ Exercise: Show that the average value of σ on degree-n polynomials is (qn+1 − 1)/(q − 1).

0.5 (Sep 17) Primes in Arithmetic Progressions, Part 1

• Our next task is to prove the function-�eld analogue of Dirichlet's theorem on primes in arithmetic progres-
sions.

◦ Over Q, Dirichlet's theorem says that for any positive integer m and any a relatively prime to m, there
exist in�nitely many primes in the arithmetic progression {a, a+m, a+2m, a+3m, . . . }: in other words,
congruent to a modulo m.

◦ Exercise (easy): Show that if a is not relatively prime to m, then there are only �nitely many primes
congruent to a modulo m.

• There are ϕ(m) residue classes modulo m that contain in�nitely many primes, so one can ask more precisely
about how the primes are distributed among these residue classes.

◦ In fact, the primes are asymptotically uniformly distributed among these residue classes: the proportion
of primes congruent to a modulo m approaches 1/ϕ(m) upon taking an appropriate limit.

◦ Explicitly, de�ne the natural density of a set S of primes to be lim
n→∞

S ∩ {1, 2, . . . , n}
{primes} ∩ {1, 2, . . . , n}

, provided

the limit exists.

◦ Then, as �rst proven by de la Vallée Poussin, the natural density of the primes congruent to a modulo
m is 1/ϕ(m) when a is relatively prime to m.

• However, the natural density is somewhat di�cult to handle with analytic methods. From the standpoint of
zeta functions, a more natural choice is the Dirichlet density:

• De�nition: If S is a set of primes, the Dirichlet density of S is the value δS = lim
s→1+

∑
primes p∈S p

−s∑
primes p p

−s , assuming

the limit exists.
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◦ Note that the sum in the numerator is always �nite for Re(s) > 1 by comparison to the sum for the zeta
function.

◦ Exercise: If S is �nite, show that its Dirichlet density is 0.

◦ One may prove that if a set has natural density δ, then its Dirichlet density is also δ. The converse is
not true, however: a simple counterexample due to Serre is the set S of primes whose leading digit is 1
in base 10.

◦ Exercise (hard): Show that the set of primes whose leading digit is 1 in base 10 has unde�ned natural
density, but has Dirichlet density log10 2. (The answer works out the same if you use integers with leading
digit 1.)

• The corresponding de�nition for function �elds is as follows:

• De�nition: If T is a set of monic irreducibles in Fq[t], its Dirichlet density is δT = lim
s→1+

∑
p∈T |p|

−s∑
p |p|

−s , assuming

the limit exists.

◦ We note that both the numerator and denominator sums converge for Re(s) > 1.

• Our main result is the following:

• Theorem (Analogue of Dirichlet's Theorem): Let m ∈ Fq[t] have positive degree and let a be relatively prime
to m. Then the Dirichlet density of the set of primes congruent to a (mod m) exists and is 1/Φ(m). In
particular, there are in�nitely many such primes.

◦ The fundamentally hard part of proving this theorem is to establish the nonvanishing of the L-functions
for nontrivial characters at s = 1.

◦ In order to explain what this means (and then do it), we will begin with a brisk discussion of Dirichlet
characters and their properties.

• De�nition: Let G be a �nite abelian group. A group character χ of G is a homomorphism χ : G→ C×.

◦ Note that χ(1) = 1 for every character, and also if g ∈ G has order d, then 1 = χ(1) = χ(gd) = χ(g)d, so
χ(g) is a dth root of unity. Thus in general, χ is a map from G to the group of complex |G|th roots of
unity.

◦ Example: For any G, the trivial character χtriv has χtriv(g) = 1 for all g ∈ G.

◦ Example: If G = (Z/pZ)×, the quadratic residue symbol χ(a) =

(
a

p

)
is a group character.

◦ Example: If G = (A/pA)× for A = Fq[t] and d divides q−1, the dth-power residue symbol χ(a) =

(
a

p

)
d

gives a group character, provided we identify the dth roots of unity in Fq with the dth roots of unity in
C (simply choose any �xed isomorphism).

• We will be interested in the case where G is the group of units (Z/mZ)× or (A/fA)×, in which case we call
χ a Dirichlet character.

◦ In some situations it is slightly more convenient to work with extended Dirichlet characters, which we
extend to have domain Z/mZ or A/fA by setting χ(a) = 0 whenever a is not relatively prime to the
modulus.

◦ Exercise: Extended Dirichlet characters modulo m are the same as functions χ : Z→ C (or A→ C) such
that (i) χ(a+ bm) = χ(a) for all a, b, (ii) χ(ab) = χ(a)χ(b) for all a, b, and (iii) χ(a) 6= 0 i� a is relatively
prime to m.

• We can multiply two group characters on G pointwise, and this operation makes them into a group:

• Proposition (Dual Group ofG): The set of group characters onG forms a group under pointwise multiplication.
The identity is the trivial character and the inverse of χ is its complex conjugate χ. This group is called the
dual group of G and is denoted Ĝ.
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◦ Proof: These properties can be checked directly (exercise), or one may simply note that Ĝ = Hom(G,C×).

• The dual group Ĝ is also an abelian group, so it is natural to wonder how its structure relates to G. In fact,
it is isomorphic to G:

• Proposition (Dual Group, II): If G is a �nite abelian group, its dual group Ĝ is isomorphic to G.

◦ Proof: First consider the special case where G is a cyclic group of order n generated by g. Then
χ(gd) = χ(g)d for all d, so any group character χ is uniquely determined by the value of χ(g), which
must be some nth root of unity.

◦ Conversely, any such selection e2πia/n for χ(g) yields a valid group character χa, namely with χa(gd) =
e2πiad/n. Since χaχb = χa+b and χ

n
1 is the trivial character, we see that the dual group Ĝ is cyclic of

order n (the map a 7→ χa is an isomorphism of Ĝ with Z/nZ).
◦ Now suppose G = H ×K is a direct product. If χ : H ×K → C× is a homomorphism, let χH : H → C×
and χK : K → C× be the projections χH(h) = χ(h, 1) and χK(k) = χ(1, k). Then χH is a group
character of H, χK is a group character of K, and χ = χHχK .

◦ Conversely, any pair (χH , χK) ∈ (Ĥ, K̂) yields a character χ = χHχK ∈ Ĝ, so we see Ĝ ∼= Ĥ × K̂.

◦ Since every �nite abelian group is a direct product of cyclic groups, and the result holds for cyclic groups
and direct products, we are done.

• Exercise: If H is a subgroup of the �nite abelian group G, de�ne H⊥ = {χ ∈ Ĝ : χ(H) = 1}. Show that

H⊥ ∼= Ĝ/H and that Ĝ/H⊥ ∼= Ĥ. Use these results along with Ĝ ∼= G to conclude that the subgroup lattice
of G is the same when turned upside down.

• The isomorphism between Ĝ and G above is non-canonical (i.e., it is not �coordinate-free� in the sense that
we must pick speci�c generators for G and Ĝ to obtain the isomorphism).

◦ However, there is a canonical isomorphism between
ˆ̂
G (the double dual) and G given by the �evaluation

map� ϕ, which maps an element g ∈ G to the �evaluation-at-g� map eg on characters χ ∈ Ĝ, de�ned by
eg(χ) = χ(g).

◦ Exercise: Verify that the evaluation map ϕ : G→ ˆ̂
G with ϕ(g) = {χ 7→ χ(g)} is an isomorphism from

ˆ̂
G

to G.

◦ This result is a special case of Pontryagin duality, and has an analogous statement for duals of �nite-
dimensional vector spaces.

◦ In fact, it is really the algebraic analogue of Fourier inversion (the reason being that Fourier analysis on
�nite abelian groups involves sums over group characters in lieu of integrals). For a brief taste of the
analogy, the main idea is to note that the map einx : R→ C× is a group homomorphism, and thus is an
�R�-character.

• We can also put the structure of an inner product on group characters. To establish this we �rst show some
simple orthogonality relations:

• Proposition (Orthogonality Relations): If G is a �nite abelian group and χ is a group character, the following
hold:

1. The sum
∑
g∈G χ(g) =

{
|G| if χis trivial

0 otherwise
.

◦ Proof: If χ is trivial the sum is clearly |G|. If χ is not trivial, say with χ(h) 6= 1, then
∑
g∈G χ(g) =∑

g∈G χ(gh) = χ(h)
∑
g∈G χ(g) by reindexing (since G = Gh), and so

∑
g∈G χ(g) = 0.

2. The sum
∑
χ∈Ĝ χ(g) =

{
|G| if g = 1

0 otherwise
.

◦ Proof: Apply Pontryagin duality to (1).
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3. (Orthogonality 1) For any characters χ1 and χ2,
∑
g∈G χ1(g)χ2(g) =

{
|G| if χ1 = χ2

0 otherwise
.

◦ Proof: Apply (1) to χ = χ1χ2.

4. (Orthogonality 2) For any elements g1 and g2,
∑
χ∈Ĝ χ(g1)χ(g2) =

{
|G| if g1 = g2

0 otherwise
.

◦ Proof: Apply (2) to g = g1g
−1
2 , or apply Pontryagin duality to (3).

5. The pairing 〈f1, f2〉G =
1

|G|
∑
g∈G f1(g)f2(g) is a complex inner product on functions f : G → C, and

the elements of the dual group Ĝ are an orthonormal basis with respect to this inner product.

