E. Dummit’s Math 7362 ~ Number Theory in Function Fields, Fall 2025 ~ Homework 2, due Wed Nov 5th

Solve whichever problems you haven’t seen before that interest you the most (suggestion: between 30 and 50 points’
worth). Starred problems are especially recommended. Prepare to present 2-4 problems in class on the due date.

0.1 In-Lecture Exercises

0.1.1 Exercises from (Oct 6)

1. [2pts] If R is a Noetherian integrally-closed domain and P is a minimal nonzero prime ideal of R, show that
Rp is a DVR. Deduce in particular that if R is a Dedekind domain and P is a nonzero prime ideal, then Rp
is a DVR.

2. [6pts*] Let R be a discrete valuation ring with field of fractions F' and valuation v. Also t € R be a uniformizer
(an element with v(t) = 1). Prove:

(a) For any r € F*, either r or 1/r is in R.

(b) An element v € R is a unit of R if and only if v(u) = 0. In particular, if ¢ € F' is any root of unity, then
v(¢) = 0.

(¢c) If z € R is nonzero and v(z) = n, then z can be written uniquely in the form x = ut™ for some unit
u € R.

(d) Every nonzero ideal of R is of the form (¢") for some n > 0.
(e) The ring R is a Euclidean domain (hence also a PID and a UFD) and also a local ring.
(f) The ring S is a DVR if and only if it is a PID and a local ring but not a field.

3. [2pts] If v is a discrete valuation on Q, show that the set P = {n € Z : v(n) > 0} is a prime ideal of Z.

4. [3pts] Prove that the p-adic valuations v, along with v, are the only discrete valuations on F(t)/F. (Use a
similar argument to the one for Q by identifying all possible uniformizers.)

0.1.2 Exercises from (Oct 15)

at . 0k
1. [2pts] For K = F(t), if a = u% for v € F* and distinct monic irreducibles p1,...,pk,q1,---,q
q1" " q
having associated primes Py, ..., Py, Q1,...,Q, show that div(a) = a1 P1 + -+ apPr —01Q1 — - - — bQ; +

[>_; bj deg(g;) — 3=, a; deg(p;)]oo.
2. [3pts] For any field F, if f(t),g(t) € F[t] are relatively prime, show that [F(¢) : F(%)] = max(deg f, deg g).
int: Use Gauss’s lemma to show that q(y) = f(y) — =<9(y) € )|yl 1s the minimal polynomial of ¢
Hint: Use Gauss’s | how th f £ F(L{4)[y] is the minimal polynomial of

g9(¢)
@)

over F( 1)

3. [1pt] Verify that the relation D; ~ Dy when D; — D5 is principal is an equivalence relation on divisors and
that the equivalence classes are the elements in the quotient group of divisors modulo principal divisors.

4. [1pt] Check that the relation D; < Dy when Dy — Dy = ), npP where all np > 0 is a partial ordering on
divisors.

5. [2pts] Determine the Riemann-Roch space L(D) when K = F(t) for D = P, — Poo, Pi + Poo, and P; + P;_1.

6. [1pt] Write down an interesting divisor of positive degree for K = F(t) and then compute a basis for the
Riemann-Roch space L(D).



0.1.3 Exercises from (Oct 20)

. [1pt] Show that when K = F(z), the canonical class contains every divisor of K of degree —2.

[2pts] If R is the valuation ring of P and ¢ is an endomorphism of K, show that oR is also a valuation ring
with maximal ideal o P, and that o gives an isomorphism of R/P with o R/oP. Show also that for any a € K,

vep(a) =vp(oc~ta).
[1pt] Show that the number of primes of degree < n in K is at most [K : F(z)|q" for any = € K\F.

[1pt] Give an explicit upper bound in terms of [K : F(z)], ¢, and n for the number of effective divisors of
degree n in K.

0.1.4 Exercises from (Oct 22)

1.

2.

[1pt] Suppose X is a compact Riemann surface. For any nonzero meromorphic f on X, show that deg(div(f)) =
!

1
0. [Hint: Use Cauchy’s argument principle: for any contour C, o /. ¢ 7 dz = Z — P is the number of zeroes
i

minus the number of poles in C']

[1pt] Explain why saying that the dimension of the space of holomorphic differentials on X has dimension g
is equivalent to saying £(C) = g.

0.1.5 Exercises from (Oct 27)

1.

[2pts] Let P be a prime of the function field K with valuation ring R and residue field E = R/P. Show that
the power series expansion method yields a one-to-one ring homomorphism of the metric space R (under the
metric induced by the discrete valuation vp) into the formal power series ring E|[[t]] (under the metric induced
by the order valuation v, giving the lowest-degree term with a nonzero coefficient).

. [3pts*] Suppose D : K — M is a derivation of K/F into M. Show the following:

(a) D(c)=0forallce F.
(b) (Quotient Rule) D(a/b) = [bD(a) — aD(b)]/b? for all a € K, b € K*.

(c) (Chain Rule 1) For any f(z) € Flz] and any a € K, we have D(f(a)) = f'(a)D(a) where f’ is the usual
formal derivative of f.

