
E. Dummit's Math 7362 ∼ Number Theory in Function Fields, Fall 2025 ∼ Homework 2, due Wed Nov 5th

Solve whichever problems you haven't seen before that interest you the most (suggestion: between 30 and 50 points'
worth). Starred problems are especially recommended. Prepare to present 2-4 problems in class on the due date.

0.1 In-Lecture Exercises

0.1.1 Exercises from (Oct 6)

1. [2pts] If R is a Noetherian integrally-closed domain and P is a minimal nonzero prime ideal of R, show that
RP is a DVR. Deduce in particular that if R is a Dedekind domain and P is a nonzero prime ideal, then RP
is a DVR.

2. [6pts*] Let R be a discrete valuation ring with �eld of fractions F and valuation v. Also t ∈ R be a uniformizer
(an element with v(t) = 1). Prove:

(a) For any r ∈ F×, either r or 1/r is in R.

(b) An element u ∈ R is a unit of R if and only if v(u) = 0. In particular, if ζ ∈ F is any root of unity, then
v(ζ) = 0.

(c) If x ∈ R is nonzero and v(x) = n, then x can be written uniquely in the form x = utn for some unit
u ∈ R.

(d) Every nonzero ideal of R is of the form (tn) for some n ≥ 0.

(e) The ring R is a Euclidean domain (hence also a PID and a UFD) and also a local ring.

(f) The ring S is a DVR if and only if it is a PID and a local ring but not a �eld.

3. [2pts] If v is a discrete valuation on Q, show that the set P = {n ∈ Z : v(n) > 0} is a prime ideal of Z.

4. [3pts] Prove that the p-adic valuations vp along with v∞ are the only discrete valuations on F (t)/F . (Use a
similar argument to the one for Q by identifying all possible uniformizers.)

0.1.2 Exercises from (Oct 15)

1. [2pts] For K = F (t), if a = u
pa11 · · · p

ak
k

qb11 · · · q
bl
l

for u ∈ F× and distinct monic irreducibles p1, . . . , pk, q1, . . . , ql

having associated primes P1, . . . , Pk, Q1, . . . , Ql, show that div(a) = a1P1 + · · ·+ akPk − b1Q1 − · · · − blQl +
[
∑
j bj deg(qj)−

∑
i ai deg(pi)]∞.

2. [3pts] For any �eld F , if f(t), g(t) ∈ F [t] are relatively prime, show that [F (t) : F ( f(t)g(t) )] = max(deg f,deg g).

[Hint: Use Gauss's lemma to show that q(y) = f(y) − f(t)
g(t) g(y) ∈ F ( f(t)g(t) )[y] is the minimal polynomial of t

over F ( f(t)g(t) ).]

3. [1pt] Verify that the relation D1 ∼ D2 when D1 −D2 is principal is an equivalence relation on divisors and
that the equivalence classes are the elements in the quotient group of divisors modulo principal divisors.

4. [1pt] Check that the relation D1 ≤ D2 when D2 −D1 =
∑
P nPP where all nP ≥ 0 is a partial ordering on

divisors.

5. [2pts] Determine the Riemann-Roch space L(D) when K = F (t) for D = Pt − P∞, Pt + P∞, and Pt + Pt−1.

6. [1pt] Write down an interesting divisor of positive degree for K = F (t) and then compute a basis for the
Riemann-Roch space L(D).

1



0.1.3 Exercises from (Oct 20)

1. [1pt] Show that when K = F (x), the canonical class contains every divisor of K of degree −2.

2. [2pts] If R is the valuation ring of P and σ is an endomorphism of K, show that σR is also a valuation ring
with maximal ideal σP , and that σ gives an isomorphism of R/P with σR/σP . Show also that for any a ∈ K,
vσP (a) = vP (σ−1a).

3. [1pt] Show that the number of primes of degree ≤ n in K is at most [K : F (x)]qn for any x ∈ K\F .

4. [1pt] Give an explicit upper bound in terms of [K : F (x)], q, and n for the number of e�ective divisors of
degree n in K.

0.1.4 Exercises from (Oct 22)

1. [1pt] SupposeX is a compact Riemann surface. For any nonzero meromorphic f onX, show that deg(div(f)) =

0. [Hint: Use Cauchy's argument principle: for any contour C,
1

2πi

´
C

f ′

f
dz = Z −P is the number of zeroes

minus the number of poles in C.]

2. [1pt] Explain why saying that the dimension of the space of holomorphic di�erentials on X has dimension g
is equivalent to saying `(C) = g.

0.1.5 Exercises from (Oct 27)

1. [2pts] Let P be a prime of the function �eld K with valuation ring R and residue �eld E = R/P . Show that
the power series expansion method yields a one-to-one ring homomorphism of the metric space R (under the
metric induced by the discrete valuation vP ) into the formal power series ring E[[t]] (under the metric induced
by the order valuation vt, giving the lowest-degree term with a nonzero coe�cient).

2. [3pts*] Suppose D : K →M is a derivation of K/F into M . Show the following:

(a) D(c) = 0 for all c ∈ F .
(b) (Quotient Rule) D(a/b) = [bD(a)− aD(b)]/b2 for all a ∈ K, b ∈ K×.
(c) (Chain Rule 1) For any f(x) ∈ F [x] and any a ∈ K, we have D(f(a)) = f ′(a)D(a) where f ′ is the usual

formal derivative of f .