◦ Proof: The inner product axioms are straightforward, and the fact that Ĝ yields an orthonormal
basis follows from (3).

6. The pairing
〈
f̂1, f̂2

〉
Ĝ

=
1

|G|
∑
χ∈Ĝ f̂1(χ)f̂2(χ) is a complex inner product on functions f̂ : Ĝ→ C, and

the elements of G are an orthonormal basis with respect to this inner product.

◦ Proof: The inner product axioms are straightforward, and the fact that G ∼= ˆ̂
G yields an orthonormal

basis follows from (4), or apply Pontryagin duality to (5).

7. (Fourier Inversion) For any function f : G → C, with the Fourier transform f̂ : Ĝ → C de�ned by

f̂(χ) = 〈f, χ〉G =
1

|G|
∑
g∈G f(g)χ(g), we have f(g) =

∑
χ∈Ĝ f̂(χ)χ(g) for all g ∈ G.

◦ Proof: This follows immediately from (5), since the elements of Ĝ are an orthonormal basis.

• Exercise: Prove Plancherel's theorem 〈f1, f2〉G =
1

|G|

〈
f̂1, f̂2

〉
Ĝ
and deduce Parseval's theorem

∑
g∈G |f(g)|2 =

1

|G|
∑
χ∈Ĝ

∣∣∣f̂(χ)
∣∣∣2.

• With the fundamentals taken care of, we can now focus on Dirichlet characters.

◦ Studying primes congruent to a modulo m naturally leads to a question about Dirichlet characters via
Fourier inversion, since we may decompose the characteristic function of [primes congruent to a modulo
m] as a sum over Dirichlet characters for the group G = (A/mA)∗.

◦ Explicitly, if δa(p) is 1 when p ≡ a (mod m) and 0 otherwise, then δ̂a(χ) =
1

Φ(m)

∑
g∈G δa(g)χ(g) =

1

Φ(m)
χ(a), since the only nonzero value of δa(g) occurs when g ≡ a (mod m).

◦ Then by Fourier inversion we have δa(p) =
∑
χ∈Ĝ δ̂a(χ)χ(p) =

∑
χ∈Ĝ

1

Φ(m)
χ(a)χ(p). So the numerator

for the Dirichlet density is
∑
p≡a (mod m) |p|

−s
=
∑
p δa(p) |p|−s =

1

Φ(m)

∑
χ∈Ĝ

[
χ(a)

∑
p χ(p) |p|−s

]
.

◦ This is a bit complicated, but the point is that we have a sum over the Dirichlet characters of constants

(namely χ(a)) times
∑
p

χ(p)

|p|s
, which is quite close to the Dirichlet series for the character χ (the only

di�erence is that we are only summing over primes, rather than all monic polynomials).

◦ As we will see, we will be able to extract this sum over primes from the full Dirichlet series, which we
now examine more closely.

◦ The main reason we go to this e�ort to use Fourier inversion is that the Dirichlet series for Dirichlet
characters behave very nicely (far more nicely than the original series over primes congruent to a modulo
m) because Dirichlet characters are multiplicative.

• De�nition: If χ is a Dirichlet character modulo m, we de�ne its associated Dirichlet L-series L(s, χ) =∑
f monic

χ(f)

|f |s
.
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◦ Note that this is just the Dirichlet series for χ(f), as we de�ned it previously. It is traditional to denote
these series with the letter L (which was the letter Dirichlet used for such functions).

◦ As usual, the series converges absolutely for Re(s) > 1, since |χ(f)| ≤ 1 for all f .

◦ Furthermore, because Dirichlet characters are completely multiplicative, the L-series has a very simple

Euler product: explicitly, L(s, χ) =
∏
p irred

[
1− χ(p)

|p|s
]−1

, for Re(s) > 1.

◦ The Euler product is the key to calculating the Dirichlet density we wanted earlier: taking the logarithm

of the Euler product gives logL(s, χ) = −
∑
p irred log(1 − χ(p)/|p|s) ≈

∑
p irred

χ(p)

|p|s
using the Taylor

approximation − log(1− x) ≈ x which is accurate for small |x|.
◦ So our main task is to determine what happens to logL(s, χ) as s → 1, since this is the required input
for calculating the Dirichlet density of the primes congruent to a modulo m.

0.6 (Sep 22) Primes in Arithmetic Progressions, Part 2

• Our main task is to determine what happens to logL(s, χ) as s → 1, since this is the required input for
calculating the Dirichlet density of the primes congruent to a modulo m.

• Example: For the trivial character χtriv, we have L(s, χtriv) =
∏
p|m irred(1 − |p|−s) · ζA(s), since the terms

with p|m are missing from the Euler product for L(s, χ).

◦ In particular, we see that L(s, χtriv) has an analytic continuation (since ζA(s) does) and a single simple
pole at s = 1.

• For other characters, the L-series is essentially �nite.

• Proposition (L-Series for Nontrivial Characters): Let m be a monic polynomial of positive degree and χ be
a nontrivial Dirichlet character modulo m. Then L(s, χ) is a polynomial in q−s of degree at most degm− 1,
and in particular has an analytic continuation.

◦ Proof: Let A(n, χ) =
∑

deg f=n χ(f) and note, as we have previously done in working out average-value

results, that L(s, χ) =
∑∞
n=0A(n, χ)q−ns. The claimed result is then equivalent to saying A(n, χ) = 0

for n ≥ degm.

◦ For this, suppose deg f = n ≥ m and write f = hm+ r with deg r < degm, where deg h = deg f −degm
and sgn(h) = 1/sgn(m). Conversely, given such an h and r, we get a unique f = hm + r. Note that
χ(f) = χ(r), and also that there are qn−degm possible h.

◦ Then A(n, χ) =
∑

deg f=n χ(f) =
∑

deg f=n χ(r) = qn−degm
∑

deg r<degm χ(r) = 0 where the last sum is
zero by the orthogonality relation (1).

◦ The observation about the analytic continuation is immediate (simply take the analytic continuation as
the given polynomial in q−s).

• Exercise: Choose a modulus m ∈ Fq[t] and a nontrivial Dirichlet character χ, and verify explicitly that L(s, χ)
is a polynomial in q−s.

• As a consequence, we see that L(s, χ) has no pole at s = 1 when χ 6= χtriv. Our next major goal is to prove
that L(1, χ) 6= 0 for χ 6= χtriv.

• Lemma: Let χ be any Dirichlet character modulo m. Then for each monic irreducible p not dividing m, there
exist fp, gp > 0 with fpgp = Φ(m) such that

∏
χ∈Ĝ L(s, χ) =

∏
p-m(1− |p|−fps)−gp .

◦ Proof: For a �xed monic irreducible p - m, as we have previously noted the evaluation-at-p map χ 7→ χ(p)
is a homomorphism from Ĝ to C×.
◦ Let the image be a cyclic group of order fp and the kernel have size gp: then fpgp = #Ĝ = #G = Φ(m)
by the �rst isomorphism theorem.
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◦ For this p, by grouping the �bers of the evaluation-at-p map together, for ζ = e2πi/fp we have
∏
χ∈Ĝ(1−

χ(p)/ |p|s)−1 =
∏fp−1
j=0 (1 − ζj/ |p|s)−gp , and this last product equals (1 − |p|−fps)−gp since it is the

evaluation of the polynomial (1− t)(1− ζt) · · · (1− ζfp−1t) = 1− tfp at t = |p|−s.
◦ Thus, taking the product over all monic irreducibles p - m yields the claimed

∏
χ∈Ĝ L(s, χ) =

∏
χ∈Ĝ

∏
p-m(1−

χ(p)/ |p|s)−1 =
∏
p-m(1− |p|−fps)−gp after reversing the order of the products.

• We next show that L(1, χ) 6= 0 for nonreal Dirichlet characters χ:

• Lemma (Nonvanishing, I): Let χ be any Dirichlet character modulo m such that χ 6= χ. Then L(1, χ) 6= 0.

◦ Proof: If we expand the product
∏
χ∈Ĝ L(s, χ) =

∏
p-m(1− |p|−fps)−gp from the Lemma above, it yields

a Dirichlet series with nonnegative coe�cients and constant term 1.

◦ Thus, if s is real and greater than 1 (so that the product converges), the value of the product is real and
greater than 1.

◦ If χ 6= χ, then
∏
χ∈Ĝ L(s, χ) = L(s, χtriv)L(s, χ)L(s, χ) · [other terms].

◦ Now suppose L(1, χ) = 0: then we would have L(1, χ) = 0 also. But this would mean the product∏
χ∈Ĝ L(s, χ) vanishes at s = 1, because the only term that has a pole at s = 1 is L(s, χtriv) and that

pole has order 1, but we have two zeroes at s = 1 arising from L(s, χ) and L(s, χ).

◦ But this is impossible because the value of the product is real and greater than 1 for s > 1. Thus,
L(1, χ) 6= 0.

• The case where χ = χ and χ 6= χtriv (i.e., when χ has order 2 in Ĝ) is quite a bit trickier, since we cannot get
away with such a simple order-of-vanishing argument.

• Lemma (Nonvanishing, II): Let χ be any Dirichlet character of order 2 modulo m (i.e., such that χ = χ but
χ 6= χtriv). Then L(1, χ) 6= 0.