[2pts] Suppose K/F is a function field with z € K\F and where K/F(z) is separable. If Dy and Dy are
derivations from K/F to M and D;(x) = Da(z), show that D;(a) = Ds(a) for all @ € K. [Hint: First show
D, and Dy agree on F(x). Then for any y € K, apply D; and D to its minimal polynomial m(y) = 0 over
F(z); separability ensures that m/(y) is not the zero polynomial.|

. |2pts] For a function field K/F, let Derg denote the space of derivations D : K — K.

(a) Show that Derg is a K-vector space under pointwise addition and scalar multiplication.

(b) Show that for any derivation D € Derx and any a € K* we have D = D(z) - D,. Deduce that Derg is
1-dimensional (as a K-vector space).

. [2pts] If « and y are separating elements of a function field K/F, show the chain rule: that D, = D,(y)- D, as

functions on K. Deduce that the relation (a,z) ~ (b,y) when b = a - Dy(z) is in fact an equivalence relation.

. [1pt] Show that the map d : K — Diff ¥ via d(a) = 1da when a is a separating element and d(a) = 0 when a

is non-separating is a derivation of K/F.

. [2pts] If K/F is a function field and F is algebraically closed, show that all nonzero differentials lie in the

same divisor class.



0.1.6 Exercises from (Oct 29)

1.

0.2

. [2pts*] Show that e, (s) = (1 — q~*) " 'Ce,ju(s) =

[2pts] Show using the divisor-counting results from earlier that the zeta function (x(s) = Y 45, ¢ *9°84
converges absolutely for Re(s) > 1. (We will later improve those estimates, but the weak ones in the earlier
exercises are good enough here.)

1

(I-¢"=*)1—q*)
1

(1—g*)1—q'%)

, verify the Weil conjectures for K = F(t).

[3pts*] Using the explicit formula (r, (1)(s) =

Additional Exercises

. |[6pts] Suppose K/F is a function field and suppose R is a proper subring of K containing F' with the property

that a € Rora ' € R for all a € K*.

(a) Show that R is a local ring and that the maximal ideal P of R consists of the elements a € K such that
a” !¢ R.

(b) Suppose 1 € P is nonzero and o, ..., z, have x; € x;41 P for 1 <i <n—1. Show that n < [K : F(z1)].
[Hint: Adapt the proof that R/P is a finite-dimensional F-vector space to show that xy,...,x, are
linearly independent over F(z1).]

(¢) Show that P is principal. [Hint: If not, pick a nonzero z; € P and z3 € P\(z1) and show z1/z2 € P so
x1 € 2o P. If 25 does not generate P, repeat until a generator is obtained.]

(d) Letting P = (t), show that every nonzero x € R can be written in the form x = ut™ for a unique unit
u € R and unique nonnegative integer n. Deduce that the function v : R — Z with v(z) = n (and
v(0) = o0) is a discrete valuation on R, and conclude that R is a valuation ring of K.

Remark: Since all valuation rings of K have the property that a € R or a=! € R for all a € K*, this gives
a way to identify valuation rings of function fields without explicitly needing to reference the valuation.

. [5pts] Our discussion of primes of a function field K/F is predicated on the assumption that there are actually

DVRs inside K. The goal of this problem is to show this is indeed the case by establishing the following
result: if S is a subring of K containing F' and [ is a nonzero proper ideal of S, then there is a prime P of K
with valuation ring R such that I C P and S C R.

(a) Let F be the set of subrings T of K containing R such that IT # T. Show that F contains a maximal
element.

(b) Suppose that O is a maximal element under the conditions of (1). Show that for any element x € K,
either € O or 271 € O; deduce that O is a valuation ring of K. [Hint: If not, then IO[z] = O[xz] and
I0[x71] = Olz~1]. Pick m,n minimal with 1 = ag + a1z +---+apz™ and 1 = by +byx=t + -+ + bpz™™
with a;,b; € IO. Use these relations to eliminate a power and obtain a contradiction.]

(c) Show that for any a € K\F, a has at least one zero and one pole. [Hint: Take the ring F'[a] and the
ideal I = aFa] to get a zero.]

(d) Conclude that K/F has at least two primes P. (In fact, every function field has infinitely many primes,
though this is a bit harder to extract.)

. [4pts*] The goal of this problem is to prove a result known as the Weierstrass gap theorem. Let P be a prime

of K and suppose that the genus of K is g. The main task is to investigate the spaces L(nP) for various n:
we say that an integer n is a pole number for P if there exists a € K such that div_(a) = —nP, and otherwise
(if there is no such a) we say n is a gap number for P.

(a) Show that the set of pole numbers for P is an additive semigroup (i.e., it is closed under addition and
contains 0).

(b) Show that if n > 2g, then L((n — 1)P) < L(nP). Deduce that there exists an element a € K such that
div_(a) = —nP and conclude that each n > 2¢ is a pole number.

¢) Show that there are exactly g gap numbers i1 < iy < --- < i, for P, and that i1 = 1 and i, < 2g — 1.
g g