3. [2pts] Suppose K/F is a function �eld with x ∈ K\F and where K/F (x) is separable. If D1 and D2 are
derivations from K/F to M and D1(x) = D2(x), show that D1(a) = D2(a) for all a ∈ K. [Hint: First show
D1 and D2 agree on F (x). Then for any y ∈ K, apply D1 and D2 to its minimal polynomial m(y) = 0 over
F (x); separability ensures that m′(y) is not the zero polynomial.]

4. [2pts] For a function �eld K/F , let DerK denote the space of derivations D : K → K.

(a) Show that DerK is a K-vector space under pointwise addition and scalar multiplication.

(b) Show that for any derivation D ∈ DerK and any a ∈ K× we have D = D(x) ·Dx. Deduce that DerK is
1-dimensional (as a K-vector space).

5. [2pts] If x and y are separating elements of a function �eld K/F , show the chain rule: that Dx = Dx(y) ·Dy as
functions on K. Deduce that the relation (a, x) ∼ (b, y) when b = a ·Dy(x) is in fact an equivalence relation.

6. [1pt] Show that the map d : K → DiffK via d(a) = 1 da when a is a separating element and d(a) = 0 when a
is non-separating is a derivation of K/F .

7. [2pts] If K/F is a function �eld and F is algebraically closed, show that all nonzero di�erentials lie in the
same divisor class.
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0.1.6 Exercises from (Oct 29)

1. [2pts] Show using the divisor-counting results from earlier that the zeta function ζK(s) =
∑
A≥0 q

−s degA

converges absolutely for Re(s) > 1. (We will later improve those estimates, but the weak ones in the earlier
exercises are good enough here.)

2. [2pts*] Show that ζFq(t)(s) = (1− q−s)−1ζFq [t](s) =
1

(1− q1−s)(1− q−s)
.

3. [3pts*] Using the explicit formula ζFq(t)(s) =
1

(1− q−s)(1− q1−s)
, verify the Weil conjectures for K = Fq(t).

0.2 Additional Exercises

1. [6pts] Suppose K/F is a function �eld and suppose R is a proper subring of K containing F with the property
that a ∈ R or a−1 ∈ R for all a ∈ K×.

(a) Show that R is a local ring and that the maximal ideal P of R consists of the elements a ∈ K such that
a−1 6∈ R.

(b) Suppose x1 ∈ P is nonzero and x2, . . . , xn have xi ∈ xi+1P for 1 ≤ i ≤ n−1. Show that n ≤ [K : F (x1)].
[Hint: Adapt the proof that R/P is a �nite-dimensional F -vector space to show that x1, . . . , xn are
linearly independent over F (x1).]

(c) Show that P is principal. [Hint: If not, pick a nonzero x1 ∈ P and x2 ∈ P\(x1) and show x1/x2 ∈ P so
x1 ∈ x2P . If x2 does not generate P , repeat until a generator is obtained.]

(d) Letting P = (t), show that every nonzero x ∈ R can be written in the form x = utn for a unique unit
u ∈ R and unique nonnegative integer n. Deduce that the function v : R → Z with v(x) = n (and
v(0) =∞) is a discrete valuation on R, and conclude that R is a valuation ring of K.

Remark: Since all valuation rings of K have the property that a ∈ R or a−1 ∈ R for all a ∈ K×, this gives
a way to identify valuation rings of function �elds without explicitly needing to reference the valuation.

2. [5pts] Our discussion of primes of a function �eld K/F is predicated on the assumption that there are actually
DVRs inside K. The goal of this problem is to show this is indeed the case by establishing the following
result: if S is a subring of K containing F and I is a nonzero proper ideal of S, then there is a prime P of K
with valuation ring R such that I ⊆ P and S ⊆ R.

(a) Let F be the set of subrings T of K containing R such that IT 6= T . Show that F contains a maximal
element.

(b) Suppose that O is a maximal element under the conditions of (1). Show that for any element x ∈ K,
either x ∈ O or x−1 ∈ O; deduce that O is a valuation ring of K. [Hint: If not, then IO[x] = O[x] and
IO[x−1] = O[x−1]. Pick m,n minimal with 1 = a0 + a1x+ · · ·+ anx

n and 1 = b0 + b1x
−1 + · · ·+ bmx

−m

with ai, bi ∈ IO. Use these relations to eliminate a power and obtain a contradiction.]

(c) Show that for any a ∈ K\F , a has at least one zero and one pole. [Hint: Take the ring F [a] and the
ideal I = aF [a] to get a zero.]

(d) Conclude that K/F has at least two primes P . (In fact, every function �eld has in�nitely many primes,
though this is a bit harder to extract.)

3. [4pts*] The goal of this problem is to prove a result known as the Weierstrass gap theorem. Let P be a prime
of K and suppose that the genus of K is g. The main task is to investigate the spaces L(nP ) for various n:
we say that an integer n is a pole number for P if there exists a ∈ K such that div−(a) = −nP , and otherwise
(if there is no such a) we say n is a gap number for P .

(a) Show that the set of pole numbers for P is an additive semigroup (i.e., it is closed under addition and
contains 0).

(b) Show that if n ≥ 2g, then L((n− 1)P ) < L(nP ). Deduce that there exists an element a ∈ K such that
div−(a) = −nP and conclude that each n ≥ 2g is a pole number.

(c) Show that there are exactly g gap numbers i1 < i2 < · · · < ig for P , and that i1 = 1 and ig ≤ 2g − 1.
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