◦ Proof: Suppose that χ = χ but χ 6= χtriv, so that χ(p) ∈ {±1} for p - m, and de�ne the function G(s) =

L(s, χtriv)L(s, χ)

L(2s, χtriv)
=
∏
p-m

(1− |p|−s)−1(1− χ(p) |p|−s)−1

(1− |p|−2s
)−1

=
∏
p-m

1 + |p|−s

1− χ(p) |p|−s
=
∏
p-m,χ(p)=1

1 + |p|−s

1− |p|−s
=∏

p-m,χ(p)=1[1 +
∑∞
k=1 |p|

−ks
].

◦ By expanding this last expression forG, we can see that its Dirichlet series has all coe�cients nonnegative.

◦ We also have
L(s, χtriv)

L(2s, χtriv)
=

ζA(s)

ζA(2s)
·
∏
p|m

1− |p|−s

1− |p|−2s =
1− q1−2s

1− q1−s
∏
p|m(1 + |p|−s)−1. Substituting

this into the expression for G yields that
1− q1−2s

1− q1−s L(s, χ) =
L(s, χtriv)L(s, χ)

L(2s, χtriv)

∏
p|m(1 + |p|−s)−1 =

G(s)
∏
p|m(1 + |p|−s)−1 is a Dirichlet series with all coe�cients nonnegative.

◦ Suppose G(s)
∏
p|m(1 + |p|−s)−1 =

∑
f monic

h(f)

|f |s
.

◦ Rewriting in terms of u = q−s, and noting that L∗(u, χ) = L(s, χ) is a polynomial in u as we proved

earlier, we obtain the equality
1− qu2

1− qu
L∗(u, χ) =

∑∞
d=0[

∑
deg(f)=d h(f)]ud.

◦ Now suppose that L(1, χ) = L∗(q−1, χ) is equal to zero. Then 1− qu would divide L∗(u, χ), which would

mean that
1− qu2

1− qu
L∗(u, χ) is a polynomial in u. But then the right-hand side would also be a polynomial

in u. All of its coe�cients are nonnegative (as noted above), which means it cannot have a positive root
for u.

◦ But, �nally, notice that
1− qu2

1− qu
L∗(u, χ) is zero when u = 1/

√
q. This is a contradiction, and so

L∗(q−1, χ) = L(1, χ) must be nonzero.

• Now that we know L(1, χ) vanishes for nontrivial characters χ, we can prove Dirichlet's theorem:
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• Theorem (Analogue of Dirichlet's Theorem): Let m ∈ Fq[t] have positive degree and let a be relatively prime
to m. Then the Dirichlet density of the set of primes congruent to a (mod m) exists and is 1/Φ(m). In
particular, there are in�nitely many such primes.

◦ We have already obtained all of the necessary ingredients, so the proof is mostly a matter of putting
them all together.

◦ Proof: Recall the power series − log(1− x) =
∑∞
k=1 x

k/k, valid for |x| < 1.

◦ Then for any Dirichlet character χ, we have logL(s, χ) =
∑
p− log(1−χ(p)

|p|s
) =

∑
p

[∑∞
k=1

χ(p)k

k
|p|−ks

]
=∑

p

χ(p)

|p|s
+
∑
p

∑∞
k=2

χ(p)k

k
|p|−ks. The absolute value of the second term is bounded by

∑
p

∑∞
k=2

1

k
|p|−ks ≤∑∞

k=2

∑∞
d=1 q

dq−kds ≤
∑∞
n=1(n+ 1)q−ns, which is bounded as s→ 1+.

◦ Therefore, as s → 1+, we have logL(s, χ) =
∑
p

χ(p)

|p|s
+ O(1). In particular, we see that

∑
p |p|

−s
=

log(s− 1) +O(1) as s→ 1+, since L(s, χtriv) has a simple pole at s = 1.

◦ Now, by Fourier inversion (as we previously worked out) we have
∑
p≡a (mod m) |p|

−s
=
∑
p δa(p) |p|−s =

1

Φ(m)

∑
χ∈Ĝ

[
χ(a)

∑
p

χ(p)

|p|s
]
.

◦ So, the quotient for the Dirichlet density is

∑
p≡a (mod m) |p|

−s∑
p |p|

−s =

1

Φ(m)

∑
χ∈Ĝ

[
χ(a)

∑
p

χ(p)

|p|s
]

∑
p |p|

−s =

1

Φ(m)


∑
p-m |p|

−s∑
p |p|

−s +

∑
χ 6=χtriv

χ(a)
∑
p

χ(p)

|p|s∑
p |p|

−s

 =
1

Φ(m)

[
1−

∑
p|m |p|

−s

log(s− 1) +O(1)
+

∑
χ 6=χtriv

logL(s, χ) +O(1)

log(s− 1) +O(1)

]
.

◦ Now, taking the limit as s → 1+ makes the second term go to zero (since the numerator is �nite) and
the third term go to zero (since L(1, χ) 6= 0 for χ 6= χtriv), and so the value of the limit is just 1/Φ(m),
as claimed.

• We can, in fact, improve this argument to show that the natural density of the primes congruent to a modulo
m is equal to 1/Φ(m), not just the Dirichlet density.

◦ To do this requires showing that L(s, χ) is zero-free on a larger region: speci�cally, we need it to be
zero-free for Re(s) = 1, rather than just s = 1.

◦ The L-function is in fact zero-free on a much larger region: as we will eventually prove, the only zeroes
of L(s, χ) are on the line Re(s) = 1/2; this is the Riemann hypothesis for function �elds.

◦ Taking this zero-free result for granted, we again need to manipulate the series expressions for the L(s, χ).
This time, we will use in a more substantial way the fact that the L(s, χ) for χ 6= χtriv are polynomials
in u = q−s and compare the Euler products with their factorizations.

• Theorem (Strengthened Dirichlet Analogue): Let m ∈ Fq[t] have positive degree and let a be relatively prime

to m. Then the number of primes congruent to a (mod m) having degree N is equal to
1

Φ(m)

qN

N
+O(

qN/2

N
),

where the implied constant is independent of q and N .

◦ If we only know that the L-function is zero free for Re(s) > θ for some θ ∈ (1/2, 1), we instead get an

error term of O(
qθN

N
), which is still good enough to establish that the natural density of primes congruent

to a (mod m) equals 1/Φ(m).

◦ Proof: For convenience, we �rst note the identity (*) u ∂
∂u log(1− αud)−1 =

∑∞
N=1 dα

kudN .

◦ As we showed previously, if χ 6= χtriv then L∗(u, χ) = L(q−s, χ) is a polynomial in u = q−s of degree at

most m − 1. Since its constant term is 1, we obtain a factorization of the form L∗(u, χ) =
∏m−1
i=1 (1 −

αi(χ)u) for some constants αi(χ) ∈ C.
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◦ From the Euler product, we also have L∗(u, χ) =
∏
p-m(1 − χ(p)udeg p)−1 =

∏∞
d=1

∏
p-m,deg p=d(1 −

χ(p)ud)−1.

◦ Now apply the operator u ∂
∂u log to the equality

∏m−1
i=1 (1 − αi(χ)u) =

∏∞
d=1

∏
p-m,deg p=d(1 − χ(p)ud)−1

and compare coe�cients of u on both sides.

◦ For the LHS, using the identity (*) with d = 1 yields u ∂
∂u logL∗(u, χ) = −

∑m−1
i=1

∑∞
N=1 αi(χ)NuN =

−
∑∞
N=1

[∑m−1
i=1 αi(χ)N

]
uN .

◦ Letting cN (χ) = −
∑m−1
i=1 αi(χ)N yields the expansion u ∂

∂u log
∏m−1
i=1 (1 − αi(χ)u) =

∑∞
N=1 cN (χ)uN .

For χ = χtriv, we have cN (χ) = qN + O(1), while for χ 6= χtriv, by the Riemann hypothesis we have
|αi(χ)| ∈ {q0, q1/2} for each i, and so cN (χ) = O(qN/2).

◦ For the RHS, we have

u ∂
∂u logL∗(u, χ) =

∞∑
d=1

∑
p-m,deg p=d

u ∂
∂u log(1− χ(p)ud)−1

=

∞∑
d=1

∑
p-m,deg p=d

∞∑
k=1

dχ(p)kukd

=

∞∑
N=1

∑
d|N

∑
deg p=N/d

dχ(p)N/d

uN
by applying the identity (*) and then grouping together all of the terms of the same degree. This means
cN (χ) =

∑
d|N
∑

deg p=d dχ(p)d.

◦ Now, by separating out the terms with d = 1 from the others, we see cN (χ) =
∑
d|N
∑

deg p=N/d dχ(p)N/d =

N
∑

deg p=N χ(p) +
∑
d|N,d≥2

∑
deg p=N/d dχ(p)d. The absolute value of the second term is at most∑

d|N,d≥2

∑
deg p=N/d d ≤

∑
d|N,d≥2

qN/d

N/d
= O(qN/2).

◦ Therefore, we see cN (χ) = N
∑

deg p=N χ(p) +O(qN/2).

◦ Now we use our Fourier decomposition from earlier: we have
1

Φ(m)

∑
χ∈Ĝ χ(a)cN (χ) = N ·#{primes p ≡

a (mod m)}+O(qN/2) using the expression we just computed.

◦ Also, we have
∑
χ∈Ĝ χ(a)cN (χ) = qN + O(qN/2) by directly summing over characters: χ = χtriv con-

tributes the qN term and the other characters each contribute O(qN/2).

◦ Setting these two equal to one another yields #{primes p ≡ a (mod m)} =
1

Φ(m)
· q

N

N
+ O(

qN/2

N
), as

claimed.

• Exercise: For a,m ∈ Fq[t] with a relatively prime to m, show that the proportion of primes of degree N

congruent to a (mod m) is
1

Φ(m)
+O(q−N/2), where the implied constant is independent of q and N .

0.7 (Sep 24) dth Powers and dth-Power Residue Symbols

• Our next task is to discuss the analogue of another famous result from elementary number theory: Gauss's
celebrated law of quadratic reciprocity, along with its higher-order generalizations. A brief recap of the story
over Z:

◦ If a ∈ (Z/pZ)∗, we say a is a quadratic residue if a ≡ b2 (mod p) for some b, and otherwise we say a is a
quadratic nonresidue.

◦ Since the quadratic residues are simply the image of the squaring map on (Z/pZ)∗, by the �rst isomor-
phism theorem there are (p − 1)/2 of them. (One may also simply enumerate them as 12, 22, . . . , [(p −
1)/2]2.)
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◦ The Legendre symbol

(
a

p

)
is de�ned to be +1 on quadratic residues and −1 on quadratic nonresidues.

By writing a as a power of the generator of (Z/pZ)∗, one then obtains Euler's criterion: a(p−1)/2 ≡
(
a

p

)
(mod p), from which one sees that the Legendre symbol is multiplicative. Equivalently, it is a group
homomorphism from (Z/pZ)∗ to {±1}.
◦ Exercise: Another group homomorphism from (Z/pZ)∗ to {±1} is obtained by calculating the signature
of the permutation associated to multiplication by a, as an element of the symmetric group Sp−1. Prove
Zolotarev's lemma: this homomorphism is the same as the Legendre symbol.

• The law of quadratic reciprocity gives an unexpected relation between the Legendre symbols

(
p

q

)
and

(
q

p

)
for distinct odd primes p and q.

◦ Explicitly, as �rst proven by Gauss, we have

(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4. Equivalently,

(
p

q

)
=

(
q

p

)
if p or q is 1 mod 4, and otherwise

(
p

q

)
= −

(
q

p

)
if both p, q are 3 mod 4.

◦ A priori, it would seem that there is no reason for the values of

(
p

q

)
and

(
q

p

)
to be related to one

another, since they are discussing seemingly independent questions (whether p is a square mod q and
whether q is a square mod p).

◦ But in fact, these questions are related: for p∗ = (−1)(p−1)/2, the value of

(
p

q

)
determines whether the

ideal (p) splits in the ring of integers O√q∗ of the quadratic extension Q(
√
q∗) while the value of

(
q

p

)
determines whether the ideal (q) splits in the ring of integers of the quadratic extension Q(

√
p∗).

◦ These two questions are related because there are several ways to understand the splitting of (q) in O√p∗ .
◦ First, from basic algebraic number theory, to determine whether (q) splits in O√p∗ , one can study the

splitting of the minimal polynomial x2−x+
1− p∗

2
modulo q, which splits precisely when its discriminant

p∗ is a square: in other words, when

(
p∗

q

)
= 1.

◦ Alternatively, one may look at the action of the local qth-power Frobenius map inside the Galois group of
the cyclotomic �eld Q(ζp), whose unique quadratic sub�eld is Q(

√
p∗). Since the Galois group is cyclic,

the Frobenius element Frobq �xes Q(
√
p∗) if and only if q ∈ (Z/pZ)× lies in Gal(Q(ζp)/K). But this

group is the unique index-2 subgroup of (Z/pZ)∗, which is simply the quadratic residues, so this means

(q) splits precisely when

(
q

p

)
= 1.

◦ Comparing these two statements yields that

(
p∗

q

)
= 1 if and only if

(
q

p

)
= 1, and this can be shown

to be equivalent to the usual version of quadratic reciprocity.

◦ Exercise: For distinct odd primes p, q, show that

(
p∗

q

)
=

(
q

p

)
is equivalent to

(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4,

where p∗ = (−1)(p−1)/2.

◦ There are very many other proofs of quadratic reciprocity, many of which involve lengthy formal manip-
ulations of various sums and (generally) yield little to no intuition about why the result is actually true.
There is a fairly nice proof using Gauss sums that, suitably interpreted, is really the same as the one
given above.

• We would like to generalize the reciprocity law to handle general dth powers in Fq[t]. We begin by describing
the dth powers:

• De�nition: If f ∈ Fq[t] is nonconstant and a is relatively prime to f , we say that a is a dth-power residue
modulo f when xd ≡ a (mod f) has a solution for x. (In other words, when a is the dth power of something
mod f .)
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◦ Example: Over F2[t], we see t+ 1 is a quadratic residue modulo t3 + t+ 1 since t+ 1 ≡ (t2 + t+ 1)2 (mod
t3 + t+ 1).

◦ Example: Over F5[t], we see 3t2 + 3t+ 4 is a cubic residue modulo t3 + t+ 1 since 3t2 + 3t+ 4 ≡ (t2 + 2t)3

(mod t3 + t+ 1).

◦ By the Chinese remainder theorem, xd ≡ a (mod f) has a solution if and only if xd ≡ a (mod pd) has a
solution for each prime power pd in the factorization of f .

◦ Thus, we need only consider the case where the modulus is a prime power, and we can handle this case
fairly easily using our earlier analysis of the structure of (A/pdA)∗.

• We can start by looking at the prime-modulus case, since it is the simplest.

◦ As we have mentioned previously, (A/pA)∗ is the multiplicative group of the �nite �eld A/pA, so this
group has order qdeg p − 1 = p̃f deg p − 1.

◦ If d does not divide |p| − 1, then the dth power map on (A/pA)∗ is injective by Lagrange's theorem, so
it is a bijection, and so everything in (A/pA)∗ is a dth power.

◦ This means we can ignore divisors of d that aren't factors of |p| − 1, and so essentially we are reduced to
the situation where d divides |p| − 1.

◦ By analogy with Euler's criterion in Z, we would expect that the value of a(|p|−1)/d will identify whether
or not a is a dth power. This is indeed the case:

• Proposition (dth Roots Mod p): If p ∈ Fq[t] is irreducible, a is not divisible by p, and d is a divisor of |p| − 1,
then xd ≡ a (mod p) is solvable if and only if a(|p|−1)/d ≡ 1 (mod p).

◦ Proof 1: First, if xd ≡ a (mod p) then a(|p|−1)/d ≡ x|p|−1 ≡ 1 (mod p) by Euler.

◦ For the converse, recall that we showed previously that xd ≡ 1 (mod p) has d solutions mod p whenever
d divides |p| − 1.

◦ Therefore, the kernel of the dth-power map on (A/pA)∗ has size d, so by the �rst isomorphism theorem,
the image, which is precisely the set of dth powers, has size (|p| − 1)/d.

◦ But by the same observation, there are exactly (|p| − 1)/d solutions to the equation x(|p|−1)/d ≡ 1 (mod
p), so by the above, these must be exactly the dth powers.

◦ Proof 2: As shown previously, (A/pA)∗ is cyclic of order |p| − 1. Let u be a generator.

◦ Since every element in (A/pA)∗ is a power of u, it is easy to see that for any d dividing |p| − 1, the dth
powers in (A/pA)∗ are precisely {ud, u2d, u3d, . . . , ud(|p|−1)d = 1}. All of these elements clearly satisfy
x(|p|−1)/d ≡ 1 (mod p).

◦ Conversely, if a = uk has a(|p|−1)/d ≡ 1 (mod p), then uk(|p|−1)/d ≡ 1 (mod p) so since u has order |p|−1,
d must divide k.

• Now that we have analyzed the prime case, the prime-power case follows by �lifting� the solutions from the
prime case.

◦ This is a consequence of a much more general result known as Hensel's lemma, which we might as well
do in general.

• Proposition (Hensel's Lemma): If p ∈ Fq[t] is irreducible, a ∈ Fq[t], and r(x) is any polynomial such that
r(a) ≡ 0 (mod pd) and r′(a) 6≡ 0 (mod p), then there is a unique k modulo p such that r(a+ kpd) ≡ 0 (mod

pd+1). Explicitly, if u = f ′(a)−1 (mod p), then k = −uf(a)

pd
.

◦ By repeatedly applying Hensel's lemma, we can lift a solution of r(a) ≡ 0 (mod p) to a solution modulo
p2, and then lift that to a solution modulo p3, and so on and so forth, until we have a solution to the
equation modulo any power of p.

◦ This iteration process yields a sequence of solutions x ≡ aj (mod pj) for each j, where aj+1 = aj −
1

r′(a)
r(aj), which one may recognize as the iteration procedure from Newton's root-�nding method. In

fact, if we instead think of solving the polynomial r(x) = 0 p-adically (which amounts to taking the
inverse limit lim←−(A/pdA)), this lifting procedure is precisely Newton's method with starting point x = a.
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◦ Proof: First, by the binomial theorem we have (a+ pdk)n = an + nan−1pdk + [terms divisible by p2d] ≡
an + nan−1pdk (mod pd+1).

◦ Then if r(t) =
∑
cnt

n we see that r(a + pdk) ≡
∑
cn(an + nan−1pdk) ≡

∑
cna

n + pdk
∑
ncna

n−1 ≡
r(a) + pdk · r′(a) (mod pd+1).

◦ By hypothesis, r(a) +pdk · r′(a) is divisible by pd. So dividing the congruence r(a+kpd) ≡ 0 (mod pd+1)

by pd yields
r(a)

pd
+ kr′(a) ≡ 0 (mod p), which has the unique solution k ≡ −uf(a)

pd
(mod p), as claimed.

• This version of Hensel's lemma is quite a bit more than we really need here, but it will be helpful to have it
available later.

• Corollary (dth Roots Mod pe): If p ∈ Fq[t] is irreducible, d divides |p| − 1, and p does not divide a, then
xd ≡ a (mod p) has a root if and only if xd ≡ a (mod pe) has a root for every e ≥ 1.

◦ Proof: If there is a solution to xd ≡ a (mod pe) then clearly there is a solution mod p.

◦ Conversely, if there is a solution mod p, then we claim we may lift the solution mod pe using Hensel's
lemma.

◦ We just need to check that the derivative is not zero: for r(x) = xd we have r′(a) = dad−1. Then d 6= 0
mod p because d divides |p| − 1 = p̃f deg p − 1 and so d cannot be divisible by the characteristic p̃, and
also a 6= 0 mod p because p does not divide a. Thus, Hensel's lemma applies, and we are done.

• Corollary (Counting dth Powers): If p ∈ Fq[t] is irreducible and d divides |p| − 1, then there are Φ(pe)/d total
dth-power residues modulo pe.

◦ Proof 1: Count residue classes: as shown earlier there are (|p| − 1)/d = Φ(p)/d total dth-power residue
classes modulo p. By the corollary above, the dth-power residue classes modulo pe are precisely those
that reduce to a dth power modulo p. So the probability of selecting one is Φ(p)/(d |p|), and thus the
total number is |p|e · Φ(p)/(d |p|) = Φ(pe)/d.

◦ Proof 2 (sketch): The dth-power homomorphism commutes with reduction modulo p. Then just count
the sizes of the various kernels and images and use the �rst isomorphism theorem.

◦ Exercise: Show that for any monic polynomial m, there are Φ(m)/dλ(m) total dth powers modulo m,
where λ(m) is the number of distinct monic irreducible factors of m.

• Returning back to the prime case, in the particular case where d divides q − 1, then the dth roots of unity in
(A/pA)∗ actually lie inside Fq, because xd = 1 already has d solutions inside Fq (since F∗q is cyclic of order
q − 1).

◦ We have shown above that a is a dth power modulo p if and only if a(|p|−1)/d ≡ 1 (mod p).

◦ We can use this as the basis for our de�nition of the dth-power residue symbol, in analogy with Euler's
criterion over Z.

• De�nition: If p ∈ Fq[t] is irreducible and d divides q − 1, then we de�ne the dth-power residue symbol

(
a

p

)
d

to be the unique element of Fq congruent to a(|p|−1)/d modulo p.

◦ Example: For d = 2 over F3[t], we calculate

(
t

t2 + t+ 2

)
2

≡ t4 ≡ 2 (mod t2 + t+ 2).

◦ Example: For d = 3 over F7[t], we calculate

(
t

t2 + 2t+ 2

)
7

≡ t16 ≡ 4 (mod t2 + 2t+ 2).

◦ Example: For d = 3 over F7[t], we calculate

(
t

t2 + t+ 6

)
7

≡ t16 ≡ 1 (mod t2 + t+ 6), which means t is

a cube modulo t2 + t+ 6.

• Proposition (Properties of Residue Symbols): If p ∈ Fq[t] is irreducible and d divides q−1, the following hold:

1.

(
a

p

)
d

= 0 if and only if p divides a.
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2. If a ≡ b (mod p) then

(
a

p

)
d

=

(
b

p

)
d

.

3. The residue symbol is multiplicative: for any a, b,

(
ab

p

)
d

=

(
a

p

)
d

(
b

p

)
d

.

4.

(
a

p

)
d

= 1 if and only if a is a dth-power residue modulo p.

5. If ζ is any dth root of unity in Fq, then there exists a ∈ Fq[t] with
(
a

p

)
d

= ζ.

6. The residue symbol is a surjective group homomorphism from (A/pA)∗ to µd, the group of dth roots of
unity in Fq.

7. If d|d′ then
(
a

p

)
d

=

(
a

p

)d′/d
d′

.

8. If α ∈ Fq then
(
α

p

)
d

= α(q−1)/d·deg p.

◦ Proofs: (1)-(4) are trivial from the de�nition or results previously shown. (5) follows by the �rst isomor-
phism theorem, since the kernel of the (|p| − 1)/dth-power map has size (|p| − 1)/d hence the image has
size d. (6) is a rephrasing of (3) and (5).

◦ (7) follows by noting

(
a

p

)d′/d
d′
≡ (a(|p|−1)/d′)d

′/d = a(|p|−1)/d ≡
(
a

p

)
d

(mod p), and then observing that

since the residue symbols are both elements of Fq, the congruence mod p forces actual equality.

◦ For (8), �rst note that
|p| − 1

d
=
qdeg p − 1

d
= (1 + q + q2 + · · ·+ qdeg p−1)(q − 1)/d. Then since αq = α

by Fermat's little theorem in Fq, we have

(
α

p

)
d

≡ α(|p|−1)/d = (α · αq · αq2 · · · · · αqdeg p−1

)(q−1)/d =

αdeg p·(q−1)/d (mod p). Then as in (7), the congruence modulo p forces equality.

• We can now state the dth-power reciprocity law, which we will prove next time:

• Theorem (dth-Power Reciprocity): If d divides q−1 and P,Q are monic irreducible polynomials in Fq[t], then(
Q

P

)
d

= (−1)(q−1)(degP )(degQ)/d

(
P

Q

)
d

.

0.8 (Sep 29) The dth-Power Reciprocity Law

• To prove the reciprocity law, we �rst need a reciprocity result about roots of polynomials known as Weil
reciprocity:

• Lemma (Weil Reciprocity): If P (t) = (t− r1) · · · (t− rn) and Q(t) = (t−s1) · · · (t−sn) are monic polynomials
over a �eld F , with the ri, sj ∈ F , then

∏n
i=1Q(ri) = (−1)(degP )(degQ)

∏m
j=1 P (sj).

◦ Proof: Note that Q(ri) =
∏m
j=1(ri − sj) so

∏n
i=1Q(ri) =

∏n
i=1

∏m
j=1(ri − sj). In the same way,∏m

j=1 P (sj) =
∏m
j=1

∏n
i=1(sj − ri).

◦ These expressions are the same up to switching the order of the products and scaling each of the mn =
(degP )(degQ) terms by −1, so the result follows.

• We can now prove the dth-power reciprocity law:

• Theorem (dth-Power Reciprocity): If d divides q−1 and P,Q are monic irreducible polynomials in Fq[t], then(
Q

P

)
d

= (−1)(q−1)(degP )(degQ)/d

(
P

Q

)
d

.

◦ The main idea of the proof is to exploit properties of the Frobenius map on the roots of P and Q in their
splitting �eld over Fq, and then use Weil reciprocity.
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◦ Proof: From property (7) of the residue symbol, we have

(
a

p

)
d

=

(
a

p

)d′/d
d′

, so it is enough to prove the

reciprocity law when d = q − 1.

◦ Now let α be a root of P and β be a root of Q in a splitting �eld E/Fq for the polynomial PQ.

◦ Since E/Fq is a �nite-degree extension of a �nite �eld, its Galois group is cyclic and generated by the
qth-power Frobenius map.

◦ Also, since P and Q are irreducible over Fq, we must have the factorizations

P (t) = (t− α)(t− αq)(t− αq
2

) · · · (t− αq
deg P−1

)

Q(t) = (t− β)(t− βq)(t− βq
2

) · · · (t− βq
deg Q−1

)

since α, αq, αq
2

, ... are all the Galois conjugates of α and P is irreducible (with the same logic applying
to β and Q).

◦ Inside E[t], we have

(
Q

P

)
q−1

≡ [Q(t)](q
deg P−1)/(q−1) = [Q(t)]1+q+q2+···+qdeg P−1

= Q(t)Q(t)qQ(t)q
2 · · ·Q(t)q

deg P−1 ≡

Q(t)Q(tq)Q(tq
2

) · · ·Q(tq
deg P−1

) (mod P ) since Q(tq) = Q(t)q in characteristic q.

◦ Reducing both sides modulo the factor t − α of P (equivalently, evaluating both sides at t = α) then

yields

(
Q

P

)
q−1

≡ Q(α)Q(αq) · · ·Q(αq
deg P−1) (mod t − α). Since the right-hand side of this expression

is the product of the values of Q evaluated at the roots of P , it is the same for any other root of P we
choose in place of α.

◦ So by the Chinese remainder theorem, in fact

(
Q

P

)
q−1

≡ Q(α)Q(αq) · · ·Q(αq
deg P−1) (mod P ). But the

right-hand side is an element of E, and since it is a (q − 1)st root of unity (or alternatively, since it is
Galois-invariant), it must actually be in Fq. So since these quantities are congruent modulo P , they must
actually be equal as elements of Fq.

◦ This means

(
Q

P

)
q−1

= Q(α)Q(αq) · · ·Q(αq
deg P−1). In the same way,

(
P

Q

)
q−1

= P (β)P (βq) · · ·P (βq
deg Q−1).

◦ Weil reciprocity then says Q(α)Q(αq) · · ·Q(αq
deg P−1) = (−1)(degP )(degQ)P (β)P (βq) · · ·P (βq

deg Q−1), so

we see

(
Q

P

)
q−1

= (−1)(degP )(degQ)

(
P

Q

)
q−1

, which establishes the case d = q − 1.

◦ The case where d divides q − 1 follows immediately and gives the general statement above.

• Just as in the case of Q, to give a convenient method for calculating residue symbols, we can extend the
de�nition to include nonprime moduli (i.e., generalizing the Jacobi symbol):

• De�nition: If b ∈ Fq[t] has prime factorization b = uqb11 · · · qbnn for distinct monic irreducible qi and u ∈ F×q ,

then we de�ne the general residue symbol as
(a
b

)
d

=
∏n
j=1

(
a

qi

)bi
.

• Proposition (Properties of Residue Symbols, II): If b ∈ Fq[t] is nonzero and d divides q− 1, the following hold:

1.
(a
b

)
d
is either 0 or a dth root of unity, and

(a
b

)
d
6= 0 if and only if a, b are relatively prime.

2. If a1 ≡ a2 (mod b) then
(a1

b

)
d

=
(a2

b

)
d
.

3. The residue symbol is multiplicative on the top:
(a1a2

b

)
d

=
(a1

b

)
d

(a2

b

)
d
.

4. The residue symbol is multiplicative on the bottom:

(
a

b1b2

)
d

=

(
a

b1

)
d

(
a

b2

)
d

.

5. If gcd(a, b) = 1 and a is a dth-power residue modulo b, then
(a
b

)
d

= 1. (The converse need not hold.)
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6. If d|d′ then
(a
b

)
d

=
(a
b

)d′/d
d′

.

7. If α ∈ Fq then
(α
b

)
d

= α(q−1)/d·deg b.

◦ Proofs: (1)-(4) follow straightforwardly from the de�nition, while (6) and (7) follow the same way as for

the residue symbol with prime modulus. For (5), if a ≡ cd (mod p) then
(a
b

)
d

=

(
cd

b

)
d

=
(c
b

)
d

= 1

since
(c
b

)
is a dth root of unity (since it is not zero since a, b are relatively prime).

◦ We will remark that the residue symbol
(?
b

)
d

: (A/bA)∗ → µd is still a group homomorphism since it is

multiplicative by (3), but it is not necessarily surjective when b is not prime. For example, if b = pd is

a dth power, then by (4) we see that
(a
b

)
d

=

(
a

p

)d
d

= 1 for all a ∈ (A/bA)∗. (This also shows that the

converse of (5) is false, as noted above.)

• We can write down the reciprocity law for general dth-power residue symbols:

• Theorem (General Reciprocity Law): If d divides q − 1 and a, b are any nonzero polynomials in Fq[t], then(a
b

)
d

= (−1)(q−1)(deg a)(deg b)/d[sgna](q−1)/d·deg b[sgnb]−(q−1)/d·deg a

(
b

a

)
d

.

◦ Proof (sketch): As in the prime case, reduce to the case d = q− 1. Then pull out the leading coe�cients
of a, b (these are where the sgna and sgnb terms come from) and then apply the de�nition of the general

residue symbol to write
(a
b

)
q−1

and

(
b

a

)
q−1

as products of residue symbols with prime moduli, apply

the prime-modulus reciprocity law, and tally up the results. The full details are left as an exercise.

• A standard application of quadratic reciprocity over Z is to characterize all of the prime moduli for which a
given integer m is a quadratic residue.

◦ Typical examples of such statements: −1 is a quadratic residue mod p when p ≡ 1 (mod 4), 3 is a
quadratic residue mod p when p ≡ 1, 11 (mod 12), 5 is a quadratic residue mod p when p ≡ 1, 4 (mod
5), and so forth.

◦ Aside from the special cases of −1 and 2, one may answer this question simply by factoringm as a product

of primes m = q1 · · · qk, so that
(
m

p

)
=

(
q1

p

)
· · ·
(
qk
p

)
, and then applying quadratic reciprocity to �ip

each of the quadratic residue symbols. The end result is that the statement

(
m

p

)
= +1 is equivalent to

a congruence condition for p modulo 4m, which one may calculate explicitly if desired.

• We can use this same type of argument to solve the analogous problem in function �elds:

• Theorem (Criterion for dth-Power Residues): Let m ∈ Fq[t] be monic and d|(q − 1), and let {a1, . . . , ak}
be coset representatives for the residue classes in (A/mA)∗ with

( a
m

)
d

= +1 and {b1, . . . , bk} be coset

representatives for the residue classes in (A/mA)∗ with

(
b

m

)
d

= −1 (if there are any). Then the following

hold:

1. If deg(m), (q− 1)/d, or char(Fq) is even, then m is a dth power modulo an irreducible monic polynomial
p if and only if p ≡ ai (mod m) for some i.

2. If deg(m), (q − 1)/d, and char(Fq) are all odd, then m is a dth power modulo an irreducible monic
polynomial p if and only if either deg(p) is even and p ≡ ai (mod m) for some i, or deg(p) is odd and
p ≡ bi (mod m) for some i.

◦ Proof: Note that p ≡ ai (mod m) is equivalent to saying
( p
m

)
d

= 1, while p ≡ bi (mod m) is

equivalent to saying
( p
m

)
d

= −1.
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◦ Since p and m are monic, by the reciprocity law we see

(
m

p

)
d

= (−1)(q−1)/d·deg(m) deg(p)
( p
m

)
d
.

◦ First, if q is even, then char(Fq) = 2: then −1 = 1 over Fq, so
(
m

p

)
d

=
( p
m

)
d
. Likewise, if deg(m)

or (q − 1)/d is even, then the exponent of −1 is even, so again we see

(
m

p

)
d

=
( p
m

)
d
. Together

with the observation above, (1) follows.

◦ For (2), if deg(m), (q − 1)/d, and char(Fq) are all odd, then −1 6= 1 and (−1)(q−1)/d·deg(m) deg(p) =

(−1)deg p. So

(
m

p

)
d

=
( p
m

)
d
if deg(p) is even while

(
m

p

)
d

= −
( p
m

)
d
if deg(p) is odd. This yields

(2).

• Example: Identify all monic irreducibles p ∈ F3[t] such that t is a square modulo p.

◦ There are two residue classes in (A/tA)∗, namely 1 and 2, and we see

(
1

t

)
2

= 1 while

(
2

t

)
2

= −1.

◦ Since deg(m) = 1, (q − 1)/d = 1, and char(Fq) = 3, we are in case (2). Thus, m is a quadratic residue
modulo the monic irreducible polynomial p precisely when deg(p) is odd and p ≡ 2 (mod t), or when
deg(p) is even and p ≡ 1 (mod t).

◦ For example, we see that t is a square modulo the irreducible polynomial t3 + 2t+ 2 ∈ F3[t], and indeed
with some more work, one may calculate t ≡ (t2 + t+ 2)2 (mod t3 + 2t+ 2).

◦ Exercise: Extend this example to describe all monic irreducibles p ∈ Fq[t] such that t is a square modulo
p for arbitrary �nite �elds Fq.

• Another interesting application of the dth-power reciprocity law is to establish a �Hasse principle�-type result
for dth powers.

◦ Obviously, if a polynomial with integer coe�cients has a solution in Z, then it also has solutions modulo
pk for all prime powers pk (equivalently, it has a p-adic solution for each p) and it also has a real solution.

◦ The Hasse principle asks when the converse of this observation is valid: if a polynomial has a p-adic root
and a real root, does it necessarily have a rational root? The general idea is that one may try to piece
together information modulo the prime powers for many primes p using the Chinese remainder theorem,
but it is not clear when this actually forces the existence of a global solution.

◦ As �rst proven by Minkowski for integer coe�cients (and then later extended by Hasse for number-�eld
coe�cients), for quadratic polynomials this local-global principle holds: if a quadratic polynomial has a
p-adic root and a real root, it necessarily has a rational root.

◦ The result is known to be false for cubic forms: Selmer's famous counterexample is the cubic equation
3x3 + 4y3 + 5z3 = 0, which has no rational solution but does have real solutions and p-adic solutions for
all p.

◦ Even in the absence of a literal Hasse-principle statement, in many cases one can analyze the precise
obstructions to lifting local solutions to global solutions. (An example of this sort of obstruction can be
found in the statement of the Grunwald-Wang theorem.)

• Theorem (Hasse Principle for dth Powers): Let m ∈ Fq[t] have positive degree and d|(q− 1). If xd ≡ m (mod
p) is solvable for all but �nitely many irreducible polynomials p, then xd = m has a solution in Fq[t] (i.e., m
is globally a dth power).

◦ Proof: Letm = βqd11 · · · q
dk
k where the qi are distinct monic irreducibles and β is a constant. We �rst show

that if any di is not divisible by d, then there are in�nitely many irreducibles p such that

(
m

p

)
d

6= 1.

◦ To show this, suppose without loss of generality that d1 is not divisible by d. We inductively construct

an in�nite set of irreducibles {ri} with
(
m

ri

)
d

6= 1, so suppose we have a set (possibly empty to start)

{r1, . . . , rs} of monic irreducibles not dividing m with

(
m

ri

)
d

6= 1 for all i.
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◦ Select any primitive dth root of unity ζd: then there exists an element c ∈ Fq[t] with
(
c

qi

)
d

= ζd by our

properties of the dth-power residue symbol.

◦ By the Chinese remainder theorem, there exist solutions a to the system of congruences a ≡ c (mod
q1), a ≡ 1 (mod q2 · · · qk), a ≡ 1 (mod r1 · · · rs). Select any such solution that is monic and has degree
divisible by 2d.

◦ For this a, we have
( a
m

)
d

=
∏k
i=1

(
a

qi

)di
d

= ζd1d 6= 1 since d1 is not divisible by d.

◦ Then by the reciprocity law, we then have
(m
a

)
d

= (−1)(q−1)/d·(degm)(deg a)
( a
m

)
d

=
( a
m

)
d
6= 1, since

the exponent of −1 has a factor of 2 from deg a.

◦ Since the general dth-power residue symbol is multiplicative on the bottom, there must be some monic

irreducible factor rs+1 of a such that

(
m

rs+1

)
6= 1 since

( a
m

)
d
6= 1. This monic irreducible factor is

relatively prime to r1 · · · rs since a ≡ 1 (mod r1 · · · rs), so we have found another monic irreducible to
add to our list.

◦ By induction, we can construct in�nitely many such irreducibles.

◦ Now, if xd ≡ m (mod p) is solvable for all but �nitely many irreducible polynomials p, then by the above,
each of the exponents di must be divisible by d. This means m = β · m̃d for some monic polynomial m̃,
so all that remains is to show that β is a dth power.

◦ For any irreducible p not dividing m, we have

(
m

p

)
d

=

(
β

p

)
d

= β(q−1)/d·deg p as we have previously

shown. Since there are irreducibles of any desired degree in Fq[t], select p to be one of degree relatively

prime to d with

(
m

p

)
d

= 1: then β(q−1)/d·deg p = 1 implies β(q−1)/d = 1, which is equivalent to saying

that β is a dth power. Then m itself is a dth power, as claimed.

0.9 (Oct 1) Transcendence and Localization

• We now move into the second major part of the course, which deals with algebraic function �elds: these are
function �elds of transcendence degree 1 over a general constant �eld F .

◦ Later, we will specialize to function �elds over Fq (equivalently, these are the �nite-degree �eld extensions
of Fq(t)), which along with algebraic number �elds (the �nite-degree �eld extensions of Q) constitute the
global �elds.

◦ Global �elds (to be considered as parallel to local �elds) share a number of common properties that we
will elucidate and study.

• We begin by reviewing some basic facts about transcendental extensions.

• De�nition: Let K/F be a �eld extension. We say a subset S of K is algebraically dependent over F if there
exists a �nite subset {s1, . . . , sn} ∈ S and a nonzero polynomial p ∈ F [x1, . . . , xn] such that p(s1, . . . , sn) = 0.
If there exists no such p for any �nite subset of S, we say S is algebraically independent.

◦ The general idea here is that a set of elements is algebraically dependent if they satisfy some algebraic
(i.e., polynomial) relation over F .

◦ Example: If x1, . . . , xn are indeterminates inside F (x1, . . . , xn), the function �eld in n variables, then
the set {x1, . . . , xn} is algebraically independent over F .

◦ Example: Over Q, the set {π, π2} is algebraically dependent, since p(x, y) = x2 − y has p(π, π2) = 0.

◦ Example: Over Q, the set { 3
√

2} is algebraically dependent, since p(x) = x3 − 2 has p( 3
√

2) = 0.

◦ More generally, the set {α} is algebraically independent over F if and only if α is transcendental over F .

◦ Exercise: Show that the set {x + y, x2 + y2} is algebraically independent in F (x, y) for any �eld F of
characteristic not 2, but is algebraically dependent if F has characteristic 2.
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◦ Example: In F (x, y), the set {x + y, x2 + y2, x3 + y3} is algebraically dependent, since p(a, b, c) =
a3 − 3ab+ 2c has p(x+ y, x2 + y2, x3 + y3) = 0.

• The notion of algebraic independence generalizes the notion of linear independence, and as such the two
concepts are related in various ways.

◦ It is easy to see that any subset of an algebraically independent set is algebraically independent, while
any set containing an algebraically dependent set is algebraically dependent.

◦ Since having a basis of a vector space is very convenient for calculations, we might therefore hope to de�ne
an analogous �transcendence basis� to be an algebraically independent set that generates the extension
K/F .

◦ Unfortunately, such a set need not exist: for example, Q(
√

2)/Q has no such set, because there are no
transcendental elements at all.

◦ The correct analogy is instead to observe that a basis for a vector space is a maximal linearly independent
set:

• De�nition: Let K/F be a �eld extension. A transcendence base for K/F is an algebraically independent
subset S of K that is maximal in the set of all algebraically independent subsets of K.

◦ Remark: The term �transcendence basis� is also used occasionally.

◦ By a straightforward Zorn's lemma argument, every extension has a transcendence base. (Exercise:
Write down this argument.)

◦ Example: The empty set ∅ is a transcendence base for Q(
√

2)/Q. More generally, K/F is algebraic if
and only if ∅ is a transcendence base.

◦ Example: The set {x} is a transcendence base for F (x) over F .

• Here are some of the fundamental properties of transcendence bases, many of which are analogous to properties
of vector spaces:

• Proposition (Transcendence Bases): Suppose K/F is a �eld extension and S is a subset of K.

1. If S is algebraically independent and α ∈ K, then S ∪ {α} is algebraically independent over F if and
only if α is transcendental over F (S).

◦ This is the algebraic analogue of the statement that if S is linearly independent, then S ∪ {α} is
linearly independent if and only if α is not in the span of S.

◦ Proof: Suppose S ∪ {α} is algebraically dependent. Then there exists si ∈ S and p ∈ F [x] with
p(α, s1, . . . , sn) = 0 and p 6= 0. View p as a polynomial in its �rst variable with coe�cients in
F [s1, . . . , sn]: there must be at least one term involving α, as otherwise p would give an algebraic
dependence in S. Then α is the root of a nonzero polynomial with coe�cients in F [s1, . . . , sn] ⊆
F (s1, . . . , sn) ⊆ F (S), so it is algebraic over F (S).

◦ Conversely, suppose that α is algebraic over F (S). Then α is the root of some nonzero polynomial
with coe�cients in F (S). Each coe�cient of this polynomial is an element of F (S); clearing denom-
inators yields a nonzero polynomial p with coe�cients in F [s1, . . . , sn] for the elements si ∈ S that
appear in these coe�cients. This polynomial yields an algebraic dependence in S ∪ {α}.

2. S is a transcendence base of K/F if and only if K is algebraic over F (S).

◦ Proof: This follows from (1) and the maximality of transcendence bases: S is a transcendence base
if and only if no elements in K can be adjoined to S while preserving algebraic independence, and
by (1) this is equivalent to saying that all elements in K are algebraic over F (S).

3. If T is a subset of K such that K/F (T ) is algebraic, then T contains a transcendence base of K/F .

◦ Proof: Apply Zorn's lemma to the collection of all algebraically independent subsets of T , partially
ordered by inclusion.

◦ A maximal element M in this collection must then be a transcendence base for K/F : if β ∈ K then
β must be algebraic over K/F (M) by the maximality of M , and then M is a transcendence base by
(2).
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4. If T is an algebraically independent subset of K, then T can be extended to a transcendence base of
K/F .

◦ Proof: This is the analogue of the fact that every linearly independent subset can be extended to a
basis, and the proof follows from a similar Zorn's lemma argument.

5. If S = {s1, . . . , sn} is a transcendence base for K/F and T = {t1, . . . , tm} is any algebraically inde-
pendent set, then there is a reordering of S, say {a1, . . . , an}, such that for each 1 ≤ k ≤ m, the set
{t1, t2, . . . , tk, ak+1, . . . , an} is a transcendence base for K/F .

◦ Proof: This is the analogue of the replacement theorem for linearly independent sets, and the proof
proceeds inductively in essentially the same way. (We will omit the details.)

6. If S is a (�nite) transcendence base for K/F , then any subset T of K having larger cardinality than S
must be algebraically dependent.

◦ Proof: If S = {s1, . . . , sn} is �nite, apply the replacement theorem (5) to S and T . At the end of the
replacement, the result is that {t1, . . . , tn} is a transcendence base. But then by (2), any additional
element of T would be algebraic over {t1, . . . , tn}, contradicting the algebraic independence of T .

7. Any two transcendence bases S and T for K/F have the same cardinality.

◦ Proof: If the bases are in�nite the result is immediate. If S has �nite cardinality n, then the result
follows by applying (6), since then T 's cardinality m must satisfy m ≤ n (since T is algebraically
independent and S is a transcendence base) and also n ≤ m (since S is algebraically independent
and T is a transcendence base).

• The result of the last part of the proposition shows that any two transcendence bases have the same cardinality,
and in analogy with the situation for vector spaces, this cardinality behaves somewhat like an extension degree:

• De�nition: Let K/F be a �eld extension. The transcendence degree of K/F , denoted trdeg(K/F ), is the
cardinality of any transcendence base of K/F .

• The key property of transcendence degree is that it is additive in towers:

• Proposition (Transcendence in Towers): If L/K/F is a tower of extensions, then trdeg(L/F ) = trdeg(L/K) +
trdeg(K/F ).

◦ The idea here is quite simple: we want to show that the union of transcendence bases for K/F and L/K
gives a transcendence base for L/F .

◦ Proof: First suppose that both trdeg(K/F ) and trdeg(L/K) are �nite, and let S = {s1, . . . , sn} and
T = {t1, . . . , tm} be transcendence bases forK/F and L/K. Then S∩T = ∅ since each ti is transcendental
over K.

◦ Furthermore, K is algebraic over F (S), so K(T ) is algebraic over F (T )(S) = F (S ∪ T ) by our results on
algebraic extensions.

◦ Then since L is algebraic over K(T ), we deduce that L is algebraic over F (S ∪T ), also by our results on
algebraic extensions.

◦ Thus, by property (3) above, S ∪ T contains a transcendence base of L/F .

◦ Finally, we claim S ∪ T is algebraically independent over F , so suppose that p(s1, . . . , sn, t1, . . . , tm) = 0
for some p ∈ F [x1, . . . , xn, y1, . . . , ym].

◦ Separate monomial terms to write p(s1, . . . , sn, t1, . . . , tm) = 0 as a sum
∑
fi(s1, . . . , sn)gi(t1, . . . , tm) = 0

with fi ∈ F [x1, . . . , xn] and gi ∈ F [y1, . . . , ym].

◦ Now, since T is algebraically independent over F (S) ⊆ K, all of the fi(s1, . . . , sn) must be zero (as
elements of K). But since S is algebraically independent over F , that means all of the polynomials
fi(x1, . . . , xn) must be zero (as polynomials).

◦ This means p is the zero polynomial, and so S ∪ T is algebraically independent.

• Fields that are generated by a transcendence base are particularly convenient:

• De�nition: The extension K/F is purely transcendental if K = F (S) for some transcendence base S of K/F .
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◦ Equivalently, K/F is purely transcendental when it is generated (as a �eld extension) by an algebraically
independent set.

◦ If S = {s1, . . . , sn}, then the purely transcendental extensionK = F (S) is ring-isomorphic to the function
�eld F (x1, . . . , xn) in n variables: it is not hard to check that the map sending si to xi is an isomorphism.

◦ If K/F has transcendence degree 1 or 2 and E/F is an intermediate extension, then in fact E is also
purely transcendental: the degree-1 case is a theorem of Lüroth that we will prove later, while the
degree-2 case is a theorem of Castelnuovo. In higher degrees, there do exist extensions that are not
purely transcendental, but it is not easy to verify this fact.

• Now let F be a �eld and K be an extension of F of transcendence degree 1.

◦ By the results above, there exists x ∈ K such that K/F (x) has transcendence degree 0, which is to say,
it is algebraic.

◦ Since we do not want to worry for the moment about in�nite-degree algebraic extensions, we will make
the further assumption that this extension K/F (x) has �nite degree.

• De�nition: We say K is an (algebraic) function �eld over F if there exists x ∈ K such that x is transcendental
over F and K/F (x) is �nite.

◦ Example: Q(x) is an algebraic function �eld over Q.
◦ Example: C(x,

√
x2 − 1) is an algebraic function �eld over C.

◦ Note that the algebraic closure of F inside K has �nite degree over F : this follows by noting that if E/F
is algebraic inside K, then [E : F ] = [E(x) : F (x)] ≤ [K : F (x)] <∞.

◦ So, without loss of generality, we may replace F by its algebraic closure inside K. In this case we call F
the constant �eld of K.

◦ If F is the constant �eld of K, then there are no elements of K that are algebraic over F other than the
elements of F themselves. Equivalently, every element of K\F is transcendental over F .

◦ Finally, since the transcendence degree of K/F is 1, for any two a, b ∈ K\F , there is some nonzero
polynomial g ∈ F [x, y] such that F [a, b] = 0.

• Now that we have some very basic facts about function �elds, our next goal is to do number theory.

◦ In order to do this, however, we need to know how to de�ne primes in the function �eld context.

◦ Over Q, the primes arise as the prime ideals of the ring of integers Z, which we can de�ne starting from
Q purely in terms of integral closures. For other number �elds, we also de�ne their primes using integral
closures.

◦ However, this approach will not work for function �elds, because (as noted above) everything in K not
in F is transcendental over F , so there is no sensible way to de�ne a �ring of integers� inside K using
integrality.

◦ Instead, we need to use a di�erent sort of construction to give a sensible notion of a prime: that of a
discrete valuation on K.

• In order to develop all of this properly, we also need to review some facts about localization.

• Proposition (Localization): Let R be a commutative ring with 1 and D be a multiplicatively closed subset
of R containing 1. Then there exists a commutative ring D−1R, the localization of R at D, and a ring
homomorphism π : R → D−1R such that any for any ring homomorphism ψ : R → S sending 1 to 1 and
such that ψ(d) is a unit in S for every d ∈ D, there exists a unique homomorphism Ψ : D−1R→ S such that
Ψ ◦ π = ψ.

◦ More succinctly, any homomorphism ψ : R → S such that ψ maps all of the elements of D into units
necessarily extends to a homomorphism Ψ : D−1R→ S.

◦ The main idea is simply to de�ne �fractions� r/d with r ∈ R and d ∈ D via an appropriate equivalence
relation, and then to write down the usual rules of fraction arithmetic and verify that all of the de�nitions
are well posed.
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◦ Proof (outline): De�ne an equivalence relation on elements of R ×D by setting (r, d) ∼ (s, e) whenever
there exists y ∈ D such that y(ds − er) = 0; it is straightforward to check that ∼ is an equivalence
relation.

◦ Denote the equivalence class of (r, d) by the symbol r/d and the set of all equivalence classes by D−1R,
and de�ne the two operations r/d+s/e = (re+ds)/(de) and r/d ·s/e = (rs)/(de) on D−1R. It is tedious
but straightforward to see that these operations make D−1R into a commutative ring with 1.

◦ Now de�ne π(r) = r/1 and suppose Ψ : D−1R→ S is a homomorphism with Ψ ◦ π = ψ.

◦ Then we must have Ψ(r/1) = (Ψ ◦ π)(r) = ψ(r), and also 1 = Ψ(1/1) = Ψ(1/d)Ψ(d/1), meaning that
Ψ(1/d) = ψ(d)−1. Then Ψ(r/d) = Ψ(r/1)Ψ(1/d) = ψ(r)ψ(d)−1.

◦ But it is easy to see that this choice of Ψ does work, so it is the only such homomorphism.

• The point here is that D−1R is the smallest ring in which all elements of D become units.

◦ When D contains no zero divisors (which is automatically the case if R is a domain and D does not
contain zero), then R injects into D−1R via r 7→ r/1.

◦ A particular useful case of localization is to construct Q from Z (we take D = Z\{0} and R = Z) or
more generally to construct the �eld of fractions of an integral domain R (take D = R\{0}).

• We also note in passing that we can localize any R-module M in the same way: one simply writes down the
same construction using pairs (m, d) with m ∈M and d ∈ D in place of pairs (r, d).

◦ Alternatively, one can obtain the localization of an R-module using tensor products: D−1M ∼= M ⊗R
D−1R. (This tensor product just extends scalars from R to D−1R, which is exactly what D−1M is.)

◦ Exercise: Show that localization commutes with sums, intersections, quotients, �nite direct sums, and is
exact.

◦ Exercise: Show that if I is an ideal of R, then D = R\I is multiplicatively closed if and only if I is prime.

• Our main situation of interest is that of localizing at a prime: this is the case where R is an integral domain
and D = R\P is the complement of a prime ideal P of R.

◦ Exercise: Show that if P is a prime ideal and D = R\P , then D−1R is a local ring with unique maximal
ideal D−1P = π(P ) = eP , the extension of the ideal P to D−1R.

◦ The utility of localizing at a prime is that it isolates the ring's behavior at that prime.

◦ Example: The localization of Z at the prime ideal (p) is the ring Z(p) = {a/b ∈ Q : p - b} of rational
numbers whose denominator is not divisible by p. Its unique maximal ideal is pZ(p), the set of multiples
of p. The quotient ring Z(p)/pZ(p) is isomorphic to Z/pZ.
◦ Note that Z(p) is not the ring of p-adic integers Zp: the p-adic integers are obtained by taking a completion
of the localization Z(p) under the p-adic metric (which we will de�ne later).

◦ Example: Let k be a �eld and take R to be the ring of k-valued functions on a set S. If we let Ma

be the set of functions vanishing at a point a ∈ S, then Ma is a maximal ideal of R. The localization
RMa

= {f/g ∈ R : g(a) 6= 0} is the ring of k-valued rational functions de�ned at a. The unique maximal
ideal of Ma is the ideal of all k-valued rational functions vanshing at a.

• This second example illustrates the utility of localizing at a prime, because it allows us to study the local
behavior of a rational function near the point a.

◦ For example, the elements of Ma are precisely those rational functions vanishing at a, while the elements
of M2

a are the rational functions that vanish to order 2 at a (i.e., have a double root), and so forth.

◦ More generally, if we localize a domain at a principal prime ideal, by looking at powers of the maximal
ideal, we can measure what power of a prime a given element is divisible by.

• We will formalize all of this using discrete valuations, which provide us a way to identify primes using only
the �eld structure, next time.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2018-2025. You may not reproduce or distribute this
material without my express permission.
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